1
|
Almalki WH, Almujri SS. The impact of NF-κB on inflammatory and angiogenic processes in age-related macular degeneration. Exp Eye Res 2024; 248:110111. [PMID: 39326776 DOI: 10.1016/j.exer.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Age-related macular degeneration (AMD) is a prominent cause of vision loss, characterized by two different types, dry (atrophic) and wet (neovascular). Dry AMD is distinguished by the progressive deterioration of retinal cells, which ultimately causes a decline in vision. In contrast, wet AMD is defined by the abnormal development of blood vessels underneath the retina, leading to a sudden and severe vision impairment. The course of AMD is primarily driven by chronic inflammation and pathological angiogenesis, in which the NF-κB signaling pathway plays a crucial role. The activation of NF-κB results in the generation of pro-inflammatory cytokines, chemokines, and angiogenic factors like VEGF, which contribute to inflammation and the formation of new blood vessels in AMD. This review analyzes the intricate relationship between NF-κB signaling, inflammation, and angiogenesis in AMD and assesses the possibility of using NF-κB as a target for therapy. The evaluation involves a comprehensive examination of preclinical and clinical evidence that substantiates the effectiveness of NF-κB inhibitors in treating AMD by diminishing inflammation and pathological angiogenesis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
2
|
Grenell A, Singh C, Raju M, Wolk A, Dalvi S, Jang GF, Crabb JS, Hershberger CE, Manian KV, Hernandez K, Crabb JW, Singh R, Du J, Anand-Apte B. Tissue Inhibitor of Metalloproteinase 3 (TIMP3) mutations increase glycolytic activity and dysregulate glutamine metabolism in RPE cells. Mol Metab 2024; 88:101995. [PMID: 39047907 PMCID: PMC11344013 DOI: 10.1016/j.molmet.2024.101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVES Mutations in Tissue Inhibitor of Metalloproteinases 3 (TIMP3) cause Sorsby's Fundus Dystrophy (SFD), a dominantly inherited, rare form of macular degeneration that results in vision loss. TIMP3 is synthesized primarily by retinal pigment epithelial (RPE) cells, which constitute the outer blood-retinal barrier. One major function of RPE is the synthesis and transport of vital nutrients, such as glucose, to the retina. Recently, metabolic dysfunction in RPE cells has emerged as an important contributing factor in retinal degenerations. We set out to determine if RPE metabolic dysfunction was contributing to SFD pathogenesis. METHODS Quantitative proteomics was conducted on RPE of mice expressing the S179C variant of TIMP3, known to be causative of SFD in humans. Proteins found to be differentially expressed (P < 0.05) were analyzed using statistical overrepresentation analysis to determine enriched pathways, processes, and protein classes using g:profiler and PANTHER Gene Ontology. We examined the effects of mutant TIMP3 on RPE metabolism using human ARPE-19 cells expressing mutant S179C TIMP3 and patient-derived induced pluripotent stem cell-derived RPE (iRPE) carrying the S204C TIMP3 mutation. RPE metabolism was directly probed using isotopic tracing coupled with GC/MS analysis. Steady state [U-13C6] glucose isotopic tracing was preliminarily conducted on S179C ARPE-19 followed by [U-13C6] glucose and [U-13C5] glutamine isotopic tracing in SFD iRPE cells. RESULTS Quantitative proteomics and enrichment analysis conducted on RPE of mice expressing mutant S179C TIMP3 identified differentially expressed proteins that were enriched for metabolism-related pathways and processes. Notably these results highlighted dysregulated glycolysis and glucose metabolism. Stable isotope tracing experiments with [U-13C6] glucose demonstrated enhanced glucose utilization and glycolytic activity in S179C TIMP3 APRE-19 cells. Similarly, [U-13C6] glucose tracing in SFD iRPE revealed increased glucose contribution to glycolysis and the TCA cycle. Additionally, [U-13C5] glutamine tracing found evidence of altered malic enzyme activity. CONCLUSIONS This study provides important information on the dysregulation of RPE glucose metabolism in SFD and implicates a potential commonality with other retinal degenerative diseases, emphasizing RPE cellular metabolism as a therapeutic target.
Collapse
Affiliation(s)
- Allison Grenell
- Case Western Reserve University, Department of Pharmacology, Cleveland, OH, USA; Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | | | - Monisha Raju
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alyson Wolk
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sonal Dalvi
- University of Rochester, Department of Ophthalmology, Rochester, NY, USA
| | - Geeng-Fu Jang
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - John S Crabb
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Courtney E Hershberger
- Cleveland Clinic Lerner Research Institute, Department of Quantitative Health Sciences, USA
| | - Kannan V Manian
- University of Rochester, Department of Ophthalmology, Rochester, NY, USA
| | - Karen Hernandez
- Case Western Reserve University, Department of Pharmacology, Cleveland, OH, USA; Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - John W Crabb
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ruchira Singh
- University of Rochester, Department of Ophthalmology, Rochester, NY, USA
| | - Jianhai Du
- West Virginia University, Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, Morgantown, WV, USA
| | - Bela Anand-Apte
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA; Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Dept. of Ophthalmology, Cleveland, OH, USA.
| |
Collapse
|
3
|
Wu S, Zheng F, Sui A, Wu D, Chen Z. Sodium-iodate injection can replicate retinal and choroid degeneration in pigmented mice: Using multimodal imaging and label-free quantitative proteomics analysis. Exp Eye Res 2024; 247:110050. [PMID: 39151777 DOI: 10.1016/j.exer.2024.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible visual loss in the elderly population. Sodium iodate (NaIO3), a stable oxidizing agent, has been injected to establish a reproducible model of oxidative stress-induced RPE and photoreceptor death. The aim of our study was to evaluate the morphological and molecular changes of retina and retinal pigment epithelium (RPE)-choroid in NaIO3-treated mouse using multimodal fundus imaging and label-free quantitative proteomics analysis. Here, we found that following NaIO3 injection, retinal degeneration was evident. Fundus photographs showed numerous scattered yellow-white speckled deposits. Optical coherence tomography (OCT) images indicated disruption of the retinal layers, damage of the RPE layer and accumulation of hyper-reflective matter in multiple layers of the outer retina. Widespread foci of a high fundus autofluorescence (FAF) signal were noticed. Fundus fluorescein angiography (FFA) revealed diffuse intense transmitted fluorescence mixed with scattered spot-like blocked fluorescence. Indocyanine green angiography (ICGA) presented punctate hyperfluorescence. Due to the atrophy of the RPE and Bruch's membrane and choroidal capillary complex, the larger choroidal vessels become more prominent in ICGA and optical coherence tomography angiography (OCTA). Transmission electron microscope (TEM) illustrated abnormal material accumulation and damaged mitochondria. Bioinformatics analysis of proteomics revealed that the differentially expressed proteins participated in diverse biological processes, encompassing phototransduction, NOD-like receptor signaling pathway, phagosome, necroptosis, and cell adhesion molecules. In conclusion, by multimodal imaging, we described the phenotype of NaIO3-treated mouse model mimicking oxidative stress-induced RPE and photoreceptor death in detail. In addition, proteomics analysis identified differentially expressed proteins and significant enrichment pathways, providing insights for future research, although the exact mechanism of oxidative stress-induced RPE and photoreceptor death remains incompletely understood.
Collapse
Affiliation(s)
- Shijing Wu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, 310009, Zhejiang, China
| | - Fang Zheng
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, 310009, Zhejiang, China
| | - Ailing Sui
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, 310009, Zhejiang, China
| | - Di Wu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, 310009, Zhejiang, China.
| | - Zhiqing Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
4
|
Antonietti M, Taylor Gonzalez DJ, Djulbegovic MB, Gameiro GR, Uversky VN, Sridhar J, Karp CL. Intrinsic disorder in the human vitreous proteome. Int J Biol Macromol 2024; 267:131274. [PMID: 38569991 PMCID: PMC11182622 DOI: 10.1016/j.ijbiomac.2024.131274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The vitreous is a vital component of the eye, occupying a substantial portion of its volume and maintaining its structure. This study delves into the presence and significance of intrinsically disordered proteins (IDPs) within the vitreous, utilizing a dataset of 1240 vitreous proteins previously discovered in the vitreous proteome by Murthy et al.in five healthy subjects. The results indicate that 26.9 % of vitreous proteins are highly disordered, 68.8 % possess moderate disorder, and only 4.3 % are highly ordered. A complex interaction network among these proteins suggests their biological importance, and approximately 25 % may undergo liquid-liquid phase separation (LLPS). These findings offer new perspectives on the vitreous' molecular composition and behavior, potentially impacting our understanding of eye-related diseases, physiological changes such as vitreous syneresis. Further research is needed to translate these insights into clinical applications, although the intrinsic protein disorder and its association with LLPS appears to play a role in vitreous proteome function.
Collapse
Affiliation(s)
- Michael Antonietti
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States of America
| | | | - Mak B Djulbegovic
- Wills Eye Hospital, Thomas Jefferson University Hospital, Philadelphia, PA, United States of America
| | - Gustavo R Gameiro
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States of America; Escola Paulista de Medicina, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Jayanth Sridhar
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States of America
| | - Carol L Karp
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States of America.
| |
Collapse
|
5
|
Wilke GA, Apte RS. Complement regulation in the eye: implications for age-related macular degeneration. J Clin Invest 2024; 134:e178296. [PMID: 38690727 PMCID: PMC11060743 DOI: 10.1172/jci178296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Careful regulation of the complement system is critical for enabling complement proteins to titrate immune defense while also preventing collateral tissue damage from poorly controlled inflammation. In the eye, this balance between complement activity and inhibition is crucial, as a low level of basal complement activity is necessary to support ocular immune privilege, a prerequisite for maintaining vision. Dysregulated complement activation contributes to parainflammation, a low level of inflammation triggered by cellular damage that functions to reestablish homeostasis, or outright inflammation that disrupts the visual axis. Complement dysregulation has been implicated in many ocular diseases, including glaucoma, diabetic retinopathy, and age-related macular degeneration (AMD). In the last two decades, complement activity has been the focus of intense investigation in AMD pathogenesis, leading to the development of novel therapeutics for the treatment of atrophic AMD. This Review outlines recent advances and challenges, highlighting therapeutic approaches that have advanced to clinical trials, as well as providing a general overview of the complement system in the posterior segment of the eye and selected ocular diseases.
Collapse
Affiliation(s)
- Georgia A. Wilke
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences
| | - Rajendra S. Apte
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences
- Department of Medicine, and
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Delanghe JR, Diana Di Mavungu J, Beerens K, Himpe J, Bostan N, Speeckaert MM, Vrielinck H, Vral A, Van Den Broeke C, Huizing M, Van Aken E. Fructosyl Amino Oxidase as a Therapeutic Enzyme in Age-Related Macular Degeneration. Int J Mol Sci 2024; 25:4779. [PMID: 38732004 PMCID: PMC11083825 DOI: 10.3390/ijms25094779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Age-related macular degeneration (AMD) is an age-related disorder that is a global public health problem. The non-enzymatic Maillard reaction results in the formation of advanced glycation end products (AGEs). Accumulation of AGEs in drusen plays a key role in AMD. AGE-reducing drugs may contribute to the prevention and treatment of AGE-related disease. Fructosamine oxidase (FAOD) acts on fructosyl lysine and fructosyl valine. Based upon the published results of fructosamine 3-kinase (FN3K) and FAOD obtained in cataract and presbyopia, we studied ex vivo FAOD treatment as a non-invasive AMD therapy. On glycolaldehyde-treated porcine retinas, FAOD significantly reduced AGE autofluorescence (p = 0.001). FAOD treatment results in a breakdown of AGEs, as evidenced using UV fluorescence, near-infrared microspectroscopy on stained tissue sections of human retina, and gel permeation chromatography. Drusen are accumulations of AGEs that build up between Bruch's membrane and the retinal pigment epithelium. On microscopy slides of human retina affected by AMD, a significant reduction in drusen surface to 45 ± 21% was observed following FAOD treatment. Enzymatic digestion followed by mass spectrometry of fructose- and glucose-based AGEs (produced in vitro) revealed a broader spectrum of substrates for FAOD, as compared to FN3K, including the following: fructosyllysine, carboxymethyllysine, carboxyethyllysine, and imidazolone. In contrast to FN3K digestion, agmatine (4-aminobutyl-guanidine) was formed following FAOD treatment in vitro. The present study highlights the therapeutic potential of FAOD in AMD by repairing glycation-induced damage.
Collapse
Affiliation(s)
- Joris R. Delanghe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Jose Diana Di Mavungu
- Department of Green Chemistry and Technology, MSsmall Expertise Centre, Mass Spectrometry Analysis of Small Organic Molecules, Ghent University, 9000 Ghent, Belgium;
| | - Koen Beerens
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Jonas Himpe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Nezahat Bostan
- Antwerp Biobank, Antwerp University Hospital, 2650 Antwerp, Belgium; (N.B.); (M.H.)
| | - Marijn M. Speeckaert
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium;
| | - Henk Vrielinck
- Department of Solid State Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Anne Vral
- Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium;
| | | | - Manon Huizing
- Antwerp Biobank, Antwerp University Hospital, 2650 Antwerp, Belgium; (N.B.); (M.H.)
| | | |
Collapse
|
7
|
Feldman T, Ostrovskiy D, Yakovleva M, Dontsov A, Borzenok S, Ostrovsky M. Lipofuscin-Mediated Photic Stress Induces a Dark Toxic Effect on ARPE-19 Cells. Int J Mol Sci 2022; 23:12234. [PMID: 36293088 PMCID: PMC9602730 DOI: 10.3390/ijms232012234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/25/2023] Open
Abstract
Lipofuscin granules from retinal pigment epithelium (RPE) cells contain bisretinoid fluorophores, which are photosensitizers and are phototoxic to cells. In the presence of oxygen, bisretinoids are oxidized to form various products, containing aldehydes and ketones, which are also potentially cytotoxic. In a prior study, we identified that bisretinoid oxidation and degradation products have both hydrophilic and amphiphilic properties, allowing their diffusion through the lipofuscin granule membrane into the RPE cell cytoplasm, and are thiobarbituric acid (TBA)-active. The purpose of the present study was to determine if these products exhibit a toxic effect to the RPE cell also in the absence of light. The experiments were performed using the lipofuscin-fed ARPE-19 cell culture. The RPE cell viability analysis was performed with the use of flow cytofluorimetry and laser scanning confocal microscopy. The results obtained indicated that the cell viability of the lipofuscin-fed ARPE-19 sample was clearly reduced not immediately after visible light irradiation for 18 h, but after 4 days maintaining in the dark. Consequently, we could conclude that bisretinoid oxidation products have a damaging effect on the RPE cell in the dark and can be considered as an aggravating factor in age-related macular degeneration progression.
Collapse
Affiliation(s)
- Tatiana Feldman
- Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, 119234 Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Dmitriy Ostrovskiy
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
- Sv. Fyodorov Eye Microsurgery Complex, 59a Beskudnikovsky bld., 127486 Moscow, Russia
| | - Marina Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Alexander Dontsov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Sergey Borzenok
- Sv. Fyodorov Eye Microsurgery Complex, 59a Beskudnikovsky bld., 127486 Moscow, Russia
| | - Mikhail Ostrovsky
- Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, 119234 Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
8
|
Crowley MA, Garland DL, Sellner H, Banks A, Fan L, Rejtar T, Buchanan N, Delgado O, Xu YY, Jose S, Adams CM, Mogi M, Wang K, Bigelow CE, Poor S, Anderson K, Jaffee BD, Prasanna G, Grosskreutz C, Fernandez-Godino R, Pierce EA, Dryja TP, Liao SM. Complement factor B is critical for sub-RPE deposit accumulation in a model of Doyne honeycomb retinal dystrophy with features of age-related macular degeneration. Hum Mol Genet 2022; 32:204-217. [PMID: 35943778 PMCID: PMC9840207 DOI: 10.1093/hmg/ddac187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 01/19/2023] Open
Abstract
EFEMP1 R345W is a dominant mutation causing Doyne honeycomb retinal dystrophy/malattia leventinese (DHRD/ML), a rare blinding disease with clinical pathology similar to age-related macular degeneration (AMD). Aged Efemp1 R345W/R345W knock-in mice (Efemp1ki/ki) develop microscopic deposits on the basal side of retinal pigment epithelial cells (RPE), an early feature in DHRD/ML and AMD. Here, we assessed the role of alternative complement pathway component factor B (FB) in the formation of these deposits. RNA-seq analysis of the posterior eyecups revealed increased unfolded protein response, decreased mitochondrial function in the neural retina (by 3 months of age) and increased inflammatory pathways in both neural retina and posterior eyecups (at 17 months of age) of Efemp1ki/ki mice compared with wild-type littermate controls. Proteomics analysis of eye lysates confirmed similar dysregulated pathways as detected by RNA-seq. Complement activation was increased in aged Efemp1ki/ki eyes with an approximately 2-fold elevation of complement breakdown products iC3b and Ba (P < 0.05). Deletion of the Cfb gene in female Efemp1ki/ki mice partially normalized the above dysregulated biological pathway changes and oral dosing of a small molecule FB inhibitor from 10 to 12 months of age reduced sub-RPE deposits by 65% (P = 0.029). In contrast, male Efemp1ki/ki mice had fewer sub-RPE deposits than age-matched females, no elevation of ocular complement activation and no effect of FB inhibition on sub-RPE deposits. The effects of FB deletion or inhibition on Efemp1ki/ki mice supports systemic inhibition of the alternative complement pathway as a potential treatment of dry AMD and DHRD/ML.
Collapse
Affiliation(s)
- Maura A Crowley
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Donita L Garland
- Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Holger Sellner
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Angela Banks
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Lin Fan
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Tomas Rejtar
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Natasha Buchanan
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Omar Delgado
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Yong Yao Xu
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Sandra Jose
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Christopher M Adams
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Muneto Mogi
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Karen Wang
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Chad E Bigelow
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Stephen Poor
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | | | - Bruce D Jaffee
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Ganesh Prasanna
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Cynthia Grosskreutz
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Rosario Fernandez-Godino
- Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Eric A Pierce
- Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | | | - Sha-Mei Liao
- To whom correspondence should be addressed at: Department of Ophthalmology, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, MA 02139, USA. Tel: +1-(617)871-4004; Fax: +1-(617)871-5748;
| |
Collapse
|
9
|
Dontsov A, Yakovleva M, Trofimova N, Sakina N, Gulin A, Aybush A, Gostev F, Vasin A, Feldman T, Ostrovsky M. Water-Soluble Products of Photooxidative Destruction of the Bisretinoid A2E Cause Proteins Modification in the Dark. Int J Mol Sci 2022; 23:ijms23031534. [PMID: 35163454 PMCID: PMC8836230 DOI: 10.3390/ijms23031534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 01/06/2023] Open
Abstract
Aging of the retina is accompanied by a sharp increase in the content of lipofuscin granules and bisretinoid A2E in the cells of the retinal pigment epithelium (RPE) of the human eye. It is known that A2E can have a toxic effect on RPE cells. However, the specific mechanisms of the toxic effect of A2E are poorly understood. We investigated the effect of the products of photooxidative destruction of A2E on the modification of bovine serum albumin (BSA) and hemoglobin from bovine erythrocytes. A2E was irradiated with a blue light-emitting diode (LED) source (450 nm) or full visible light (400–700 nm) of a halogen lamp, and the resulting water-soluble products of photooxidative destruction were investigated for the content of carbonyl compounds by mass spectrometry and reaction with thiobarbituric acid. It has been shown that water-soluble products formed during A2E photooxidation and containing carbonyl compounds cause modification of serum albumin and hemoglobin, measured by an increase in fluorescence intensity at 440–455 nm. The antiglycation agent aminoguanidine inhibited the process of modification of proteins. It is assumed that water-soluble carbonyl products formed as a result of A2E photodestruction led to the formation of modified proteins, activation of the inflammation process, and, as a consequence, to the progression of various senile eye pathologies.
Collapse
Affiliation(s)
- Alexander Dontsov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (M.Y.); (N.T.); (N.S.); (T.F.); (M.O.)
- Correspondence: ; +7-495-939-7422
| | - Marina Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (M.Y.); (N.T.); (N.S.); (T.F.); (M.O.)
| | - Natalia Trofimova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (M.Y.); (N.T.); (N.S.); (T.F.); (M.O.)
| | - Natalia Sakina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (M.Y.); (N.T.); (N.S.); (T.F.); (M.O.)
| | - Alexander Gulin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.G.); (A.A.); (F.G.); (A.V.)
| | - Arseny Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.G.); (A.A.); (F.G.); (A.V.)
| | - Fedor Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.G.); (A.A.); (F.G.); (A.V.)
| | - Alexander Vasin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.G.); (A.A.); (F.G.); (A.V.)
| | - Tatiana Feldman
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (M.Y.); (N.T.); (N.S.); (T.F.); (M.O.)
- Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, 119234 Moscow, Russia
| | - Mikhail Ostrovsky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (M.Y.); (N.T.); (N.S.); (T.F.); (M.O.)
- Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, 119234 Moscow, Russia
| |
Collapse
|
10
|
Liu XY, Lu R, Chen J, Wang J, Qian HM, Chen G, Wu RH, Chi ZL. Suppressor of Cytokine Signaling 2 Regulates Retinal Pigment Epithelium Metabolism by Enhancing Autophagy. Front Neurosci 2021; 15:738022. [PMID: 34819832 PMCID: PMC8606588 DOI: 10.3389/fnins.2021.738022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
Retinal pigment epithelium (RPE) serves critical functions in maintaining retinal homeostasis. An important function of RPE is to degrade the photoreceptor outer segment fragments daily to maintain photoreceptor function and longevity throughout life. An impairment of RPE functions such as metabolic regulation leads to the development of age-related macular degeneration (AMD) and inherited retinal degenerative diseases. As substrate recognition subunit of a ubiquitin ligase complex, suppressor of cytokine signaling 2 (SOCS2) specifically binds to the substrates for ubiquitination and negatively regulates growth hormone signaling. Herein, we explore the role of SOCS2 in the metabolic regulation of autophagy in the RPE cells. SOCS2 knockout mice exhibited the irregular morphological deposits between the RPE and Bruch’s membrane. Both in vivo and in vitro experiments showed that RPE cells lacking SOCS2 displayed impaired autophagy, which could be recovered by re-expressing SOCS2. SOCS2 recognizes the ubiquitylated proteins and participates in the formation of autolysosome by binding with autophagy receptors and lysosome-associated membrane protein2 (LAMP-2), thereby regulating the phosphorylation of glycogen synthase kinase 3β (GSK3β) and mammalian target of rapamycin (mTOR) during the autophagy process. Our results imply that SOCS2 participates in ubiquitin-autophagy-lysosomal pathway and enhances autophagy by regulating GSK3β and mTOR. This study provides a potential therapeutic target for AMD.
Collapse
Affiliation(s)
- Xi-Yuan Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Rui Lu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Jing Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Jie Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Hong-Mei Qian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Rong-Han Wu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Zai-Long Chi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Campello L, Singh N, Advani J, Mondal AK, Corso-Díaz X, Swaroop A. Aging of the Retina: Molecular and Metabolic Turbulences and Potential Interventions. Annu Rev Vis Sci 2021; 7:633-664. [PMID: 34061570 PMCID: PMC11375453 DOI: 10.1146/annurev-vision-100419-114940] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multifaceted and divergent manifestations across tissues and cell types have curtailed advances in deciphering the cellular events that accompany advanced age and contribute to morbidities and mortalities. Increase in human lifespan during the past century has heightened awareness of the need to prevent age-associated frailty of neuronal and sensory systems to allow a healthy and productive life. In this review, we discuss molecular and physiological attributes of aging of the retina, with a goal of understanding age-related impairment of visual function. We highlight the epigenome-metabolism nexus and proteostasis as key contributors to retinal aging and discuss lifestyle changes as potential modulators of retinal function. Finally, we deliberate promising intervention strategies for promoting healthy aging of the retina for improved vision.
Collapse
Affiliation(s)
- Laura Campello
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Nivedita Singh
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Jayshree Advani
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Anupam K Mondal
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Ximena Corso-Díaz
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
12
|
Can Demirdöğen B, Demirkaya-Budak S, Özge G, Mumcuoğlu T. Evaluation of Tear Fluid and Aqueous Humor Concentration of Clusterin as Biomarkers for Early Diagnosis of Pseudoexfoliation Syndrome and Pseudoexfoliative Glaucoma. Curr Eye Res 2019; 45:805-813. [PMID: 31765245 DOI: 10.1080/02713683.2019.1698055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Pseudoexfoliation syndrome (PEX) is an age-related disorder of the extracellular matrix characterized by the accumulation of fibrillary deposits in the anterior chamber of the eye, which leads to the development of pseudoexfoliative glaucoma (PEG). Early identification of subjects with higher susceptibility to PEX and PEG development is very important so that these conditions are managed at earlier stages, which requires that an objective biomarker is defined. Therefore, in the present study, we aimed to determine if aqueous humor and tear fluid concentrations of clusterin, an extracellular chaperone, are objective biomarkers for PEX and PEG risk. METHODS Tear fluid was obtained from 80 patients with PEG, 80 patients with PEX, and 80 controls, using Schirmer strips. Aqueous humor was also collected during cataract surgery from 12 patients with PEG, 17 patients with PEX, and 22 controls, who also gave tear samples. Clusterin concentration was determined by ELISA. RESULTS Clusterin concentration in aqueous humor was significantly higher in patients with PEG than in PEX cases (P = .002) and controls (P = .004). Receiver operating characteristics analysis revealed that this parameter is a robust classifier to distinguish PEG and PEX cases. Tear fluid clusterin concentrations did not differ significantly between groups. Aqueous humor and tear fluid levels of clusterin were not significantly correlated. CONCLUSIONS In conclusion, tear fluid clusterin level in patients with PEG and PEX was determined for the first time, which showed no difference between study groups. Aqueous humor clusterin level was markedly higher in patients with PEG.
Collapse
Affiliation(s)
- Birsen Can Demirdöğen
- Department of Biomedical Engineering, TOBB University of Economics and Technology , Ankara, Turkey
| | - Sinem Demirkaya-Budak
- Department of Biomedical Engineering, TOBB University of Economics and Technology , Ankara, Turkey
| | - Gökhan Özge
- Department of Ophthalmology, Gülhane Training and Research Hospital, University of Health Sciences , Ankara, Turkey
| | - Tarkan Mumcuoğlu
- Department of Ophthalmology, Gülhane Training and Research Hospital, University of Health Sciences , Ankara, Turkey
| |
Collapse
|
13
|
On the origin of proteins in human drusen: The meet, greet and stick hypothesis. Prog Retin Eye Res 2018; 70:55-84. [PMID: 30572124 DOI: 10.1016/j.preteyeres.2018.12.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022]
Abstract
Retinal drusen formation is not only a clinical hallmark for the development of age-related macular degeneration (AMD) but also for other disorders, such as Alzheimer's disease and renal diseases. The initiation and growth of drusen is poorly understood. Attention has focused on lipids and minerals, but relatively little is known about the origin of drusen-associated proteins and how they are retained in the space between the basal lamina of the retinal pigment epithelium and the inner collagenous layer space (sub-RPE-BL space). While some authors suggested that drusen proteins are mainly derived from cellular debris from processed photoreceptor outer segments and the RPE, others suggest a choroidal cell or blood origin. Here, we reviewed and supplemented the existing literature on the molecular composition of the retina/choroid complex, to gain a more complete understanding of the sources of proteins in drusen. These "drusenomics" studies showed that a considerable proportion of currently identified drusen proteins is uniquely originating from the blood. A smaller, but still large fraction of drusen proteins comes from both blood and/or RPE. Only a small proportion of drusen proteins is uniquely derived from the photoreceptors or choroid. We next evaluated how drusen components may "meet, greet and stick" to each other and/or to structures like hydroxyapatite spherules to form macroscopic deposits in the sub-RPE-BL space. Finally, we discuss implications of our findings with respect to the previously proposed homology between drusenogenesis in AMD and plaque formation in atherosclerosis.
Collapse
|
14
|
Arya S, Emri E, Synowsky SA, Shirran SL, Barzegar-Befroei N, Peto T, Botting CH, Lengyel I, Stewart AJ. Quantitative analysis of hydroxyapatite-binding plasma proteins in genotyped individuals with late-stage age-related macular degeneration. Exp Eye Res 2018; 172:21-29. [DOI: 10.1016/j.exer.2018.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 12/17/2022]
|
15
|
Salomon RG. Carboxyethylpyrroles: From Hypothesis to the Discovery of Biologically Active Natural Products. Chem Res Toxicol 2016; 30:105-113. [PMID: 27750413 DOI: 10.1021/acs.chemrestox.6b00304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our research on the roles of lipid oxidation in human disease is guided by chemical intuition. For example, we postulated that 2-(ω-carboxyethyl)pyrrole (CEP) derivatives of primary amines would be produced through covalent adduction of a γ-hydroxyalkenal generated, in turn, through oxidative fragmentation of docosahexaenoates. Our studies confirmed the natural occurrence of this chemistry, and the biological activities of these natural products and their extensive involvements in human physiology (wound healing) and pathology (age-related macular degeneration, autism, atherosclerosis, sickle cell disease, and tumor growth) continue to emerge. This perspective recounts these discoveries and proposes new frontiers where further developments are likely. Perhaps more significantly, it depicts an effective chemistry-based approach to the discovery of novel biochemistry.
Collapse
Affiliation(s)
- Robert G Salomon
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
16
|
Iannaccone A, Giorgianni F, New DD, Hollingsworth TJ, Umfress A, Alhatem AH, Neeli I, Lenchik NI, Jennings BJ, Calzada JI, Satterfield S, Mathews D, Diaz RI, Harris T, Johnson KC, Charles S, Kritchevsky SB, Gerling IC, Beranova-Giorgianni S, Radic MZ, Health ABC study. Circulating Autoantibodies in Age-Related Macular Degeneration Recognize Human Macular Tissue Antigens Implicated in Autophagy, Immunomodulation, and Protection from Oxidative Stress and Apoptosis. PLoS One 2015; 10:e0145323. [PMID: 26717306 PMCID: PMC4696815 DOI: 10.1371/journal.pone.0145323] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 12/01/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND We investigated sera from elderly subjects with and without age-related macular degeneration (AMD) for presence of autoantibodies (AAbs) against human macular antigens and characterized their identity. METHODS Sera were collected from participants in the Age-Related Maculopathy Ancillary (ARMA) Study, a cross-sectional investigation ancillary to the Health ABC Study, enriched with participants from the general population. The resulting sample (mean age: 79.2±3.9 years old) included subjects with early to advanced AMD (n = 131) and controls (n = 231). Sera were tested by Western blots for immunoreactive bands against human donor macular tissue homogenates. Immunoreactive bands were identified and graded, and odds ratios (OR) calculated. Based on these findings, sera were immunoprecipitated, and subjected to 2D gel electrophoresis (GE). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify the targets recognized by circulating AAbs seen on 2D-GE, followed by ELISAs with recombinant proteins to confirm LC-MS/MS results, and quantify autoreactivities. RESULTS In AMD, 11 immunoreactive bands were significantly more frequent and 13 were significantly stronger than in controls. Nine of the more frequent bands also showed stronger reactivity. OR estimates ranged between 4.06 and 1.93, and all clearly excluded the null value. Following immunoprecipitation, 2D-GE and LC-MS/MS, five of the possible autoreactivity targets were conclusively identified: two members of the heat shock protein 70 (HSP70) family, HSPA8 and HSPA9; another member of the HSP family, HSPB4, also known as alpha-crystallin A chain (CRYAA); Annexin A5 (ANXA5); and Protein S100-A9, also known as calgranulin B that, when complexed with S100A8, forms calprotectin. ELISA testing with recombinant proteins confirmed, on average, significantly higher reactivities against all targets in AMD samples compared to controls. CONCLUSIONS Consistent with other evidence supporting the role of inflammation and the immune system in AMD pathogenesis, AAbs were identified in AMD sera, including early-stage disease. Identified targets may be mechanistically linked to AMD pathogenesis because the identified proteins are implicated in autophagy, immunomodulation, and protection from oxidative stress and apoptosis. In particular, a role in autophagy activation is shared by all five autoantigens, raising the possibility that the detected AAbs may play a role in AMD via autophagy compromise and downstream activation of the inflammasome. Thus, we propose that the detected AAbs provide further insight into AMD pathogenesis and have the potential to contribute to disease biogenesis and progression.
Collapse
Affiliation(s)
- Alessandro Iannaccone
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- * E-mail:
| | - Francesco Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - David D. New
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - T. J. Hollingsworth
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Allison Umfress
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Albert H. Alhatem
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Indira Neeli
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Nataliya I. Lenchik
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Department of Internal Medicine/Endocrinology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Barbara J. Jennings
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Jorge I. Calzada
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Charles Retina Institute, Memphis, TN, United States of America
| | - Suzanne Satterfield
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Dennis Mathews
- Eye Specialty Group, Memphis, TN, United States of America
- Southern College of Optometry, Memphis, TN, United States of America
| | - Rocio I. Diaz
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Charles Retina Institute, Memphis, TN, United States of America
| | - Tamara Harris
- National Institute on Aging, NIH, Bethesda, MD, United States of America
| | - Karen C. Johnson
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Steve Charles
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Charles Retina Institute, Memphis, TN, United States of America
| | - Stephen B. Kritchevsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Sticht Center on Aging, Wake Forest University, Winston-Salem, NC, United States of America
| | - Ivan C. Gerling
- Department of Internal Medicine/Endocrinology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Sarka Beranova-Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Marko Z. Radic
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | | |
Collapse
|
17
|
Relationship between Oxidative Stress, Circadian Rhythms, and AMD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7420637. [PMID: 26885250 PMCID: PMC4738726 DOI: 10.1155/2016/7420637] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022]
Abstract
This work reviews concepts regarding oxidative stress and the mechanisms by which endogenous and exogenous factors produce reactive oxygen species (ROS). It also surveys the relationships between oxidative stress, circadian rhythms, and retinal damage in humans, particularly those related to light and photodamage. In the first section, the production of ROS by different cell organelles and biomolecules and the antioxidant mechanisms that antagonize this damage are reviewed. The second section includes a brief review of circadian clocks and their relationship with the cellular redox state. In the third part of this work, the relationship between retinal damage and ROS is described. The last part of this work focuses on retinal degenerative pathology, age-related macular degeneration, and the relationships between this pathology, ROS, and light. Finally, the possible interactions between the retinal pigment epithelium (RPE), circadian rhythms, and this pathology are discussed.
Collapse
|
18
|
Abstract
SIGNIFICANCE A diverse family of lipid-derived levulinaldehydes, isolevuglandins (isoLGs), is produced by rearrangement of endoperoxide intermediates generated through both cyclooxygenase (COX) and free radical-induced cyclooxygenation of polyunsaturated fatty acids and their phospholipid esters. The formation and reactions of isoLGs with other biomolecules has been linked to alcoholic liver disease, Alzheimer's disease, age-related macular degeneration, atherosclerosis, cardiac arythmias, cancer, end-stage renal disease, glaucoma, inflammation of allergies and infection, mitochondrial dysfunction, multiple sclerosis, and thrombosis. This review chronicles progress in understanding the chemistry of isoLGs, detecting their production in vivo and understanding their biological consequences. CRITICAL ISSUES IsoLGs have never been isolated from biological sources, because they form adducts with primary amino groups of other biomolecules within seconds. Chemical synthesis enabled investigation of isoLG chemistry and detection of isoLG adducts present in vivo. RECENT ADVANCES The first peptide mapping and sequencing of an isoLG-modified protein present in human retina identified the modification of a specific lysyl residue of the sterol C27-hydroxylase Cyp27A1. This residue is preferentially modified by iso[4]LGE2 in vitro, causing loss of function. Adduction of less than one equivalent of isoLG can induce COX-associated oligomerization of the amyloid peptide Aβ1-42. Adduction of isoLGE2 to phosphatidylethanolamines causes gain of function, converting them into proinflammatory isoLGE2-PE agonists that foster monocyte adhesion to endothelial cells. FUTURE DIRECTIONS Among the remaining questions on the biochemistry of isoLGs are the dependence of biological activity on isoLG isomer structure, the structures and mechanism of isoLG-derived protein-protein and DNA-protein cross-link formation, and its biological consequences.
Collapse
Affiliation(s)
- Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - Wenzhao Bi
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
19
|
Kim YW, Yakubenko VP, West XZ, Gugiu GB, Renganathan K, Biswas S, Gao D, Crabb JW, Salomon RG, Podrez EA, Byzova TV. Receptor-Mediated Mechanism Controlling Tissue Levels of Bioactive Lipid Oxidation Products. Circ Res 2015; 117:321-32. [PMID: 25966710 DOI: 10.1161/circresaha.117.305925] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/12/2015] [Indexed: 01/06/2023]
Abstract
RATIONALE Oxidative stress is an important contributing factor in several human pathologies ranging from atherosclerosis to cancer progression; however, the mechanisms underlying tissue protection from oxidation products are poorly understood. Oxidation of membrane phospholipids, containing the polyunsaturated fatty acid docosahexaenoic acid, results in the accumulation of an end product, 2-(ω-carboxyethyl)pyrrole (CEP), which was shown to have proangiogenic and proinflammatory functions. Although CEP is continuously accumulated during chronic processes, such as tumor progression and atherosclerosis, its level during wound healing return to normal when the wound is healed, suggesting the existence of a specific clearance mechanism. OBJECTIVE To identify the cellular and molecular mechanism for CEP clearance. METHODS AND RESULTS Here, we show that macrophages are able to bind, scavenge, and metabolize carboxyethylpyrrole derivatives of proteins but not structurally similar ethylpyrrole derivatives, demonstrating the high specificity of the process. F4/80(hi) and M2-skewed macrophages are much more efficient at CEP binding and scavenging compared with F4/80(lo) and M1-skewed macrophages. Depletion of macrophages leads to increased CEP accumulation in vivo. CEP binding and clearance are dependent on 2 receptors expressed by macrophages, CD36 and toll-like receptor 2. Although knockout of each individual receptor results in diminished CEP clearance, the lack of both receptors almost completely abrogates macrophages' ability to scavenge CEP derivatives of proteins. CONCLUSIONS Our study demonstrates the mechanisms of recognition, scavenging, and clearance of pathophysiologically active products of lipid oxidation in vivo, thereby contributing to tissue protection against products of oxidative stress.
Collapse
Affiliation(s)
- Young-Woong Kim
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.)
| | - Valentin P Yakubenko
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.)
| | - Xiaoxia Z West
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.)
| | - Gabriel B Gugiu
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.)
| | - Kutralanathan Renganathan
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.)
| | - Sudipta Biswas
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.)
| | - Detao Gao
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.)
| | - John W Crabb
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.)
| | - Robert G Salomon
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.)
| | - Eugene A Podrez
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.)
| | - Tatiana V Byzova
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.).
| |
Collapse
|
20
|
Balasubramanian SA, Krishna Kumar K, Baird PN. The role of proteases and inflammatory molecules in triggering neovascular age-related macular degeneration: basic science to clinical relevance. Transl Res 2014; 164:179-92. [PMID: 24794954 DOI: 10.1016/j.trsl.2014.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 12/18/2022]
Abstract
Age-related macular degeneration (AMD) causes severe vision impairment in aged individuals. The health impact and cost of the disease will dramatically increase over the years, with the increase in the aging population. Currently, antivascular endothelial growth factor agents are routinely used for managing late-stage AMD, and recent data have shown that up to 15%-33% of patients do not respond to this treatment. Henceforth, there is a need to develop better treatment options. One avenue is to investigate the role proteases and inflammatory molecules might have in regulating and being regulated by vascular endothelial growth factor. Moreover, emerging data indicate that proteases and inflammatory molecules might be critical in the development and progression of AMD. This article reviews recent literature that investigates proteases and inflammatory molecules involved in the development of AMD. Gaining insights into the proteolytic and inflammatory pathways associated with the pathophysiology of AMD could enable the development of additional or alternative drug strategies for the treatment of AMD.
Collapse
Affiliation(s)
- Sivaraman A Balasubramanian
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Victoria, Australia.
| | - Kaavya Krishna Kumar
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Paul N Baird
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Nowak JZ. Oxidative stress, polyunsaturated fatty acids-derived oxidation products and bisretinoids as potential inducers of CNS diseases: focus on age-related macular degeneration. Pharmacol Rep 2014; 65:288-304. [PMID: 23744414 DOI: 10.1016/s1734-1140(13)71005-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/31/2013] [Indexed: 12/12/2022]
Abstract
Many pathologies of the central nervous system (CNS) originate from excess of reactive free radicals, notably reactive oxygen species (ROS), and oxidative stress. A phenomenon which usually runs in parallel with oxidative stress is unsaturated lipid peroxidation, which, via a chain reaction, contributes to the progression of disbalanced redox homeostasis. Among long-chain (LC) polyunsaturated fatty acids (PUFAs) abundantly occurring in the CNS, docosahexaenoic acid (DHA), a member of ω-3 LC-PUFAs, deserves special attention, as it is avidly retained and uniquely concentrated in the nervous system, particularly in retinal photoreceptors and synaptic membranes; owing to the presence of the six double bonds between carbon atoms in its polyene chain (C=C), DHA is exquisitely sensitive to oxidative damage. In addition to oxidative stress and LC-PUFAs peroxidation, other stress-related mechanisms may also contribute to the development of various CNS malfunctions, and a good example of such mechanisms is the process of lipofuscin formation occurring particularly in the retina, an integral part of the CNS. The retinal lipofuscin is formed and accumulated by the retinal pigment epithelial (RPE) cells as a consequence of both visual process taking place in photoreceptor-RPE functional complex and metabolic insufficiency of RPE lysosomal compartment. Among various retinal lipofuscin constituents, bisretinoids, originating from all-trans retinal substrate--a photometabolite of visual pigment cofactor 11-cis-retinal (responsible for photon capturing), are endowed with cytotoxic and complement-activating potential which increases upon illumination and oxidation. This survey deals with oxidative stress, PUFAs (especially DHA) peroxidation products of carboxyalkylpyrrole type and bisretinoids as potential inducers of the CNS pathology. A focus is put on vision-threatening disease, i.e., age-related macular degeneration (AMD), as an example of the CNS disorder whose pathogenesis has strong background in both oxidative stress and lipid peroxidation products.
Collapse
Affiliation(s)
- Jerzy Z Nowak
- Institute of Pharmacology, Polish Academy of Sciences, Scientific Board, Smętna 12, PL 31-343 Kraków, Poland.
| |
Collapse
|
22
|
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness in aged individuals. Recent advances have highlighted the essential role of immune processes in the development, progression and treatment of AMD. In this Review we discuss recent discoveries related to the immunological aspects of AMD pathogenesis. We outline the diverse immune cell types, inflammatory activators and pathways that are involved. Finally, we discuss the future of inflammation-directed therapeutics to treat AMD in the growing aged population.
Collapse
|
23
|
Bianchi E, Scarinci F, Ripandelli G, Feher J, Pacella E, Magliulo G, Gabrieli CB, Plateroti R, Plateroti P, Mignini F, Artico M. Retinal pigment epithelium, age-related macular degeneration and neurotrophic keratouveitis. Int J Mol Med 2012; 31:232-42. [PMID: 23128960 DOI: 10.3892/ijmm.2012.1164] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/25/2012] [Indexed: 11/05/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of impaired vision and blindness in the aging population. The aims of our studies were to identify qualitative and quantitative alterations in mitochondria in human retinal pigment epithelium (RPE) from AMD patients and controls and to test the protective effects of pigment epithelium-derived factor (PEDF), a known neurotrophic and antiangiogenic substance, against neurotrophic keratouveitis. Histopathological alterations were studied by means of morphometry, light and electron microscopy. Unexpectedly, morphometric data showed that the RPE alterations noted in AMD may also develop in normal aging, 10-15 years later than appearing in AMD patients. Reduced tear secretion, corneal ulceration and leukocytic infiltration were found in capsaicin (CAP)-treated rats, but this effect was significantly attenuated by PEDF. These findings suggest that PEDF accelerated the recovery of tear secretion and also prevented neurotrophic keratouveitis and vitreoretinal inflammation. PEDF may have a clinical application in inflammatory and neovascular diseases of the eye.
Collapse
Affiliation(s)
- Enrica Bianchi
- Department of Sensory Organs, University of Rome, La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Charnay Y, Imhof A, Vallet PG, Kovari E, Bouras C, Giannakopoulos P. Clusterin in neurological disorders: Molecular perspectives and clinical relevance. Brain Res Bull 2012; 88:434-43. [DOI: 10.1016/j.brainresbull.2012.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
|
25
|
Tuo J, Grob S, Zhang K, Chan CC. Genetics of immunological and inflammatory components in age-related macular degeneration. Ocul Immunol Inflamm 2012; 20:27-36. [PMID: 22324898 DOI: 10.3109/09273948.2011.628432] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Age-related macular degeneration (AMD), affecting 30 to 50 million elder individuals worldwide, is a disease affecting the macular retina and choroid that can lead to irreversible central vision loss and blindness. Recent findings support a role for immunologic processes in AMD pathogenesis, including generation of inflammatory related molecules in the Bruch's membrane, recruitment of macrophages, complement activation, microglial activation and accumulation in the macular lesions. Pro-inflammatory effects of chronic inflammation and oxidative stress can result in abnormal retinal pigment epithelium, photoreceptor atrophy and choroidal neovascularization. The associations of immunological and inflammatory genes, in particular the genes related to innate immunity with AMD support the involvement of various immunological pathways in the AMD pathogenesis. We review the literature on the involvements of inflammatory genes in AMD, highlight recent genetic discoveries, and discuss the potential application of such knowledge in the management of patients with AMD.
Collapse
Affiliation(s)
- Jingsheng Tuo
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | | | | | | |
Collapse
|
26
|
Pennesi ME, Neuringer M, Courtney RJ. Animal models of age related macular degeneration. Mol Aspects Med 2012; 33:487-509. [PMID: 22705444 DOI: 10.1016/j.mam.2012.06.003] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations.
Collapse
Affiliation(s)
- Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
27
|
Mettu PS, Wielgus AR, Ong SS, Cousins SW. Retinal pigment epithelium response to oxidant injury in the pathogenesis of early age-related macular degeneration. Mol Aspects Med 2012; 33:376-98. [PMID: 22575354 DOI: 10.1016/j.mam.2012.04.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 04/14/2012] [Indexed: 01/06/2023]
Abstract
Age-related macular degeneration (AMD) represents the leading cause of vision loss in the elderly. Accumulation of lipid- and protein-rich deposits under the retinal pigment epithelium (RPE) heralds the onset of early AMD, but the pathogenesis of subretinal deposit formation is poorly understood. Numerous hypothetical models of deposit formation have been proposed, including hypotheses for a genetic basis, choroidal hypoperfusion, abnormal barrier formation, and lysosomal failure. This review explore the RPE injury hypothesis, characterized by three distinct stages (1) Initial RPE oxidant injury, caused by any number of endogenous or exogenous oxidants, results in extrusion of cell membrane "blebs," together with decreased activity of matrix metalloproteinases (MMPs), promoting bleb accumulation under the RPE as basal laminar deposits (BLD). (2) RPE cells are subsequently stimulated to increase synthesis of MMPs and other molecules responsible for extracellular matrix turnover (i.e., producing decreased collagen), affecting both RPE basement membrane and Bruchs membrane (BrM). This process leads to progression of BLD into basal linear deposits (BLinD) and drusen by admixture of blebs into BrM, followed by the formation of new basement membrane under the RPE to trap these deposits within BrM. We postulate that various hormones and other plasma-derived molecules related to systemic health cofactors are implicated in this second stage. (3) Finally, macrophages are recruited to sites of RPE injury and deposit formation. The recruitment of nonactivated or scavenging macrophages may remove deposits without further injury, while the recruitment of activated or reparative macrophages, through the release of inflammatory mediators, growth factors, or other substances, may promote complications and progression to the late forms of the disease.
Collapse
Affiliation(s)
- Priyatham S Mettu
- Duke Center for Macular Diseases, Duke Eye Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
28
|
Charvet C, Liao WL, Heo GY, Laird J, Salomon RG, Turko IV, Pikuleva IA. Isolevuglandins and mitochondrial enzymes in the retina: mass spectrometry detection of post-translational modification of sterol-metabolizing CYP27A1. J Biol Chem 2011; 286:20413-22. [PMID: 21498512 PMCID: PMC3121529 DOI: 10.1074/jbc.m111.232546] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/04/2011] [Indexed: 11/06/2022] Open
Abstract
We report the first peptide mapping and sequencing of an in vivo isolevuglandin-modified protein. Mitochondrial cytochrome P450 27A1 (CYP27A1) is a ubiquitous multifunctional sterol C27-hydroxylase that eliminates cholesterol and likely 7-ketocholesterol from the retina and many other tissues. We investigated the post-translational modification of this protein with isolevuglandins, arachidonate oxidation products. Treatment of purified recombinant CYP27A1 with authentic iso[4]levuglandin E(2) (iso[4]LGE(2)) in vitro diminished enzyme activity in a time- and phospholipid-dependent manner. A multiple reaction monitoring protocol was then developed to identify the sites and extent of iso[4]LGE(2) adduction. CYP27A1 exhibited only three Lys residues, Lys(134), Lys(358), and Lys(476), that readily interact with iso[4]LGE(2) in vitro. Such selective modification enabled the generation of an internal standard, (15)N-labeled CYP27A1 modified with iso[4]LGE(2), for the subsequent analysis of a human retinal sample. Two multiple reaction monitoring transitions arising from the peptide AVLK(358)(-C(20)H(26)O(3))ETLR in the retinal sample were observed that co-eluted with the corresponding two (15)N transitions from the supplemented standard. These data demonstrate that modified CYP27A1 is present in the retina. We suggest that such protein modification impairs sterol elimination and likely has other pathological sequelae. We also propose that the post-translational modifications identified in CYP27A1 exemplify a general mechanism whereby oxidative stress and inflammation deleteriously affect protein function, contributing, for example, to cholesterol-rich lesions associated with age-related macular degeneration and cardiovascular disease. The proteomic protocols developed in this study are generally applicable to characterization of lipid-derived oxidative protein modifications occurring in vivo, including proteins bound to membranes.
Collapse
Affiliation(s)
- Casey Charvet
- From the Departments of Ophthalmology and Visual Sciences and
| | - Wei-Li Liao
- the Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, and
| | - Gun-Young Heo
- From the Departments of Ophthalmology and Visual Sciences and
| | - James Laird
- Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | | | - Illarion V. Turko
- the Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, and
- the Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| | | |
Collapse
|
29
|
Abstract
The glycemic index (GI) indicates how fast blood glucose is raised after consuming a carbohydrate-containing food. Human metabolic studies indicate that GI is related to patho-physiological responses after meals. Compared with a low-GI meal, a high-GI meal is characterized with hyperglycemia during the early postprandial stage (0-2h) and a compensatory hyperlipidemia associated with counter-regulatory hormone responses during late postprandial stage (4-6h). Over the past three decades, several human health disorders have been related to GI. The strongest relationship suggests that consuming low-GI foods prevents diabetic complications. Diabetic retinopathy (DR) is a complication of diabetes. In this aspect, GI appears to be useful as a practical guideline to help diabetic people choose foods. Abundant epidemiological evidence also indicates positive associations between GI and risk for type 2 diabetes, cardiovascular disease, and more recently, age-related macular degeneration (AMD) in people without diabetes. Although data from randomized controlled intervention trials are scanty, these observations are strongly supported by evolving molecular mechanisms which explain the pathogenesis of hyperglycemia. This wide range of evidence implies that dietary hyperglycemia is etiologically related to human aging and diseases, including DR and AMD. In this context, these diseases can be considered as metabolic retinal diseases. Molecular theories that explain hyperglycemic pathogenesis involve a mitochondria-associated pathway and four glycolysis-associated pathways, including advanced glycation end products formation, protein kinase C activation, polyol pathway, and hexosamine pathway. While the four glycolysis-associated pathways appear to be universal for both normoxic and hypoxic conditions, the mitochondria-associated mechanism appears to be most relevant to the hyperglycemic, normoxic pathogenesis. For diseases that affect tissues with highly active metabolism and that frequently face challenge from low oxygen tension, such as retina in which metabolism is determined by both glucose and oxygen homeostases, these theories appear to be insufficient. Several lines of evidence indicate that the retina is particularly vulnerable when hypoxia coincides with hyperglycemia. We propose a novel hyperglycemic, hypoxia-inducible factor (HIF) pathway, to complement the current theories regarding hyperglycemic pathogenesis. HIF is a transcription complex that responds to decrease oxygen in the cellular environment. In addition to playing a significant role in the regulation of glucose metabolism, under hyperglycemia HIF has been shown to increase the expression of HIF-inducible genes, such as vascular endothelial growth factor (VEGF) leading to angiogenesis. To this extent, we suggest that HIF can also be described as a hyperglycemia-inducible factor. In summary, while management of dietary GI appears to be an effective intervention for the prevention of metabolic diseases, specifically AMD and DR, more interventional data is needed to evaluate the efficacy of GI management. There is an urgent need to develop reliable biomarkers of exposure, surrogate endpoints, as well as susceptibility for GI. These insights would also be helpful in deciphering the detailed hyperglycemia-related biochemical mechanisms for the development of new therapeutic agents.
Collapse
|
30
|
Hollyfield JG, Perez VL, Salomon RG. A hapten generated from an oxidation fragment of docosahexaenoic acid is sufficient to initiate age-related macular degeneration. Mol Neurobiol 2010; 41:290-8. [PMID: 20221855 DOI: 10.1007/s12035-010-8110-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/15/2010] [Indexed: 01/16/2023]
Abstract
The protein adduct carboxyethylpyrrole (CEP) is present in age-related macular degeneration (AMD) eye tissue and in the blood of AMD patients at higher levels than found in age-matched non-AMD tissues. Autoantibodies to CEP are also higher in AMD blood samples than in controls. To test the hypothesis that this hapten is causally involved in initiating an inflammatory response in AMD, we immunized C57BL/6J mice with mouse serum albumin (MSA) adducted with CEP. Immunized mice develop antibodies to CEP, fix complement component-3 in Bruch's membrane, accumulate drusen below the retinal pigment epithelium during aging, show decreased a- and b-wave amplitudes in response to light, and develop lesions in the retinal pigment epithelium mimicking geographic atrophy, the blinding end-stage condition characteristic of the dry form of AMD. Inflammatory cells are present in the region of lesions and may be actively involved in the pathology observed. We conclude that early immunization of mice with CEP-adducted MSA sensitizes these animals to the ongoing production of CEP adducts in the outer retina where DHA is abundant and the conditions for oxidative damage are permissive. In response to this early sensitization, the immune system mounts a complement-mediated attack on the cells of the outer retina where CEP adducts are formed. This animal model for AMD is the first that was developed from an inflammatory signal discovered in eye tissue and blood from AMD patients. It provides a novel opportunity for dissecting the early pathology of AMD and the immune response contributing to this disorder. The availability of a mouse with a mechanistically based AMD-like disease that progresses rapidly is highly desirable. Such a model will allow for the efficient preclinical testing of the much-needed therapeutics quickly and inexpensively.
Collapse
Affiliation(s)
- Joe G Hollyfield
- Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.
| | | | | |
Collapse
|
31
|
Abstract
Para-inflammation is a tissue adaptive response to noxious stress or malfunction and has characteristics that are intermediate between basal and inflammatory states (Medzhitov, 2008). The physiological purpose of para-inflammation is to restore tissue functionality and homeostasis. Para-inflammation may become chronic or turn into inflammation if tissue stress or malfunction persists for a sustained period. Chronic para-inflammation contributes to the initiation and progression of many human diseases including obesity, type 2 diabetes, atherosclerosis, and age-related neurodegenerative diseases. Evidence from our studies and the studies of some others suggests that para-inflammation also exists in the aging retina in physiological conditions and might contribute to age-related retinal pathologies. The purpose of this review is to introduce the notion of "para-inflammation" as a state between frank, overt destructive inflammation and the non-inflammatory removal of dead or dying cells by apoptosis, to the retinal community. In diabetes and atherosclerosis, leukocytes particularly monocytes and vascular endothelial cells are constantly under noxious stress due to glycaemic and/or lipidaemic dysregulation. These blood-borne stresses trigger para-inflammatory responses in leukocytes and endothelial cells by up-regulating the expression of adhesion molecules or releasing cytokines/chemokines, which in turn cause abnormal leukocyte-endothelial interactions and ultimately vascular damage. In the aging retina, on the other hand, oxidized lipoproteins and free radicals are considered to be major causes of tissue stress and serve as local triggers for retinal para-inflammation. Microarray analysis has revealed the up-regulation of a large number of inflammatory genes, including genes involved in complement activation and inflammatory cytokine/chemokine production, in the aging retina. Para-inflammatory responses in the neuroretina of aged mice are characterized by microglial activation and subretinal migration, and breakdown of blood-retinal barrier. At the retinal/choroidal interface para-inflammation is manifested by complement activation in Bruch's membrane and RPE cells, and microglia accumulation in subretinal space. With age, para-inflammatory changes have also been observed in the choroidal tissue, evidenced by 1) increased thickness of choroid; 2) increased number of CD45(+)CRIg(+) macrophages; 3) morphological abnormalities in choroidal melanocytes; and 4) fibrosis in choroidal tissue. An increased knowledge of contribution of retinal para-inflammation to various pathological conditions is essential for the better understanding of the pathogenesis of various age-related retinal diseases including diabetic retinopathy, glaucoma and age-related macular degeneration.
Collapse
Affiliation(s)
- Heping Xu
- Immunology and Infection, Division of Applied Medicine, University of Aberdeen School of Medicine, Foresterhill, UK.
| | | | | |
Collapse
|
32
|
Chen M, Muckersie E, Robertson M, Forrester JV, Xu H. Up-regulation of complement factor B in retinal pigment epithelial cells is accompanied by complement activation in the aged retina. Exp Eye Res 2008; 87:543-50. [PMID: 18926817 DOI: 10.1016/j.exer.2008.09.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/30/2008] [Accepted: 09/02/2008] [Indexed: 11/28/2022]
Abstract
Complement activation is involved in the pathogenesis of age-related macular degeneration. How complement is activated in the retina is not known. Previously we have shown that complement factor H (CFH) is constitutively expressed by retinal pigment epithelial (RPE) cells and the production of CFH is negatively regulated by inflammatory cytokines and oxidative insults. Here we investigated the production and regulation of complement factor B (CFB) in RPE cells. Immunohistochemistry showed that CFB is expressed at low levels on the apical portion of the RPE cells in normal physiological conditions. With age, CFB expression increases and extends to the basal part of RPE cells. Confocal microscopy and real-time PCR of RPE cultures indicated that the production of CFB by RPE cells is positively regulated by TNF-alpha, IFN-gamma and long-term (30 days) photoreceptor outer segments treatments. Increased CFB expression in RPE cells in vivo is accompanied by the accumulation of complement C3 and C3a deposition at the Bruch's membrane and the basal layer of RPE cells. Our results suggest that RPE cells play important roles in regulating complement activation in the retina. Increased complement activation in the aged retina may be important for retinal homeostasis in the context of accumulating photoreceptor waste products.
Collapse
Affiliation(s)
- Mei Chen
- Department of Ophthalmology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, UK
| | | | | | | | | |
Collapse
|
33
|
Penn JS, Madan A, Caldwell RB, Bartoli M, Caldwell RW, Hartnett ME. Vascular endothelial growth factor in eye disease. Prog Retin Eye Res 2008; 27:331-71. [PMID: 18653375 DOI: 10.1016/j.preteyeres.2008.05.001] [Citation(s) in RCA: 563] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Collectively, angiogenic ocular conditions represent the leading cause of irreversible vision loss in developed countries. In the US, for example, retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration are the principal causes of blindness in the infant, working age and elderly populations, respectively. Evidence suggests that vascular endothelial growth factor (VEGF), a 40kDa dimeric glycoprotein, promotes angiogenesis in each of these conditions, making it a highly significant therapeutic target. However, VEGF is pleiotropic, affecting a broad spectrum of endothelial, neuronal and glial behaviors, and confounding the validity of anti-VEGF strategies, particularly under chronic disease conditions. In fact, among other functions VEGF can influence cell proliferation, cell migration, proteolysis, cell survival and vessel permeability in a wide variety of biological contexts. This article will describe the roles played by VEGF in the pathogenesis of retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration. The potential disadvantages of inhibiting VEGF will be discussed, as will the rationales for targeting other VEGF-related modulators of angiogenesis.
Collapse
Affiliation(s)
- J S Penn
- Vanderbilt University School of Medicine, Nashville, TN, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Park CH, Kim YS, Lee HK, Kim YH, Choi MY, Jung DE, Yoo JM, Kang SS, Choi WS, Cho GJ. Citicoline reduces upregulated clusterin following kainic acid injection in the rat retina. Curr Eye Res 2008; 32:1055-63. [PMID: 18085470 DOI: 10.1080/02713680701758719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE To investigate the effects of citicoline on upregulated clusterin and retinal damage induced by kainic acid (KA). METHODS KA was injected into the vitreous of rats. Effects of systemic citicoline treatments were estimated by measuring the thickness of the various retinal layers, immunoblotting, and immunohistochemical techniques. RESULTS One day after KA injection, the immunoreactivity of clusterin increased significantly. In rats treated with KA plus citicoline, clusterin immunoreactivity was markedly reduced compared to KA-treated rats. Western blot analysis showed that clusterin protein levels were increased in KA-treated rats, but decreased in KA plus citicoline-treated rats. Apoptotic cell death was determined by TUNEL method. Citicoline reduced the expression of clusterin, as well as the expression of TUNEL after KA injection in the rat retina. CONCLUSION The increased expression of clusterin following KA injection in the rat retina suggests the presence of neurodegenerative events; citicoline may provide neuroprotection against neuronal cell damage.
Collapse
Affiliation(s)
- Chang Hwan Park
- Department of Anatomy and Neurobiology, College of Medicine, Institute of Health Science, Medical Research Center for Neural Dysfunction, Gyeongsang National University, Gyungnam, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries. There is no effective treatment for the most prevalent atrophic (dry) form of AMD. Atrophic AMD is triggered by abnormalities in the retinal pigment epithelium (RPE) that lies beneath the photoreceptor cells and normally provides critical metabolic support to these light-sensing cells. Secondary to RPE dysfunction, macular rods and cones degenerate leading to the irreversible loss of vision. Oxidative stress, formation of drusen, accumulation of lipofuscin, local inflammation and reactive gliosis represent the pathologic processes implicated in pathogenesis of atrophic AMD. This review discusses potential target areas for small-molecule and biologic intervention, which may lead to development of new therapeutic treatments for atrophic AMD.
Collapse
Affiliation(s)
- Konstantin Petrukhin
- Columbia University, Department of Ophthalmology, Eye Institute Annex, New York, NY 10032, USA.
| |
Collapse
|
36
|
Sato E, Feke GT, Appelbaum EY, Menke MN, Trempe CL, McMeel JW. Association between systemic arterial stiffness and age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2006; 244:963-71. [PMID: 16411106 DOI: 10.1007/s00417-005-0201-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2005] [Revised: 09/27/2005] [Accepted: 10/30/2005] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND A number of epidemiological studies suggest that age-related macular degeneration (AMD) and cardiovascular disease share the same risk factors. Systemic arterial stiffness is a clear indicator of cardiovascular disease. We investigated whether there is an association between directly measured systemic arterial stiffness and the presence of AMD. METHODS We used a SphygmoCor 2000 system to noninvasively measure two indicators of the systemic arterial stiffness, the arterial pulse wave velocity (PWV) and the central aortic blood pressure waveform, from which the augmentation pressure is determined. We studied 50 patients with AMD (12 men, 38 women, aged 60 to 91 years, mean 77 years) and 11 age-matched control subjects (3 men, 8 women, aged 66 to 92 years, mean 75 years). All study subjects received a complete ophthalmic examination including digital fundus photography. All of the patients with AMD were classified as stage 3 or worse in at least one eye according to the AREDS system. RESULTS Pulse wave velocity was significantly higher in the patients with AMD (8.2+/-1.1 m/s, mean +/- SD) compared with controls (7.1+/-0.8 m/s, p=0.0025), indicating increased arterial stiffness. There was no significant difference in PWV in AMD patients with and without choroidal neovascularization. There was no association between PWV and the presence of hypertension in either the patients or the controls. The central aortic augmentation pressure was significantly higher in the AMD patients than in the controls (p=0.040), also indicating increased arterial stiffness. CONCLUSIONS Patients with AMD have increased systemic arterial stiffness compared with age-matched controls. Treatments aimed at preventing or reversing systemic arterial stiffness may also be effective in preventing the onset or slowing the progression of AMD.
Collapse
Affiliation(s)
- Eiichi Sato
- Schepens Retina Associates Foundation, 6th Floor, 1 Autumn Street, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
37
|
Constable I, Shen WY, Rakoczy E. Emerging biological therapies for age-related macula degeneration. Expert Opin Biol Ther 2005; 5:1373-85. [PMID: 16197342 DOI: 10.1517/14712598.5.10.1373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Age-related macular degeneration (AMD) has emerged as the dominant cause of irretrievable visual loss in most developed countries achieving increasing longevity. The major cause of rapid and severe visual loss is the development of choroidal neovascularisation under the macula (exudative or wet AMD). Physical treatments, especially thermal laser and photodynamic therapy following intravenous verteporfin, have made statistically significant but modest progress in limiting visual loss, whereas surgical translocation of the macula and even light or electrically sensitive retinal implants are spectacular, but likely to only ever benefit a few. Intravitreal fine needle injections and slow release implants of steroid derivatives have opened new areas for investigation. The blocking of endothelial receptors for vascular endothelial growth factor by RNA-based aptamer or immune-protected antibody fragments has been the subject of intensive scientific development and large scale clinical trials. This approach may expand the range of AMD patients amenable to treatment. Additional therapeutic gains await measures to modify photoreceptor cell loss and subretinal fibrosis involving the retinal pigment epithelium as well as prevention or treatment for pigment epithelial detachment. Epidemiological associations with smoking and diet, and antioxidant dietary supplements offer important strategies for prevention.
Collapse
Affiliation(s)
- Ian Constable
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Nedlands, WA 6009, Australia.
| | | | | |
Collapse
|
38
|
Abstract
Diabetes and age-related eye disorders remain leading causes of blindness worldwide. While defined pathogenic mechanisms for many of these diseases remain elusive, there is increasing evidence that products of the Maillard reaction may play an important role in their etiology. Advanced glycation end products (AGEs) form though a range of pathways within Maillard chemistry, and there is evidence to suggest that these adducts accumulate in the intracellular and/or extracellular environment of ocular structures. This review evaluates the ever-growing literature on AGEs in biological systems and draws relevant links to diseases such as diabetic retinopathy, age-related macular degeneration, and cataract formation. It also outlines recent pharmaceutical strategies to inhibit Maillard reaction products and provides links to how these may serve to limit ocular cell dysfunction.
Collapse
Affiliation(s)
- Alan W Stitt
- Ophthalmic Research Centre, Queen's University Belfast, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BA, Northern Ireland.
| |
Collapse
|
39
|
Feher J, Kovacs I, Artico M, Cavallotti C, Papale A, Balacco Gabrieli C. Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging 2005; 27:983-93. [PMID: 15979212 DOI: 10.1016/j.neurobiolaging.2005.05.012] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Revised: 05/08/2005] [Accepted: 05/19/2005] [Indexed: 12/31/2022]
Abstract
Mitochondrial dysfunctions have been implicated in the pathophysiology of several age-related diseases including age-related macular degeneration (AMD), a progressive neurodegenerative disease affecting primarily the retinal pigment epithelium (RPE). The aims of our electron microscopic and morphometric studies were to reveal qualitative and quantitative alterations of mitochondria in human RPE from AMD and from age- and sex-matched controls. With increasing age a significant decrease in number and area of mitochondria, as well as loss of cristae and matrix density were found in both AMD and control specimens. These decreases were significantly greater in AMD than in normal aging. Alterations of mitochondria were accompanied by proliferation of peroxisomes and lipofuscin granules in both AMD and control specimens, although the difference between groups was significant only for peroxisomes. Unexpectedly, morphometric data showed that the RPE alterations seen in AMD may also develop in normal aging, 10-15 years after appearing in AMD patients. These findings suggest that (i) the severity of mitochondrial and peroxisomal alterations are different between AMD and normal aging, and (ii) the timing of damage to RPE may be critical for the development of AMD. We conclude that besides the well-documented age-related changes in mitochondrial DNA, alterations of mitochondrial membranes may also play a role in the pathogenesis of AMD. These membranes could be a new target for treatment of AMD and other age-related diseases.
Collapse
Affiliation(s)
- Janos Feher
- Opthalmic Neuroscience Program, Department of Ophthalmology, University of Rome La Sapienza, Via Lombardia, 23/c, 00187 Rome, Italy.
| | | | | | | | | | | |
Collapse
|