1
|
Almalki F. Review and research gap identification in genetics causes of syndromic and nonsyndromic hearing loss in Saudi Arabia. Ann Hum Genet 2024; 88:364-381. [PMID: 38517009 DOI: 10.1111/ahg.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Congenital hearing loss is one of the most common sensory disabilities worldwide. The genetic causes of hearing loss account for 50% of hearing loss. Genetic causes of hearing loss can be classified as nonsyndromic hearing loss (NSHL) or syndromic hearing loss (SHL). NSHL is defined as a partial or complete hearing loss without additional phenotypes; however, SHL, known as hearing loss, is associated with other phenotypes. Both types follow a simple Mendelian inheritance fashion. Several studies have been conducted to uncover the genetic factors contributing to NSHL and SHL in Saudi patients. However, these studies have encountered certain limitations. This review assesses and discusses the genetic factors underpinning NSHL and SHL globally, with a specific emphasis on the Saudi Arabian context. It also explores the prevalence of the most observed genetic causes of NSHL and SHL in Saudi Arabia. It also sheds light on areas where further research is needed to fully understand the genetic foundations of hearing loss in the Saudi population. This review identifies several gaps in research in NSHL and SHL and provides insights into potential research to be conducted.
Collapse
Affiliation(s)
- Faisal Almalki
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Al Madinah Al Munwarah, Saudi Arabia
| |
Collapse
|
2
|
Karamali F, Behtaj S, Babaei-Abraki S, Hadady H, Atefi A, Savoj S, Soroushzadeh S, Najafian S, Nasr Esfahani MH, Klassen H. Potential therapeutic strategies for photoreceptor degeneration: the path to restore vision. J Transl Med 2022; 20:572. [PMID: 36476500 PMCID: PMC9727916 DOI: 10.1186/s12967-022-03738-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.
Collapse
Affiliation(s)
- Fereshteh Karamali
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sanaz Behtaj
- grid.1022.10000 0004 0437 5432Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia ,grid.1022.10000 0004 0437 5432Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia
| | - Shahnaz Babaei-Abraki
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hanieh Hadady
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Atefeh Atefi
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Soraya Savoj
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sareh Soroushzadeh
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Najafian
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Henry Klassen
- grid.266093.80000 0001 0668 7243Gavin Herbert Eye Institute, Irvine, CA USA
| |
Collapse
|
3
|
Fu X, Huu VAN, Duan Y, Kermany DS, Valentim CCS, Zhang R, Zhu J, Zhang CL, Sun X, Zhang K. Clinical applications of retinal gene therapies. PRECISION CLINICAL MEDICINE 2018; 1:5-20. [PMID: 35694125 PMCID: PMC8982485 DOI: 10.1093/pcmedi/pby004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 02/05/2023] Open
Abstract
Retinal degenerative diseases are a major cause of blindness. Retinal gene therapy is a
trail-blazer in the human gene therapy field, leading to the first FDA approved gene
therapy product for a human genetic disease. The application of Clustered Regularly
Interspaced Short Palindromic Repeat/Cas9 (CRISPR/Cas9)-mediated gene editing technology
is transforming the delivery of gene therapy. We review the history, present, and future
prospects of retinal gene therapy.
Collapse
Affiliation(s)
- Xin Fu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Viet Anh Nguyen Huu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Yaou Duan
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Daniel S Kermany
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Carolina C S Valentim
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Runze Zhang
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jie Zhu
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Charlotte L Zhang
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Xiaodong Sun
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital, Shanghai Jiaodong University, Shanghai, China
| | - Kang Zhang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Utility of whole exome sequencing in the diagnosis of Usher syndrome: Report of novel compound heterozygous MYO7A mutations. Int J Pediatr Otorhinolaryngol 2018; 108:17-21. [PMID: 29605349 DOI: 10.1016/j.ijporl.2018.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/05/2018] [Accepted: 02/11/2018] [Indexed: 12/30/2022]
Abstract
Next generation sequencing (NGS), such as targeted panel sequencing, whole-exome sequencing and whole-genome sequencing has led to an exponential increase of elucidated genetic causes in both rare diseases, and common but heterogeneous disorders. NGS is applied in both research and clinical settings, and the clinical exome sequencing (CES), which provides not only the sequence variation data but also clinical interpretation, aids in reaching a final conclusion with regards to a genetic diagnosis. Usher syndrome is a group of disorders, characterized by bilateral sensorineural hearing loss, with or without vestibular dysfunction and retinitis pigmentosa. The index patient, a 2-year-old child was initially diagnosed with nonsyndromic hearing impairment. Homozygosity mapping followed by CES was utilized as a diagnostic tool to identify the genetic basis of his hearing loss. A paternally inherited novel insertion, c.198_199insA (p.Val67Serfs*73) and a maternally inherited novel deletion, c.1219_1226del (p.Phe407Aspfs*33) in gene MYO7A were found in compound heterozygous state in the index patient. The result expands the mutational spectrum of MYO7A. In addition it helped in early diagnosis of the syndrome, for planning and adjustments for the patient, and as well as for future family planning. This study highlights the clinical effectiveness of CES for Usher syndrome diagnosis in a child presented with congenital hearing loss.
Collapse
|
5
|
Novel and recurrent MYO7A mutations in Usher syndrome type 1 and type 2. PLoS One 2014; 9:e97808. [PMID: 24831256 PMCID: PMC4022727 DOI: 10.1371/journal.pone.0097808] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/24/2014] [Indexed: 11/19/2022] Open
Abstract
Usher syndrome (USH) is a group of disorders manifested as retinitis pigmentosa and bilateral sensorineural hearing loss, with or without vestibular dysfunction. Here, we recruited three Chinese families affected with autosomal recessive USH for detailed clinical evaluations and for mutation screening in the genes associated with inherited retinal diseases. Using targeted next-generation sequencing (NGS) approach, three new alleles and one known mutation in MYO7A gene were identified in the three families. In two families with USH type 1, novel homozygous frameshift variant p.Pro194Hisfs*13 and recurrent missense variant p.Thr165Met were demonstrated as the causative mutations respectively. Crystal structural analysis denoted that p.Thr165Met would very likely change the tertiary structure of the protein encoded by MYO7A. In another family affected with USH type 2, novel biallelic mutations in MYO7A, c.[1343+1G>A];[2837T>G] or p.[?];[Met946Arg], were identified with clinical significance. Because MYO7A, to our knowledge, has rarely been correlated with USH type 2, our findings therefore reveal distinguished clinical phenotypes associated with MYO7A. We also conclude that targeted NGS is an effective approach for genetic diagnosis for USH, which can further provide better understanding of genotype-phenotype relationship of the disease.
Collapse
|
6
|
Lenassi E, Saihan Z, Cipriani V, Le Quesne Stabej P, Moore AT, Luxon LM, Bitner-Glindzicz M, Webster AR. Natural history and retinal structure in patients with Usher syndrome type 1 owing to MYO7A mutation. Ophthalmology 2013; 121:580-7. [PMID: 24199935 DOI: 10.1016/j.ophtha.2013.09.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To evaluate the phenotypic variability and natural history of ocular disease in a cohort of 28 individuals with MYO7A-related disease. Mutations in the MYO7A gene are the most common cause of Usher syndrome type 1, characterized by profound congenital deafness, vestibular arreflexia, and progressive retinal degeneration. DESIGN Retrospective case series. PARTICIPANTS Twenty-eight patients from 26 families (age range, 3-65 years; median, 32) with 2 likely disease-causing variants in MYO7A. METHODS Clinical investigations included fundus photography, optical coherence tomography, fundus autofluorescence (FAF) imaging, and audiologic and vestibular assessments. Longitudinal visual acuity and FAF data (over a 3-year period) were available for 20 and 10 study subjects, respectively. MAIN OUTCOME MEASURES Clinical, structural, and functional characteristics. RESULTS All patients with MYO7A mutations presented with features consistent with Usher type 1. The median visual acuity for the cohort was 0.39 logarithm of the minimum angle of resolution (logMAR; range, 0.0-2.7) and visual acuity in logMAR correlated with age (Spearman's rank correlation coefficient, r = 0.71; P<0.0001). Survival analysis revealed that acuity ≤ 0.22 logMAR was maintained in 50% of studied subjects until age 33.9; legal blindness based on loss of acuity (≥ 1.00 logMAR) or loss of field (≤ 20°) was reached at a median age of 40.6 years. Three distinct patterns were observed on FAF imaging: 13 of 22 patients tested had relatively preserved foveal autofluorescence surrounded by a ring of high density, 4 of 22 had increased signal in the fovea with no obvious hyperautofluorescent ring, and 5 of 22 had widespread hypoautofluorescence corresponding to retinal pigment epithelial atrophy. Despite a number of cases presenting with a milder phenotype, there seemed to be no obvious genotype-phenotype correlation. CONCLUSIONS MYO7A-related ocular disease is variable. Central vision typically remains preserved at least until the third decade of life, with 50% of affected individuals reaching legal blindness by 40 years of age. Distinct phenotypic subsets were identified on FAF imaging. A specific allele, previously reported in nonsyndromic deafness, may be associated with a mild retinopathy.
Collapse
Affiliation(s)
- Eva Lenassi
- UCL Institute of Ophthalmology, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom; Eye Hospital, University Medical Centre, Ljubljana, Slovenia
| | | | - Valentina Cipriani
- UCL Institute of Ophthalmology, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | | | - Anthony T Moore
- UCL Institute of Ophthalmology, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | | | | | - Andrew R Webster
- UCL Institute of Ophthalmology, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom.
| |
Collapse
|
7
|
Boye SE, Boye SL, Lewin AS, Hauswirth WW. A comprehensive review of retinal gene therapy. Mol Ther 2013; 21:509-19. [PMID: 23358189 DOI: 10.1038/mt.2012.280] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Blindness, although not life threatening, is a debilitating disorder for which few, if any treatments exist. Ocular gene therapies have the potential to profoundly improve the quality of life in patients with inherited retinal disease. As such, tremendous focus has been given to develop such therapies. Several factors make the eye an ideal organ for gene-replacement therapy including its accessibility, immune privilege, small size, compartmentalization, and the existence of a contralateral control. This review will provide a comprehensive summary of (i) existing gene therapy clinical trials for several genetic forms of blindness and (ii) preclinical efficacy and safety studies in a variety of animal models of retinal disease which demonstrate strong potential for clinical application. To be as comprehensive as possible, we include additional proof of concept studies using gene replacement, neurotrophic/neuroprotective, optogenetic, antiangiogenic, or antioxidative stress strategies as well as a description of the current challenges and future directions in the ocular gene therapy field to this review as a supplement.
Collapse
Affiliation(s)
- Shannon E Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA.
| | | | | | | |
Collapse
|
8
|
Pan L, Zhang M. Structures of usher syndrome 1 proteins and their complexes. Physiology (Bethesda) 2012; 27:25-42. [PMID: 22311968 DOI: 10.1152/physiol.00037.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Usher syndrome 1 (USH1) is the most common and severe form of hereditary loss of hearing and vision. Genetic, physiological, and cell biological studies, together with recent structural investigations, have not only uncovered the physiological functions of the five USH1 proteins but also provided mechanistic explanations for the hearing and visual deficiencies in humans caused by USH1 mutations. This review focuses on the structural basis of the USH1 protein complex organization.
Collapse
Affiliation(s)
- Lifeng Pan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | |
Collapse
|
9
|
Bloodgood RA. From central to rudimentary to primary: the history of an underappreciated organelle whose time has come. The primary cilium. Methods Cell Biol 2009; 94:3-52. [PMID: 20362083 DOI: 10.1016/s0091-679x(08)94001-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For the first time, the history of the central flagellum/primary cilium has been explored systematically and in depth. It is a long and informative story about the course of scientific discovery, memory loss and rediscovery. The progress of our story is saltatory, pushed onward by innovations in technology and retarded by socio-scientific issues of linguistic and temporal chauvinism. Over one hundred and fifty years passed between the discovery of this organelle and full appreciation of its important functions. The main character in our story is an organelle that was relegated to a very minor role in the cellular opera for a very long time, until its rather sudden promotion to a central role in orchestrating many of the sensory and signaling events of the cell. Although early investigators speculated on just such a role for the primary cilium as early as 1898, it was over one hundred years before proof for this hypothesis was forthcoming.
Collapse
Affiliation(s)
- Robert A Bloodgood
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908-0732, USA
| |
Collapse
|
10
|
DUNCAN LUKEJ, MANGIARDI DOMINICA, MATSUI JONATHANI, ANDERSON JULIAK, McLAUGHLIN-WILLIAMSON KATE, COTANCHE DOUGLASA. Differential expression of unconventional myosins in apoptotic and regenerating chick hair cells confirms two regeneration mechanisms. J Comp Neurol 2007; 499:691-701. [PMID: 17048225 PMCID: PMC2426907 DOI: 10.1002/cne.21114] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hair cells of the inner ear are damaged by intense noise, aging, and aminoglycoside antibiotics. Gentamicin causes oxidative damage to hair cells, inducing apoptosis. In mammals, hair cell loss results in a permanent deficit in hearing and balance. In contrast, avians can regenerate lost hair cells to restore auditory and vestibular function. This study examined the changes of myosin VI and myosin VIIa, two unconventional myosins that are critical for normal hair cell formation and function, during hair cell death and regeneration. During the late stages of apoptosis, damaged hair cells are ejected from the sensory epithelium. There was a 4-5-fold increase in the labeling intensity of both myosins and a redistribution of myosin VI into the stereocilia bundle, concurrent with ejection. Two separate mechanisms were observed during hair cell regeneration. Proliferating supporting cells began DNA synthesis 60 hours after gentamicin treatment and peaked at 72 hours postgentamicin treatment. Some of these mitotically produced cells began to differentiate into hair cells at 108 hours after gentamicin (36 hours after bromodeoxyuridine (BrdU) administration), as demonstrated by the colabeling of myosin VI and BrdU. Myosin VIIa was not expressed in the new hair cells until 120 hours after gentamicin. Moreover, a population of supporting cells expressed myosin VI at 78 hours after gentamicin treatment and myosin VIIa at 90 hours. These cells did not label for BrdU and differentiated far too early to be of mitotic origin, suggesting they arose by direct transdifferentiation of supporting cells into hair cells.
Collapse
Affiliation(s)
- LUKE J. DUNCAN
- Laboratory for Cellular and Molecular Hearing Research, Department of Otolaryngology, Children’s Hospital, Boston, Massachusetts 02115
| | - DOMINIC A. MANGIARDI
- Laboratory for Cellular and Molecular Hearing Research, Department of Otolaryngology, Children’s Hospital, Boston, Massachusetts 02115
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215
| | - JONATHAN I. MATSUI
- Laboratory for Cellular and Molecular Hearing Research, Department of Otolaryngology, Children’s Hospital, Boston, Massachusetts 02115
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - JULIA K. ANDERSON
- Laboratory for Cellular and Molecular Hearing Research, Department of Otolaryngology, Children’s Hospital, Boston, Massachusetts 02115
| | - KATE McLAUGHLIN-WILLIAMSON
- Laboratory for Cellular and Molecular Hearing Research, Department of Otolaryngology, Children’s Hospital, Boston, Massachusetts 02115
| | - DOUGLAS A. COTANCHE
- Laboratory for Cellular and Molecular Hearing Research, Department of Otolaryngology, Children’s Hospital, Boston, Massachusetts 02115
- Departments of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02114
- *Correspondence to: Douglas A. Cotanche, Children’s Hospital Boston, ORL Research, Enders 4th Fl., 300 Longwood Ave., Boston, MA 02115. E-mail:
| |
Collapse
|
11
|
Reiners J, Nagel-Wolfrum K, Jürgens K, Märker T, Wolfrum U. Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Exp Eye Res 2006; 83:97-119. [PMID: 16545802 DOI: 10.1016/j.exer.2005.11.010] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 11/15/2005] [Accepted: 11/21/2005] [Indexed: 11/17/2022]
Abstract
Usher syndrome (USH) is the most frequent cause of combined deaf-blindness in man. It is clinically and genetically heterogeneous and at least 12 chromosomal loci are assigned to three clinical USH types, namely USH1A-G, USH2A-C, USH3A (Davenport, S.L.H., Omenn, G.S., 1977. The heterogeneity of Usher syndrome. Vth Int. Conf. Birth Defects, Montreal; Petit, C., 2001. Usher syndrome: from genetics to pathogenesis. Annu. Rev. Genomics Hum. Genet. 2, 271-297). Mutations in USH type 1 genes cause the most severe form of USH. In USH1 patients, congenital deafness is combined with a pre-pubertal onset of retinitis pigmentosa (RP) and severe vestibular dysfunctions. Those with USH2 have moderate to severe congenital hearing loss, non-vestibular dysfunction and a later onset of RP. USH3 is characterized by variable RP and vestibular dysfunction combined with progressive hearing loss. The gene products of eight identified USH genes belong to different protein classes and families. There are five known USH1 molecules: the molecular motor myosin VIIa (USH1B); the two cell-cell adhesion cadherin proteins, cadherin 23 (USH1D) and protocadherin 15, (USH1F) and the scaffold proteins, harmonin (USH1C) and SANS (USH1G). In addition, two USH2 genes and one USH3A gene have been identified. The two USH2 genes code for the transmembrane protein USH2A, also termed USH2A ("usherin") and the G-protein-coupled 7-transmembrane receptor VLGR1b (USH2C), respectively, whereas the USH3A gene encodes clarin-1, a member of the clarin family which exhibits 4-transmembrane domains. Molecular analysis of USH1 protein function revealed that all five USH1 proteins are integrated into a protein network via binding to PDZ domains in the USH1C protein harmonin. Furthermore, this scaffold function of harmonin is supported by the USH1G protein SANS. Recently, we have shown that the USH2 proteins USH2A and VLGR1b as well as the candidate for USH2B, the sodium bicarbonate co-transporter NBC3, are also integrated into this USH protein network. In the inner ear, these interactions are essential for the differentiation of hair cell stereocilia but may also participate in the mechano-electrical signal transduction and the synaptic function of maturated hair cells. In the retina, the co-expression of all USH1 and USH2 proteins at the synapse of photoreceptor cells indicates that they are organized in an USH protein network there. The identification of the USH protein network indicates a common pathophysiological pathway in USH. Dysfunction or absence of any of the molecules in the mutual "interactome" related to the USH disease may lead to disruption of the network causing senso-neuronal degeneration in the inner ear and the retina, the clinical symptoms of USH.
Collapse
Affiliation(s)
- Jan Reiners
- Institute of Zoology, Department of Cell and Matrix Biology, Johannes Gutenberg University of Mainz, Müllerweg 6, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|