1
|
Pratt MR. Photocrosslinking and capture for the analysis of carbohydrate-dependent interactions. Bioorg Med Chem Lett 2025; 117:130077. [PMID: 39710139 PMCID: PMC11745908 DOI: 10.1016/j.bmcl.2024.130077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
Carbohydrates play crucial roles in biological systems, including by mediating cell and protein interactions. The complexity and transient nature of carbohydrate-dependent interactions pose significant challenges for their characterization, as traditional techniques often fail to capture these low-affinity binding events. This review highlights the increasing utility of photocrosslinkers in studying carbohydrate-mediated interactions. Photocrosslinkers, such as aryl azides, benzophenones, and diazirines, allow for the capture of fleeting interactions by forming covalent bonds upon UV irradiation, enabling the downstream application of standard biochemical techniques. I discuss the three primary strategies for incorporating photocrosslinkers: synthetic small molecules, metabolic labeling, and exo-enzymatic labeling. I predict that the continued development and application of these methodologies will enhance our understanding of glycan-mediated interactions and their implications in health and disease.
Collapse
Affiliation(s)
- Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
2
|
Faltinek L, Melicher F, Kelemen V, Mező E, Borbás A, Wimmerová M. Bispecific Thio-Linked Disaccharides as Inhibitors of Pseudomonas Aeruginosa Lectins LecA (PA-IL) and LecB (PA-IIL): Dual-Targeting Strategy. Chemistry 2025; 31:e202403546. [PMID: 39535852 PMCID: PMC11753388 DOI: 10.1002/chem.202403546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Pseudomonas aeruginosa is a prevalent opportunistic human pathogen, particularly associated with cystic fibrosis. Among its virulence factors are the LecA and LecB lectins. Both lectins play an important role in the adhesion to the host cells and display cytotoxic activity. In this study, we successfully synthesized hardly hydrolysable carbohydrate ligands targeting these pathogenic lectins, including two bispecific glycans. The interactions between LecA/LecB lectins and synthetic glycans were evaluated using hemagglutination (yeast agglutination) inhibition assays, comparing their efficacy with corresponding monosaccharides. Additionally, the binding affinities of bispecific glycans were assessed using isothermal titration calorimetry (ITC). Structural insight into the lectin-ligand interaction was obtained by determining the crystal structures of LecA/LecB lectins in complex with one of the bispecific ligands using X ray crystallography. This comprehensive investigation into the inhibitory potential of synthetic glycosides against P. aeruginosa lectins sheds light on their potential application in antimicrobial therapy.
Collapse
Affiliation(s)
- Lukáš Faltinek
- Department of Biochemistry, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
| | - Filip Melicher
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
- National Centre for Biomolecular ResearchFaculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
| | - Viktor Kelemen
- HUN-REN-UD Pharmamodul Research GroupEgyetem tér 14032DebrecenHungary
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Erika Mező
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Anikó Borbás
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Michaela Wimmerová
- Department of Biochemistry, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
- National Centre for Biomolecular ResearchFaculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
| |
Collapse
|
3
|
Canner SW, Shanker S, Gray JJ. Structure-Based Neural Network Protein-Carbohydrate Interaction Predictions at the Residue Level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.531382. [PMID: 36993750 PMCID: PMC10054975 DOI: 10.1101/2023.03.14.531382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Carbohydrates dynamically and transiently interact with proteins for cell-cell recognition, cellular differentiation, immune response, and many other cellular processes. Despite the molecular importance of these interactions, there are currently few reliable computational tools to predict potential carbohydrate binding sites on any given protein. Here, we present two deep learning models named CArbohydrate-Protein interaction Site IdentiFier (CAPSIF) that predict carbohydrate binding sites on proteins: (1) a 3D-UNet voxel-based neural network model (CAPSIF:V) and (2) an equivariant graph neural network model (CAPSIF:G). While both models outperform previous surrogate methods used for carbohydrate binding site prediction, CAPSIF:V performs better than CAPSIF:G, achieving test Dice scores of 0.597 and 0.543 and test set Matthews correlation coefficients (MCCs) of 0.599 and 0.538, respectively. We further tested CAPSIF:V on AlphaFold2-predicted protein structures. CAPSIF:V performed equivalently on both experimentally determined structures and AlphaFold2 predicted structures. Finally, we demonstrate how CAPSIF models can be used in conjunction with local glycan-docking protocols, such as GlycanDock, to predict bound protein-carbohydrate structures.
Collapse
Affiliation(s)
- Samuel W Canner
- Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Sudhanshu Shanker
- Dept. of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Jeffrey J Gray
- Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, MD, United States of America
- Dept. of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
4
|
Quintana JI, Atxabal U, Unione L, Ardá A, Jiménez-Barbero J. Exploring multivalent carbohydrate-protein interactions by NMR. Chem Soc Rev 2023; 52:1591-1613. [PMID: 36753338 PMCID: PMC9987413 DOI: 10.1039/d2cs00983h] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Indexed: 02/09/2023]
Abstract
Nuclear Magnetic Resonance (NMR) has been widely employed to assess diverse features of glycan-protein molecular recognition events. Different types of qualitative and quantitative information at different degrees of resolution and complexity can be extracted from the proper application of the available NMR-techniques. In fact, affinity, structural, kinetic, conformational, and dynamic characteristics of the binding process are available. Nevertheless, except in particular cases, the affinity of lectin-sugar interactions is weak, mostly at the low mM range. This feature is overcome in biological processes by using multivalency, thus augmenting the strength of the binding. However, the application of NMR methods to monitor multivalent lectin-glycan interactions is intrinsically challenging. It is well known that when large macromolecular complexes are formed, the NMR signals disappear from the NMR spectrum, due to the existence of fast transverse relaxation, related to the large size and exchange features. Indeed, at the heart of the molecular recognition event, the associated free-bound chemical exchange process for both partners takes place in a particular timescale. Thus, these factors have to be considered and overcome. In this review article, we have distinguished, in a subjective manner, the existence of multivalent presentations in the glycan or in the lectin. From the glycan perspective, we have also considered whether multiple epitopes of a given ligand are presented in the same linear chain of a saccharide (i.e., poly-LacNAc oligosaccharides) or decorating different arms of a multiantennae scaffold, either natural (as in multiantennae N-glycans) or synthetic (of dendrimer or polymer nature). From the lectin perspective, the presence of an individual binding site at every monomer of a multimeric lectin may also have key consequences for the binding event at different levels of complexity.
Collapse
Affiliation(s)
- Jon I Quintana
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
| | - Unai Atxabal
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
| | - Luca Unione
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
| | - Ana Ardá
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
- Department of Organic Chemistry, II Faculty of Science and Technology, EHU-UPV, 48940 Leioa, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
5
|
Umar M, Ruktanonchai U, Makararpong D, Anal AK. Enhancing Immunity Against Pathogens Through Glycosylated Bovine Colostrum Proteins. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2169866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Muhammad Umar
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Pathumthani, Thailand
| | - Uracha Ruktanonchai
- NANOTEC, National Science and Technology Development Agency, Pathumthani, Thailand
| | | | - Anil Kumar Anal
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Pathumthani, Thailand
| |
Collapse
|
6
|
Yang W, Seo J, Kim JH. Protein-mimetic peptoid nanoarchitectures for pathogen recognition and neutralization. NANOSCALE 2023; 15:975-986. [PMID: 36541218 DOI: 10.1039/d2nr05326h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent outbreaks of both new and existing infectious pathogens have threatened healthcare systems around the world. Therefore, it is vital to detect and neutralize pathogens to prevent their spread and treat infected patients. This consideration has led to the development of biosensors and antibiotics inspired by the structure and function of antibodies and antimicrobial peptides (AMPs), which constitute adaptive and innate immunity, efficiently protecting the human body against invading pathogens. Herein, we provide an overview of recent advances in the detection and neutralization of pathogens using protein-mimetic peptoid nanoarchitectures. Peptoids are bio-inspired and sequence-defined polymers composed of repeating N-substituted glycine units. They can spontaneously fold into well-defined three-dimensional nanostructures that encode chemical information depending on their sequences. Loop-functionalized peptoid nanosheets have been constructed by mimicking antibodies containing chemically variable loops as binding motifs for their respective target pathogen. Furthermore, by mimicking the cationic amphipathic features of natural AMPs, helical peptoids and their assemblies have been developed to achieve selective anti-infective activity owing to their intrinsic ability to interact with bacterial membranes and viral envelopes. We believe that this mini-review furnishes in-depth insight into how to construct protein-like nanostructures via the self-assembly of peptoids for application in the detection of pathogens and the treatment of infectious diseases for future healthcare applications.
Collapse
Affiliation(s)
- Woojin Yang
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jae Hong Kim
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.
| |
Collapse
|
7
|
Narayanan V, Bobbili KB, Sivaji N, Jayaprakash NG, Suguna K, Surolia A, Sekhar A. Structure and Carbohydrate Recognition by the Nonmitogenic Lectin Horcolin. Biochemistry 2022; 61:464-478. [PMID: 35225598 DOI: 10.1021/acs.biochem.1c00778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lectins are sugar-binding proteins that have shown considerable promise as antiviral agents because of their ability to interact with envelope glycoproteins present on the surface of viruses such as HIV-1. However, their therapeutic potential has been compromised by their mitogenicity that stimulates uncontrolled division of T-lymphocytes. Horcolin, a member of the jacalin family of lectins, tightly binds the HIV-1 envelope glycoprotein gp120 and neutralizes HIV-1 particles but is nonmitogenic. In this report, we combine X-ray crystallography and NMR spectroscopy to obtain atomic-resolution insights into the structure of horcolin and the molecular basis for its carbohydrate recognition. Each protomer of the horcolin dimer adopts a canonical β-prism I fold with three Greek key motifs and carries two carbohydrate-binding sites. The carbohydrate molecule binds in a negatively charged pocket and is stabilized by backbone and side chain hydrogen bonds to conserved residues in the ligand-binding loop. NMR titrations reveal a two-site binding mode and equilibrium dissociation constants for the two binding sites determined from two-dimensional (2D) lineshape modeling are 4-fold different. Single-binding-site variants of horcolin confirm the dichotomy in binding sites and suggest that there is allosteric communication between the two sites. An analysis of the horcolin structure shows a network of hydrogen bonds linking the two carbohydrate-binding sites directly and through a secondary binding site, and this coupling between the two sites is expected to assume importance in the interaction of horcolin with high-mannose glycans found on viral envelope glycoproteins.
Collapse
Affiliation(s)
- Vaishali Narayanan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Kishore Babu Bobbili
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Nukathoti Sivaji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Nisha G Jayaprakash
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Kaza Suguna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
8
|
Nguyen TB, Pires DEV, Ascher DB. CSM-carbohydrate: protein-carbohydrate binding affinity prediction and docking scoring function. Brief Bioinform 2021; 23:6457169. [PMID: 34882232 DOI: 10.1093/bib/bbab512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/29/2022] Open
Abstract
Protein-carbohydrate interactions are crucial for many cellular processes but can be challenging to biologically characterise. To improve our understanding and ability to model these molecular interactions, we used a carefully curated set of 370 protein-carbohydrate complexes with experimental structural and biophysical data in order to train and validate a new tool, cutoff scanning matrix (CSM)-carbohydrate, using machine learning algorithms to accurately predict their binding affinity and rank docking poses as a scoring function. Information on both protein and carbohydrate complementarity, in terms of shape and chemistry, was captured using graph-based structural signatures. Across both training and independent test sets, we achieved comparable Pearson's correlations of 0.72 under cross-validation [root mean square error (RMSE) of 1.58 Kcal/mol] and 0.67 on the independent test (RMSE of 1.72 Kcal/mol), providing confidence in the generalisability and robustness of the final model. Similar performance was obtained across mono-, di- and oligosaccharides, further highlighting the applicability of this approach to the study of larger complexes. We show CSM-carbohydrate significantly outperformed previous approaches and have implemented our method and make all data freely available through both a user-friendly web interface and application programming interface, to facilitate programmatic access at http://biosig.unimelb.edu.au/csm_carbohydrate/. We believe CSM-carbohydrate will be an invaluable tool for helping assess docking poses and the effects of mutations on protein-carbohydrate affinity, unravelling important aspects that drive binding recognition.
Collapse
Affiliation(s)
- Thanh Binh Nguyen
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Douglas E V Pires
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia.,School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Townsend SD. Call for Papers: Glycoscience in Infectious Diseases. ACS Infect Dis 2021; 7:2946-2947. [PMID: 34644044 DOI: 10.1021/acsinfecdis.1c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Cavalcante T, Medeiros MM, Mule SN, Palmisano G, Stolf BS. The Role of Sialic Acids in the Establishment of Infections by Pathogens, With Special Focus on Leishmania. Front Cell Infect Microbiol 2021; 11:671913. [PMID: 34055669 PMCID: PMC8155805 DOI: 10.3389/fcimb.2021.671913] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
Carbohydrates or glycans are ubiquitous components of the cell surface which play crucial biological and structural roles. Sialic acids (Sias) are nine-carbon atoms sugars usually present as terminal residues of glycoproteins and glycolipids on the cell surface or secreted. They have important roles in cellular communication and also in infection and survival of pathogens. More than 20 pathogens can synthesize or capture Sias from their hosts and incorporate them into their own glycoconjugates and derivatives. Sialylation of pathogens’ glycoconjugates may be crucial for survival inside the host for numerous reasons. The role of Sias in protozoa such as Trypanosoma and Leishmania was demonstrated in previous studies. This review highlights the importance of Sias in several pathogenic infections, focusing on Leishmania. We describe in detail the contributions of Sias, Siglecs (sialic acid binding Ig-like lectins) and Neuraminidase 1 (NEU 1) in the course of Leishmania infection. A detailed view on the structural and functional diversity of Leishmania-related Sias and host-cell receptors will be provided, as well as the results of functional studies performed with different Leishmania species.
Collapse
Affiliation(s)
- Tainá Cavalcante
- Laboratory of Leishmaniasis, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mariana Medina Medeiros
- Laboratory of Leishmaniasis, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Beatriz Simonsen Stolf
- Laboratory of Leishmaniasis, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
11
|
Siva Shanmugam NR, Jino Blessy J, Veluraja K, Gromiha MM. Prediction of protein-carbohydrate complex binding affinity using structural features. Brief Bioinform 2020; 22:6032626. [PMID: 33313775 DOI: 10.1093/bib/bbaa319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/28/2020] [Accepted: 10/19/2020] [Indexed: 01/03/2023] Open
Abstract
Protein-carbohydrate interactions play a major role in several cellular and biological processes. Elucidating the factors influencing the binding affinity of protein-carbohydrate complexes and predicting their free energy of binding provide deep insights for understanding the recognition mechanism. In this work, we have collected the experimental binding affinity data for a set of 389 protein-carbohydrate complexes and derived several structure-based features such as contact potentials, interaction energy, number of binding residues and contacts between different types of atoms. Our analysis on the relationship between binding affinity and structural features revealed that the important factors depend on the type of the complex based on number of carbohydrate and protein chains. Specifically, binding site residues, accessible surface area, interactions between various atoms and energy contributions are important to understand the binding affinity. Further, we have developed multiple regression equations for predicting the binding affinity of protein-carbohydrate complexes belonging to six categories of protein-carbohydrate complexes. Our method showed an average correlation and mean absolute error of 0.731 and 1.149 kcal/mol, respectively, between experimental and predicted binding affinities on a jackknife test. We have developed a web server PCA-Pred, Protein-Carbohydrate Affinity Predictor, for predicting the binding affinity of protein-carbohydrate complexes. The web server is freely accessible at https://web.iitm.ac.in/bioinfo2/pcapred/. The web server is implemented using HTML and Python and supports recent versions of major browsers such as Chrome, Firefox, IE10 and Opera.
Collapse
Affiliation(s)
| | | | - K Veluraja
- Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
12
|
Farabi K, Manabe Y, Ichikawa H, Miyake S, Tsutsui M, Kabayama K, Yamaji T, Tanaka K, Hung SC, Fukase K. Concise and Reliable Syntheses of Glycodendrimers via Self-Activating Click Chemistry: A Robust Strategy for Mimicking Multivalent Glycan-Pathogen Interactions. J Org Chem 2020; 85:16014-16023. [PMID: 33058668 DOI: 10.1021/acs.joc.0c01547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Individual interactions between glycans and their receptors are usually weak, although these weak interactions can combine to realize a strong interaction (multivalency). Such multivalency plays a crucial role in the recognition of host cells by pathogens. Glycodendrimers are useful materials for the reconstruction of this multivalent interaction. However, the introduction of a large number of glycans to a dendrimer core is fraught with difficulties. We herein synthesized antipathogenic glycodendrimers using the self-activating click chemistry (SACC) method developed by our group. The excellent reactivity of SACC enabled the efficient preparation of sialyl glycan and Gb3 glycan dendrimers, which exhibited strong avidity toward hemagglutinin on influenza virus and Shiga toxin B subunit produced by Escherichia coli, respectively. We demonstrated the usefulness of SACC-based glycodendrimers as antipathogenic compounds.
Collapse
Affiliation(s)
- Kindi Farabi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Hiroaki Ichikawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Shuto Miyake
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Masato Tsutsui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,School of Materials and Chemical Technology, Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
13
|
A strategy to control colonization of pathogens: embedding of lactic acid bacteria on the surface of urinary catheter. Appl Microbiol Biotechnol 2020; 104:9053-9066. [PMID: 32949279 DOI: 10.1007/s00253-020-10903-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 01/13/2023]
Abstract
Indwelling urinary catheterization is one of the major causes of urinary tract infection (UTI) in hospitalized patients worldwide. A catheter serves as a surface for the colonization and formation of biofilm by UTI-related pathogenic bacteria. To combat the biofilm formation on its surface, several strategies have already been employed such as coating it with antibiofilm and antimicrobial compounds. For instance, the application of lactic acid bacteria (LAB) offers a potential strategy for the treatment of biofilm formation on the surface of the urinary catheter due to its ability to kill the pathogenic bacteria. The killing of pathogenic bacteria by LAB occurs via the production of antimicrobial compounds such as lactic acid, bacteriocin, and hydrogen peroxide. LAB also displays a competitive exclusion mechanism to prevent the adhesion of pathogens on the surfaces. Hence, LAB has been extensively applied as a bacteriotherapy to combat infectious diseases. Several strategies have been employed to attach LAB to a surface, but its easy detachment during long time exposure becomes one of the drawbacks in its application. Here, we have proposed a novel strategy for its adhesion on the surface of the urinary catheter with the utilization of mannose-specific adhesin (Msa) protein in a way similar as uropathogenic bacteria interacts between Msa present on the tip of the type I fimbriae/pilus and the mannose moieties on the host epithelial cell surfaces. KEY POINTS: • Urinary tract infection (UTI) is one of the common hospital-acquired infections, which is associated with the application of an indwelling urinary catheter. • Based on the competitive exclusions properties of LAB, attachment of the LAB on the catheter surface would be a promising approach to control the formation of pathogenic biofilm. • The strategy employed for the adhesion of LAB is via a covalent interaction of its mannose-specific adhesin (Msa) protein to the mannose residues grafted on the catheter surface.
Collapse
|
14
|
Zhu H, Wang S, Liu D, Ding L, Chen C, Liu Y, Wu Z, Bollag R, Liu K, Alexander WM, Yin J, Ma C, Li L, Wang PG. Identifying Sialylation Linkages at the Glycopeptide Level by Glycosyltransferase Labeling Assisted Mass Spectrometry (GLAMS). Anal Chem 2020; 92:6297-6303. [PMID: 32271005 PMCID: PMC7750919 DOI: 10.1021/acs.analchem.9b05068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Precise assignment of sialylation linkages at the glycopeptide level is of importance in bottom-up glycoproteomics and an indispensable step to understand the function of glycoproteins in pathogen-host interactions and cancer progression. Even though some efforts have been dedicated to the discrimination of α2,3/α2,6-sialylated isomers, unambiguous identification of sialoglycopeptide isomers is still needed. Herein, we developed an innovative glycosyltransferase labeling assisted mass spectrometry (GLAMS) strategy. After specific enzymatic labeling, oxonium ions from higher-energy C-trap dissociation (HCD) fragmentation of α2,3-sailoglycopeptides then generate unique reporters to distinctly differentiate those of α2,6-sailoglycopeptide isomers. With this strategy, a total of 1236 linkage-specific sialoglycopeptides were successfully identified from 161 glycoproteins in human serum.
Collapse
Affiliation(s)
- He Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lang Ding
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Congcong Chen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yunpeng Liu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Zhigang Wu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Roni Bollag
- Georgia Cancer Center, Augusta University, Augusta, Georgia 30912, United States
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia 30912, United States
| | - William Max Alexander
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Jun Yin
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Cheng Ma
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
15
|
García‐Oliva C, Cabanillas AH, Perona A, Hoyos P, Rumbero Á, Hernáiz MJ. Efficient Synthesis of Muramic and Glucuronic Acid Glycodendrimers as Dengue Virus Antagonists. Chemistry 2020; 26:1588-1596. [DOI: 10.1002/chem.201903788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/17/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Cecilia García‐Oliva
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| | | | - Almudena Perona
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| | - Pilar Hoyos
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| | - Ángel Rumbero
- Departamento de Química OrgánicaUniversidad Autónoma de Madrid 28049 Madrid Spain
| | - María J. Hernáiz
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| |
Collapse
|
16
|
Breimer ME, Holgersson J. The Structural Complexity and Animal Tissue Distribution of N-Glycolylneuraminic Acid (Neu5Gc)-Terminated Glycans. Implications for Their Immunogenicity in Clinical Xenografting. Front Mol Biosci 2019; 6:57. [PMID: 31428616 PMCID: PMC6690001 DOI: 10.3389/fmolb.2019.00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
N-Glycolylneuraminic acid (Neu5Gc)-terminated glycans are present in all animal cells/tissues that are already used in the clinic such as bioprosthetic heart valves (BHV) as well as in those that potentially will be xenografted in the future to overcome end stage cell/organ failure. Humans, as a species lack this antigen determinant and can react with an immune response after exposure to Neu5Gc present in these products/cells/tissues. Genetically engineered source animals lacking Neu5Gc has been generated and so has animals that in addition lack the major αGal xenoantigen. The use of cells/tissues/organs from such animals may improve the long-term performance of BHV and allow future xenografting. This review summarizes the present knowledge regarding structural complexity and tissue distribution of Neu5Gc on glycans of cells/tissue/organs already used in the clinic or intended for treatment of end stage organ failure by xenografting. In addition, we briefly discuss the role of anti-Neu5Gc antibodies in the xenorejection process and how knowledge about Neu5Gc structural complexity can be used to design novel diagnostics for anti-Neu5Gc antibody detection.
Collapse
Affiliation(s)
- Michael E Breimer
- Department of Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Holgersson
- Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Legros N, Pohlentz G, Steil D, Müthing J. Shiga toxin-glycosphingolipid interaction: Status quo of research with focus on primary human brain and kidney endothelial cells. Int J Med Microbiol 2018; 308:1073-1084. [PMID: 30224239 DOI: 10.1016/j.ijmm.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
Shiga toxin (Stx)-mediated injury of the kidneys and the brain represent the major extraintestinal complications in humans upon infection by enterohemorrhagic Escherichia coli (EHEC). Damage of renal and cerebral endothelial cells is the key event in the pathogenesis of the life-threatening hemolytic uremic syndrome (HUS). Stxs are AB5 toxins and the B-pentamers of the two clinically important Stx subtypes Stx1a and Stx2a preferentially bind to the glycosphingolipid globotriaosylceramide (Gb3Cer, Galα4Galβ4Glcβ1Cer) and to less extent to globotetraosylceramide (Gb4Cer, GalNAcβ3Galα4Galβ4Glcβ1), which are expected to reside in lipid rafts in the plasma membrane of the human endothelium. This review summarizes the current knowledge on the Stx glycosphingolipid receptors and their lipid membrane ensemble in primary human brain microvascular endothelial cells (pHBMECs) and primary human renal glomerular endothelial cells (pHRGECs). Increasing knowledge on the precise initial molecular mechanisms by which Stxs interact with cellular targets will help to develop specific therapeutics and/or preventive measures to combat EHEC-caused diseases.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Daniel Steil
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
18
|
Hottin A, Wright DW, Moreno-Clavijo E, Moreno-Vargas AJ, Davies GJ, Behr JB. Exploring the divalent effect in fucosidase inhibition with stereoisomeric pyrrolidine dimers. Org Biomol Chem 2018; 14:4718-27. [PMID: 27138139 DOI: 10.1039/c6ob00647g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multi-valent inhibitors offer promise for the enhancement of therapeutic compounds across a range of chemical and biological processes. Here, a significant increase in enzyme-inhibition potencies was observed with a dimeric iminosugar-templated fucosidase inhibitor (IC50 = 0.108 μM) when compared to its monovalent equivalent (IC50 = 2.0 μM). Such a gain in binding is often attributed to a "multivalent effect" rising from alternative recapture of the scaffolded binding epitopes. The use of control molecules such as the meso analogue (IC50 = 0.365 μM) or the enantiomer (IC50 = 569 μM), as well as structural analysis of the fucosidase-inhibitor complex, allowed a detailed analysis of the possible mechanism of action, at the molecular level. Here, the enhanced binding affinity of the dimer over the monomer can be attributed to additional interactions in non-catalytic sites as also revealed in the 3-D structure of a bacterial fucosidase inhibitor complex.
Collapse
Affiliation(s)
- Audrey Hottin
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, 51687 Reims Cedex 2, France.
| | - Daniel W Wright
- Structural Biology Laboratory Department of Chemistry, University of York, York YO10 5DD, UK
| | - Elena Moreno-Clavijo
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/ Prof. García González, 1, 41012 Sevilla, Spain
| | - Antonio J Moreno-Vargas
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/ Prof. García González, 1, 41012 Sevilla, Spain
| | - Gideon J Davies
- Structural Biology Laboratory Department of Chemistry, University of York, York YO10 5DD, UK
| | - Jean-Bernard Behr
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, 51687 Reims Cedex 2, France.
| |
Collapse
|
19
|
Cai Z, Sasmal A, Liu X, Asher SA. Responsive Photonic Crystal Carbohydrate Hydrogel Sensor Materials for Selective and Sensitive Lectin Protein Detection. ACS Sens 2017; 2:1474-1481. [PMID: 28934853 DOI: 10.1021/acssensors.7b00426] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lectin proteins, such as the highly toxic lectin protein, ricin, and the immunochemically important lectin, jacalin, play significant roles in many biological functions. It is highly desirable to develop a simple but efficient method to selectively detect lectin proteins. Here we report the development of carbohydrate containing responsive hydrogel sensing materials for the selective detection of lectin proteins. The copolymerization of a vinyl linked carbohydrate monomer with acrylamide and acrylic acid forms a carbohydrate hydrogel that shows specific "multivalent" binding to lectin proteins. The resulting carbohydrate hydrogels are attached to 2-D photonic crystals (PCs) that brightly diffract visible light. This diffraction provides an optical readout that sensitively monitors the hydrogel volume. We utilize lactose, galactose, and mannose containing hydrogels to fabricate a series of 2-D PC sensors that show strong selective binding to the lectin proteins ricin, jacalin, and concanavalin A (Con A). This binding causes a carbohydrate hydrogel shrinkage which significantly shifts the diffraction wavelength. The resulting 2-D PC sensors can selectively detect the lectin proteins ricin, jacalin, and Con A. These unoptimized 2-D PC hydrogel sensors show a limit of detection (LoD) of 7.5 × 10-8 M for ricin, a LoD of 2.3 × 10-7 M for jacalin, and a LoD of 3.8 × 10-8 M for Con A, respectively. This sensor fabrication approach may enable numerous sensors for the selective detection of numerous lectin proteins.
Collapse
Affiliation(s)
- Zhongyu Cai
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Aniruddha Sasmal
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xinyu Liu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sanford A. Asher
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
20
|
Royal Jelly Inhibits Pseudomonas aeruginosa Adherence and Reduces Excessive Inflammatory Responses in Human Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3191752. [PMID: 29075644 PMCID: PMC5623779 DOI: 10.1155/2017/3191752] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/05/2017] [Accepted: 07/02/2017] [Indexed: 12/12/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium and causes respiratory infection especially in elderly patients. Royal jelly has been used worldwide as a traditional remedy and as a nutrient; however, the effect against P. aeruginosa is unclear. The aim of this study was to analyze antibacterial, antiadherent, and anti-inflammatory effects of royal jelly against P. aeruginosa. Wild-type strain PAO1 and clinical isolates of P. aeruginosa were used for antibacterial assay and antiadherent assay to abiotic surface and epithelial cells, which are pharynx (Detroit 562) and lung (NCI-H292) epithelial cells. In anti-inflammatory assay, epithelial cells were pretreated with royal jelly before bacterial exposure to investigate its inhibitory effect on interleukin (IL-8) and macrophage inflammatory protein-3α/CCL20 overproduction. Although royal jelly did not have antibacterial activity at concentration of 50% w/v, antiadherent activity was confirmed on the abiotic surface and epithelial cells under concentration of 25%. Pretreatment with royal jelly significantly inhibited overproduction of IL-8 and CCL20 from both cells. These results demonstrated that royal jelly inhibits P. aeruginosa adherence and protects epithelial cells from excessive inflammatory responses against P. aeruginosa infection. Our findings suggested that royal jelly may be a useful supplement as complementary and alternative medicine for preventing respiratory infection caused by P. aeruginosa.
Collapse
|
21
|
Park D, Arabyan N, Williams CC, Song T, Mitra A, Weimer BC, Maverakis E, Lebrilla CB. Salmonella Typhimurium Enzymatically Landscapes the Host Intestinal Epithelial Cell (IEC) Surface Glycome to Increase Invasion. Mol Cell Proteomics 2016; 15:3653-3664. [PMID: 27754876 DOI: 10.1074/mcp.m116.063206] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/28/2016] [Indexed: 01/01/2023] Open
Abstract
Although gut host-pathogen interactions are glycan-mediated processes, few details are known about the participating structures. Here we employ high-resolution mass spectrometric profiling to comprehensively identify and quantitatively measure the exact modifications of native intestinal epithelial cell surface N-glycans induced by S. typhimurium infection. Sixty minutes postinfection, select sialylated structures showed decreases in terms of total number and abundances. To assess the effect of cell surface mannosylation, we selectively rerouted glycan expression on the host using the alpha-mannosidase inhibitor, kifunensine, toward overexpression of high mannose. Under these conditions, internalization of S. typhimurium significantly increased, demonstrating that bacteria show preference for particular structures. Finally, we developed a novel assay to measure membrane glycoprotein turnover rates, which revealed that glycan modifications occur by bacterial enzyme activity rather than by host-derived restructuring strategies. This study is the first to provide precise structural information on how host N-glycans are altered to support S. typhimurium invasion.
Collapse
Affiliation(s)
- Dayoung Park
- From the ‡Department of Chemistry, University of California, Davis, CA, 95616
| | - Narine Arabyan
- §Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616
| | - Cynthia C Williams
- From the ‡Department of Chemistry, University of California, Davis, CA, 95616
| | - Ting Song
- From the ‡Department of Chemistry, University of California, Davis, CA, 95616
| | - Anupam Mitra
- ¶Department of Dermatology, University of California, Davis School of Medicine, Sacramento, CA, 95817
| | - Bart C Weimer
- §Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616
| | - Emanual Maverakis
- ¶Department of Dermatology, University of California, Davis School of Medicine, Sacramento, CA, 95817
| | - Carlito B Lebrilla
- From the ‡Department of Chemistry, University of California, Davis, CA, 95616;
| |
Collapse
|
22
|
Sunkari YK, Alam F, Kandiyal PS, Aloysius S, Ampapathi RS, Chakraborty TK. Influence of Linker Length on Conformational Preferences of Glycosylated Sugar Amino Acid Foldamers. Chembiochem 2016; 17:1839-1844. [DOI: 10.1002/cbic.201600386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Yashoda Krishna Sunkari
- Department of Organic Chemistry; Indian Institute of Science, CV Raman Road; Bengaluru 560012 India
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| | - Faiyaz Alam
- Centre for Nuclear Magnetic Resonance; SAIF; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| | - Pancham Singh Kandiyal
- Centre for Nuclear Magnetic Resonance; SAIF; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| | - Siriwardena Aloysius
- Laboratoire des Glucides (UMR 6912); CNRS-FRE-3517; Universit de Picardie Jules Verne, 33, Rue St Leu, Faculte des Sciences; Amiens 80039 France
| | - Ravi Sankar Ampapathi
- Centre for Nuclear Magnetic Resonance; SAIF; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| | - Tushar Kanti Chakraborty
- Department of Organic Chemistry; Indian Institute of Science, CV Raman Road; Bengaluru 560012 India
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| |
Collapse
|
23
|
Carlini CR, Ligabue-Braun R. Ureases as multifunctional toxic proteins: A review. Toxicon 2015; 110:90-109. [PMID: 26690979 DOI: 10.1016/j.toxicon.2015.11.020] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/09/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022]
Abstract
Ureases are metalloenzymes that hydrolyze urea into ammonia and carbon dioxide. They were the first enzymes to be crystallized and, with them, the notion that enzymes are proteins became accepted. Novel toxic properties of ureases that are independent of their enzyme activity have been discovered in the last three decades. Since our first description of the neurotoxic properties of canatoxin, an isoform of the jack bean urease, which appeared in Toxicon in 1981, about one hundred articles have been published on "new" properties of plant and microbial ureases. Here we review the present knowledge on the non-enzymatic properties of ureases. Plant ureases and microbial ureases are fungitoxic to filamentous fungi and yeasts by a mechanism involving fungal membrane permeabilization. Plant and at least some bacterial ureases have potent insecticidal effects. This entomotoxicity relies partly on an internal peptide released upon proteolysis of ingested urease by insect digestive enzymes. The intact protein and its derived peptide(s) are neurotoxic to insects and affect a number of other physiological functions, such as diuresis, muscle contraction and immunity. In mammal models some ureases are acutely neurotoxic upon injection, at least partially by enzyme-independent effects. For a long time bacterial ureases have been recognized as important virulence factors of diseases by urease-producing microorganisms. Ureases activate exocytosis in different mammalian cells recruiting eicosanoids and Ca(2+)-dependent pathways, even when their ureolytic activity is blocked by an irreversible inhibitor. Ureases are chemotactic factors recognized by neutrophils (and some bacteria), activating them and also platelets into a pro-inflammatory "status". Secretion-induction by ureases may play a role in fungal and bacterial diseases in humans and other animals. The now recognized "moonlighting" properties of these proteins have renewed interest in ureases for their biotechnological potential to improve plant defense against pests and as potential targets to ameliorate diseases due to pathogenic urease-producing microorganisms.
Collapse
Affiliation(s)
- Celia R Carlini
- Brain Institute (Instituto do Cérebro-INSCER), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Center of Biotechnology, Universidade Federal do Rio Grande do Sul Porto Alegre, RS, Brazil.
| | - Rodrigo Ligabue-Braun
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul Porto Alegre, RS, Brazil
| |
Collapse
|
24
|
Cai Z, Kwak DH, Punihaole D, Hong Z, Velankar SS, Liu X, Asher SA. A Photonic Crystal Protein Hydrogel Sensor forCandida albicans. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Cai Z, Kwak DH, Punihaole D, Hong Z, Velankar SS, Liu X, Asher SA. A Photonic Crystal Protein Hydrogel Sensor for Candida albicans. Angew Chem Int Ed Engl 2015; 54:13036-40. [PMID: 26480336 DOI: 10.1002/anie.201506205] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 12/31/2022]
Abstract
We report two-dimensional (2D) photonic crystal (PC) sensing materials that selectively detect Candida albicans (C. albicans). These sensors utilize Concanavalin A (Con A) protein hydrogels with a 2D PC embedded on the Con A protein hydrogel surface, that multivalently and selectively bind to mannan on the C. albicans cell surface to form crosslinks. The resulting crosslinks shrink the Con A protein hydrogel, reduce the 2D PC particle spacing, and blue-shift the light diffracted from the PC. The diffraction shifts can be visually monitored, measured with a spectrometer, or determined from the Debye diffraction ring diameter. Our unoptimized hydrogel sensor has a detection limit of around 32 CFU/mL for C. albicans. This sensor distinguishes between C. albicans and those microbes devoid of cell-surface mannan such as the gram-negative bacterium E. coli. This sensor provides a proof-of-concept for utilizing recognition between lectins and microbial cell surface carbohydrates to detect microorganisms in aqueous environments.
Collapse
Affiliation(s)
- Zhongyu Cai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| | - Daniel H Kwak
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| | - David Punihaole
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| | - Zhenmin Hong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| | - Sachin S Velankar
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (USA)
| | - Xinyu Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA).
| | - Sanford A Asher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA).
| |
Collapse
|
26
|
Hypoxia remodels the composition of the constituent ceramide species of HexCer and Hex2Cer with phytosphingosine and hydroxy fatty acids in human colon cancer LS174T cells. Glycoconj J 2015; 32:615-23. [PMID: 26194060 DOI: 10.1007/s10719-015-9607-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/09/2015] [Accepted: 06/25/2015] [Indexed: 12/14/2022]
Abstract
Oxygen-requiring enzymes, such as Δ4-desaturase (dihydroceramide desaturase), sphingolipid Δ4-desaturase/C-4-hydroxylase, and fatty acid 2-hydroxylase are involved in ceramide synthesis. We prepared free ceramides, sphingomyelins and glycosphingolipids (GSLs) from cancer cells cultivated under conditions of normoxia and hypoxia, and analyzed these compounds using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Human colon cancer LS174T cells were employed because these cells highly express hydroxyl fatty acids and phytosphingosine (t18:0) which are expected to be greatly influenced by changes in oxygen levels. As expected, the populations of dihydro-species of free ceramide and sphingomyelin with C16:0 non-hydroxy fatty acid were elevated, and the populations of HexCers and Hex2Cers, composed of C16:0 or C16:0 hydroxy fatty acid (C16:0h), and sphingosine (d18:1) or t18:0, were decreased under hypoxia. However, appreciable populations of HexCer and Hex2Cer species of C24:0 or C24:0h and t18:0 remained. These results suggest that the individual species of GSLs with fatty acids possessing different alkyl chain lengths, either non-hydroxy fatty acids or hydroxyl fatty acids, may be metabolized individually.
Collapse
|
27
|
Fernández-Tejada A, Cañada FJ, Jiménez-Barbero J. Recent Developments in Synthetic Carbohydrate-Based Diagnostics, Vaccines, and Therapeutics. Chemistry 2015; 21:10616-28. [PMID: 26095198 DOI: 10.1002/chem.201500831] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glycans are everywhere in biological systems, being involved in many cellular events with important implications for medical purposes. Building upon a detailed understanding of the functional roles of carbohydrates in molecular recognition processes and disease states, glycans are increasingly being considered as key players in pharmacological research. On the basis of the important progress recently made in glycochemistry, glycobiology, and glycomedicine, we provide a complete overview of successful applications and future perspectives of carbohydrates in the biopharmaceutical and medical fields. This review highlights the development of carbohydrate-based diagnostics, exemplified by glycan imaging techniques and microarray platforms, synthetic oligosaccharide vaccines against infectious diseases (e.g., HIV) and cancer, and finally carbohydrate-derived therapeutics, including glycomimetic drugs and glycoproteins.
Collapse
Affiliation(s)
| | - F Javier Cañada
- Chemical and Physical Biology, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)
| | - Jesús Jiménez-Barbero
- Infectious Disease Programme, Center for Cooperative Research in Biosciences, CIC-bioGUNE, Bizkaia Technology Park, 48160 Derio (Spain). .,Ikerbasque, Basque Foundation for Science, María López de Haro 13, 48009 Bilbao (Spain).
| |
Collapse
|
28
|
Gade M, Paul A, Alex C, Choudhury D, Thulasiram HV, Kikkeri R. Supramolecular scaffolds on glass slides as sugar based rewritable sensors for bacteria. Chem Commun (Camb) 2015; 51:6346-9. [DOI: 10.1039/c5cc01019e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We describe here the sugar functionalized β-cyclodextrin–ferrocene glass slides as fully reversible bacterial biosensors under the influence of external adamantane carboxylic acid.
Collapse
Affiliation(s)
- Madhuri Gade
- Indian Institute of Science Education and Research
- Pune 411008
- India
| | - Ajay Paul
- Chemical Biology Unit
- Division of Organic chemistry
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Catherine Alex
- Indian Institute of Science Education and Research
- Pune 411008
- India
| | - Devika Choudhury
- Department of Energy Science and Engineering
- IIT Bombay
- Mumbai-400076
- India
| | | | | |
Collapse
|
29
|
Rojas-Macias MA, Lütteke T. Statistical analysis of amino acids in the vicinity of carbohydrate residues performed by GlyVicinity. Methods Mol Biol 2015; 1273:215-26. [PMID: 25753714 DOI: 10.1007/978-1-4939-2343-4_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein-carbohydrate interactions are involved in various essential biological events. 3D structural data from the Protein Data Bank (PDB) can help to understand the molecular basis of the specificity of carbohydrate recognition by proteins. Such interactions can be analyzed statistically using GlyVicinity. This chapter exemplifies the usage of this tool to find information on the frequency of the occurrence of specific amino acids in the vicinity of individual carbohydrate residues and to analyze the type of interacting atoms and their spatial distribution around the glycans.
Collapse
Affiliation(s)
- Miguel A Rojas-Macias
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Frankfurter Str. 100, Giessen, 35392, Germany,
| | | |
Collapse
|
30
|
Venkatakrishnan V, Packer NH, Thaysen-Andersen M. Host mucin glycosylation plays a role in bacterial adhesion in lungs of individuals with cystic fibrosis. Expert Rev Respir Med 2014; 7:553-76. [DOI: 10.1586/17476348.2013.837752] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Abstract
Protein-carbohydrate interactions are often involved in the first step of infection and Pseudomonas aeruginosa produces several proteins that are able to bind specifically to glycan epitopes present on host epithelia. The experimental approaches for studying protein-carbohydrate interaction have been inspired, with some adaptations, from those commonly used for protein-protein or protein-ligand interactions. A range of methods are described herein for detecting lectin activity, screening for monosaccharide or oligosaccharide specificity, determining the affinity of binding together with thermodynamics and kinetics parameters, and producing crystal of lectin-carbohydrate complexes for further structural studies.
Collapse
Affiliation(s)
- Sophie de Bentzmann
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), UMR7255 CNRS-Aix Marseille Université, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, Marseille Cédex 20, 13402, France,
| | | | | |
Collapse
|
32
|
del Carmen Fernández-Alonso M, Díaz D, Berbis MÁ, Marcelo F, Cañada J, Jiménez-Barbero J. Protein-carbohydrate interactions studied by NMR: from molecular recognition to drug design. Curr Protein Pept Sci 2013; 13:816-30. [PMID: 23305367 PMCID: PMC3706953 DOI: 10.2174/138920312804871175] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/12/2012] [Accepted: 07/25/2012] [Indexed: 02/04/2023]
Abstract
Diseases that result from infection are, in general, a consequence of specific interactions between a pathogenic organism and the cells. The study of host-pathogen interactions has provided insights for the design of drugs with therapeutic properties. One area that has proved to be promising for such studies is the constituted by carbohydrates which participate in biological processes of paramount importance. On the one hand, carbohydrates have shown to be information carriers with similar, if not higher, importance than traditionally considered carriers as amino acids and nucleic acids. On the other hand, the knowledge on molecular recognition of sugars by lectins and other carbohydrate-binding proteins has been employed for the development of new biomedical strategies. Biophysical techniques such as X-Ray crystallography and NMR spectroscopy lead currently the investigation on this field. In this review, a description of traditional and novel NMR methodologies employed in the study of sugar-protein interactions is briefly presented in combination with a palette of NMR-based studies related to biologically and/or pharmaceutically relevant applications.
Collapse
|
33
|
Bernardi A, Jiménez-Barbero J, Casnati A, De Castro C, Darbre T, Fieschi F, Finne J, Funken H, Jaeger KE, Lahmann M, Lindhorst TK, Marradi M, Messner P, Molinaro A, Murphy PV, Nativi C, Oscarson S, Penadés S, Peri F, Pieters RJ, Renaudet O, Reymond JL, Richichi B, Rojo J, Sansone F, Schäffer C, Turnbull WB, Velasco-Torrijos T, Vidal S, Vincent S, Wennekes T, Zuilhof H, Imberty A. Multivalent glycoconjugates as anti-pathogenic agents. Chem Soc Rev 2013; 42:4709-27. [PMID: 23254759 PMCID: PMC4399576 DOI: 10.1039/c2cs35408j] [Citation(s) in RCA: 437] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multivalency plays a major role in biological processes and particularly in the relationship between pathogenic microorganisms and their host that involves protein-glycan recognition. These interactions occur during the first steps of infection, for specific recognition between host and bacteria, but also at different stages of the immune response. The search for high-affinity ligands for studying such interactions involves the combination of carbohydrate head groups with different scaffolds and linkers generating multivalent glycocompounds with controlled spatial and topology parameters. By interfering with pathogen adhesion, such glycocompounds including glycopolymers, glycoclusters, glycodendrimers and glyconanoparticles have the potential to improve or replace antibiotic treatments that are now subverted by resistance. Multivalent glycoconjugates have also been used for stimulating the innate and adaptive immune systems, for example with carbohydrate-based vaccines. Bacteria present on their surfaces natural multivalent glycoconjugates such as lipopolysaccharides and S-layers that can also be exploited or targeted in anti-infectious strategies.
Collapse
Affiliation(s)
- Anna Bernardi
- Università di Milano, Dipartimento di Chimica Organica e Industriale and Centro di Eccellenza CISI, via Venezian 21, 20133 Milano, Italy
| | | | - Alessandro Casnati
- Università degli Studi di Parma, Dipartimento di Chimica, Parco Area delle Scienze 17/a, 43100 Parma, Italy
| | - Cristina De Castro
- Department of Chemical Sciences, Università di Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, I-80126 Napoli, Italy
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012, Berne, Switzerland
| | - Franck Fieschi
- Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | - Jukka Finne
- Department of Biosciences, University of Helsinki, P. O. Box 56, FI-00014 Helsinki, Finland
| | - Horst Funken
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, D-42425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, D-42425 Jülich, Germany
| | - Martina Lahmann
- School of Chemistry, Bangor University, Deiniol Road Bangor, Gwynedd LL57 2UW, UK
| | - Thisbe K. Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, D-24098 Kiel, Germany
| | - Marco Marradi
- Laboratory of GlycoNanotechnology, CIC biomaGUNE and CIBER-BBN, P1 de Miramón 182, 20009 San Sebastián, Spain
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Muthgasse 11, A-1190 Vienna, Austria
| | - Antonio Molinaro
- Department of Chemical Sciences, Università di Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, I-80126 Napoli, Italy
| | - Paul V. Murphy
- School of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Cristina Nativi
- Dipartimento di Chimica, Universitá degli Studi di Firenze, Via della Lastruccia, 13, I-50019 Sesto Fiorentino – Firenze, Italy
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Soledad Penadés
- Laboratory of GlycoNanotechnology, CIC biomaGUNE and CIBER-BBN, P1 de Miramón 182, 20009 San Sebastián, Spain
| | - Francesco Peri
- Organic and Medicinal Chemistry, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Roland J. Pieters
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Olivier Renaudet
- Département de Chimie Moléculaire, UMR-CNRS 5250 & ICMG FR 2607, Université Joseph Fourier, BP53, 38041 Grenoble Cedex 9, France
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012, Berne, Switzerland
| | - Barbara Richichi
- Dipartimento di Chimica, Universitá degli Studi di Firenze, Via della Lastruccia, 13, I-50019 Sesto Fiorentino – Firenze, Italy
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas, CSIC – Universidad de Sevilla, Av. Américo Vespucio, 49, Seville 41092, Spain
| | - Francesco Sansone
- Università degli Studi di Parma, Dipartimento di Chimica, Parco Area delle Scienze 17/a, 43100 Parma, Italy
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Muthgasse 11, A-1190 Vienna, Austria
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246, CNRS, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Stéphane Vincent
- University of Namur (FUNDP), Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Tom Wennekes
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
- Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anne Imberty
- Centre de Recherche sur les Macromolécules Végétales (CERMAV – CNRS), affiliated with Grenoble-Université and ICMG, F-38041 Grenoble, France
| |
Collapse
|
34
|
Ligeour C, Audfray A, Gillon E, Meyer A, Galanos N, Vidal S, Vasseur JJ, Imberty A, Morvan F. Synthesis of branched-phosphodiester and mannose-centered fucosylated glycoclusters and their binding studies with Burkholderia ambifaria lectin (BambL). RSC Adv 2013. [DOI: 10.1039/c3ra43807d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
35
|
Abstract
Glycolipid-protein interactions are increasingly recognised as critical to numerous and diverse biological processes, including immune recognition, cell-cell signalling, pathogen adherence, and virulence factor binding. Previously, such carbohydrate-lectin interactions have been assessed in vitro largely by assaying protein binding against purified preparations of single glycolipids. Recent observations show that certain disease-associated autoantibodies and other lectins bind only to complexes formed by two different gangliosides. However, investigating such 1:1 glycolipid complexes can prove technically arduous. To address this problem, we have developed a semi-automated system for assaying lectin binding to large numbers of glycolipid complexes simultaneously. This employs an automated thin-layer chromatography sampler. Single glycolipids and their heterodimeric complexes are prepared in microvials. The autosampler is then used to print reproducible arrays of glycolipid complexes onto polyvinylidene difluoride membranes affixed to glass slides. A printing density of 300 antigen spots per slide is achievable. Following overnight drying, these arrays can then be probed with the lectin(s) of interest. Detection of binding is by way of a horseradish peroxidase-linked secondary antibody driving a chemiluminescent reaction rendered on radiographic film. Image analysis software can then be used to measure signal intensity for quantification.
Collapse
Affiliation(s)
- Simon Rinaldi
- SRI International Biosciences Division, Menlo Park, CA, USA
| | | | | |
Collapse
|
36
|
Laurino P, Kikkeri R, Azzouz N, Seeberger PH. Detection of bacteria using glyco-dendronized polylysine prepared by continuous flow photofunctionalization. NANO LETTERS 2011; 11:73-78. [PMID: 21114331 DOI: 10.1021/nl102821f] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Biocompatible glyco-dendronized poly-l-lysine (PLL) polymers carry either three or nine mannose- or galactose-bearing dendrons that selectively bind, and thus can be used to detect, bacteria. Central to the synthesis of glyco-dendronized polymers was the development of a continuous flow [2 + 2] photocycloaddition reaction to connect the dendrons and PLL. Glycodendronized polymers cluster bacteria by binding to cell-surface carbohydrate receptors and thereby result in an easy read-out using microscopic analyses.
Collapse
Affiliation(s)
- Paola Laurino
- Max Planck Institute for Colloids and Interfaces, Department of Biomolecular Systems, Research Campus Golm, 14476 Potsdam, Germany
| | | | | | | |
Collapse
|
37
|
Sandoval-Bernal G, Barbosa-Sabanero G, Shibayama M, Perez-Torres A, Tsutsumi V, Sabanero M. Cell wall glycoproteins participate in the adhesion of Sporothrix schenckii to epithelial cells. Mycopathologia 2010; 171:251-9. [PMID: 21082256 DOI: 10.1007/s11046-010-9372-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 10/02/2010] [Indexed: 11/29/2022]
Abstract
Sporothrix schenckii is the etiologic agent of sporotrichosis. This fungal infection is an emerging disease potentially fatal in immunocompromised patients. The adhesion to host cells is a crucial early event related with the dissemination of pathogens. In order to clarify the mechanisms of adhesion of S. schenckii yeast cell to epithelial cells, we studied the biochemical basis of this process. The electrophoretic analysis of cell wall protein from S. schenckii coupled at ConA and stained with HRP, revealed nine different proteins with MW ≥ 180, 115, 90, 80, 58, 40, 36, 22 and 18 kDa. Using ligand-like assay with biotinylated S. schenckii surface proteins, five proteins with MW ≥ 190, 180, 115, 90 and 80 kDa which have affinity to epithelial cells were identified. The adhesion of yeast to epithelial monolayer was significantly inhibited when S. schenckii was pretreated with concanavalinA (ConA) and wheat germ agglutinin (WGA) lectins, alkali, periodate, trypsin, endoglycosidase H (EndoH), salt solutions and detergents. The ability of adhesion of S. schenckii yeast was recovered by blocking the lectin with sugar complementary. These data suggest that surface glycoprotein with mannose and glucose residue could be participate in the process of fungal adhesion to epithelial cells.
Collapse
Affiliation(s)
- Gerardo Sandoval-Bernal
- División de Ciencias Naturales y Exactas Campus Guanajuato, Departamento de Biología, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, 36000, Guanajuato, Guanajuato, México
| | | | | | | | | | | |
Collapse
|
38
|
Li G, Huang Z, Fu C, Xu P, Liu Y, Zhao YF. L-valine assisted distinction between the stereo-isomers of D-hexoses by positive ion ESI tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:643-650. [PMID: 20527033 DOI: 10.1002/jms.1752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The binary mixtures of 7 hexoses and 20 amino acids were investigated by electrospray ionization ion trap mass spectrometry (ESI-ITMS). The adduct ions of the amino acid and the hexose were detected for 12 amino acids but not for the other 8 amino acids which are basic acidic amino acids and amides. The ions of amino acid-hexose complexes were further investigated by tandem mass spectrometry (MS/MS), and some of them just split easily into two parts whereas the others gave rich fragmentation, such as the complex ions of isoleucine, phenylalanine, tyrosine, and valine. We found that hexoses could be complexed by two molecules of valine but only by one molecule of the other amino acids. Among seven kinds of valine-hexose complexes coordinated by potassium ion, the MS(2) spectra of the ion at m/z 453 yielded unambiguous differentiation. And the fragmentation ions are sensitive to the stereochemical differences at the carbon-4 of hexoses in the complexes, as proved by the MS(2).
Collapse
Affiliation(s)
- Gang Li
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | | | | | | | | | | |
Collapse
|
39
|
Liu ZB, Hou YF, Zhu J, Hu DL, Jin W, Ou ZL, Di GH, Wu J, Shen ZZ, Shao ZM. Inhibition of EGFR pathway signaling and the metastatic potential of breast cancer cells by PA-MSHA mediated by type 1 fimbriae via a mannose-dependent manner. Oncogene 2010; 29:2996-3009. [PMID: 20228837 DOI: 10.1038/onc.2010.70] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To identify more therapeutic targets and clarify the detailed mechanisms of Pseudomonas aeruginosa-mannose-sensitive hemagglutinin (PA-MSHA) on breast cancer cells both in vitro and in vivo. PA-MSHA was administered to epidermal growth factor receptor (EGFR)-positive human breast cancer cell lines MDA-MB-231HM and MDA-MB-468 in vitro and to mice bearing tumor xenografts. The mannose cocultured test was used to detect the effect of mannose on PA-MSHA-induced cell proliferation, cell cycle arrest, apoptosis, and EGFR pathway signaling. We found that cells stimulated with PA-MSHA exhibited a downregulation of EGFR signaling. The addition of mannose partially inhibited the PA-MSHA-stimulated cell anti-proliferative effect, cell apoptosis, cell cycle arrest, activation of apoptosis-associated caspases, and even downregulation of the EGFR signaling pathway. In vivo, PA-MSHA treatment significantly suppressed mammary tumorigenesis in xenografts in mice and decreased lung metastasis in MDA-MB-231HM cell-transplanted mice. Tumor sample analyses confirmed inhibition of the EGFR pathway in the PA-MSHA-treated mice. In conclusion, this study showed that the involvement of the mannose-mediated EGFR pathway has a critical function in the preclinical rationale for the development of PA-MSHA for the treatment of human breast cancer. It also suggests the potentially beneficial use of PA-MSHA in adjuvant therapy for breast tumors with EGFR overexpression.
Collapse
Affiliation(s)
- Z-B Liu
- Department of Breast Surgery, Breast Cancer Institute, Cancer Hospital, Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rydell GE, Dahlin AB, Höök F, Larson G. QCM-D studies of human norovirus VLPs binding to glycosphingolipids in supported lipid bilayers reveal strain-specific characteristics. Glycobiology 2009; 19:1176-84. [PMID: 19625485 DOI: 10.1093/glycob/cwp103] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Susceptibility to norovirus infection has been linked to secretor status. Norovirus virus-like particles (VLPs; 0- 20 microg/mL) from the Norwalk (GI.1) and Dijon (GII.4) strains were assayed for binding to H type 1 and Lewis a pentaglycosylceramides, incorporated in laterally fluid supported lipid bilayers. Binding kinetics was monitored in real time in 40 microL stationary reaction chambers, using quartz crystal microbalance with dissipation (QCM-D) monitoring. Both strains displayed binding only to H type 1 and not to Lewis a glycosphingolipids, typical for epithelial cells of susceptible and resistant individuals, respectively. This binding specificity was confirmed by VLPs binding to the two glycosphingolipids chromatographed on TLC-plates. Experiments using bilayers with mixtures of H type 1 and Lewis a, with the total glycosphingolipid concentration constant at 10 wt%, showed that binding was only dependent on H type 1 concentrations and identical to experiments without additional Lewis a. Both strains showed a threshold concentration of H type 1 below which no binding was observable. The threshold was one order of magnitude higher for the Dijon strain (2 wt% versus 0.25 wt%) demonstrating that the interaction with a significantly larger number of glycosphingolipids was needed for the binding of the Dijon strain. The difference in threshold glycosphingolipid concentrations for the two strains suggests a lower affinity for the glycosphingolipid for the Dijon compared to the Norwalk strain. We propose that VLPs initially bind only a few glycosphingolipids but the binding is subsequently strengthened by lateral diffusion of additional glycosphingolipids moving into the interaction area.
Collapse
Affiliation(s)
- Gustaf E Rydell
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | |
Collapse
|
41
|
Rinaldi S, Brennan KM, Goodyear CS, O'Leary C, Schiavo G, Crocker PR, Willison HJ. Analysis of lectin binding to glycolipid complexes using combinatorial glycoarrays. Glycobiology 2009; 19:789-96. [PMID: 19349623 DOI: 10.1093/glycob/cwp049] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glycolipids are major components of the plasma membrane, interacting with themselves, other lipids, and proteins to form an array of heterogeneous domains with diverse biological properties. Considerable effort has been focused on identifying protein binding partners for glycolipids and the glycan specificity for these interactions, largely achieved through assessing interactions between proteins and homogenous, single species glycolipid preparations. This approach risks overlooking both the enhancing and attenuating roles of heterogeneous glycolipid complexes in modulating lectin binding. Here we report a simple method for assessing lectin-glycolipid interactions. An automatic thin-layer chromatography sampler is employed to create easily reproducible arrays of glycolipids and their heterodimeric complexes immobilized on a synthetic polyvinyl-difluoride membrane. This array can then be probed with much smaller quantities of reagents than would be required using existing techniques such as ELISA and thin-layer chromatography with immuno-overlay. Using this protocol, we have established that the binding of bacterial toxins, lectins, and antibodies can each be attenuated, enhanced, or unaffected in the presence of glycolipid complexes, as compared with individual, isolated glycolipids. These findings underpin the wide-ranging influence and importance of glycolipid-glycolipid cis interactions when the nature of protein-carbohydrate recognition events is being assessed.
Collapse
Affiliation(s)
- Simon Rinaldi
- Division of Clinical Neurosciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Role of LecA and LecB lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands. Infect Immun 2009; 77:2065-75. [PMID: 19237519 DOI: 10.1128/iai.01204-08] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a frequently encountered pathogen that is involved in acute and chronic lung infections. Lectin-mediated bacterium-cell recognition and adhesion are critical steps in initiating P. aeruginosa pathogenesis. This study was designed to evaluate the contributions of LecA and LecB to the pathogenesis of P. aeruginosa-mediated acute lung injury. Using an in vitro model with A549 cells and an experimental in vivo murine model of acute lung injury, we compared the parental strain to lecA and lecB mutants. The effects of both LecA- and Lec B-specific lectin-inhibiting carbohydrates (alpha-methyl-galactoside and alpha-methyl-fucoside, respectively) were evaluated. In vitro, the parental strain was associated with increased cytotoxicity and adhesion on A549 cells compared to the lecA and lecB mutants. In vivo, the P. aeruginosa-induced increase in alveolar barrier permeability was reduced with both mutants. The bacterial burden and dissemination were decreased for both mutants compared with the parental strain. Coadministration of specific lectin inhibitors markedly reduced lung injury and mortality. Our results demonstrate that there is a relationship between lectins and the pathogenicity of P. aeruginosa. Inhibition of the lectins by specific carbohydrates may provide new therapeutic perspectives.
Collapse
|
43
|
Bacterial detection using carbohydrate-functionalised CdS quantum dots: a model study exploiting E. coli recognition of mannosides. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2008.12.029] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Stern R, Jedrzejas MJ. Carbohydrate Polymers at the Center of Life’s Origins: The Importance of Molecular Processivity. Chem Rev 2008; 108:5061-85. [DOI: 10.1021/cr078240l] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Robert Stern
- Department of Pathology and Comprehensive Cancer Center, School of Medicine, University of California, San Francisco, California 94143, Microdesign Institute, 29 Kingwood Rd., Oakland, California 94619, and Center for Immunobiology and Vaccine Development, Children’s Hospital Oakland Research Institute, 5700 Martin Luther King, Jr. Way, Oakland, California 94609
| | - Mark J. Jedrzejas
- Department of Pathology and Comprehensive Cancer Center, School of Medicine, University of California, San Francisco, California 94143, Microdesign Institute, 29 Kingwood Rd., Oakland, California 94619, and Center for Immunobiology and Vaccine Development, Children’s Hospital Oakland Research Institute, 5700 Martin Luther King, Jr. Way, Oakland, California 94609
| |
Collapse
|
45
|
Microbial recognition of human cell surface glycoconjugates. Curr Opin Struct Biol 2008; 18:567-76. [PMID: 18809496 DOI: 10.1016/j.sbi.2008.08.001] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 08/05/2008] [Accepted: 08/18/2008] [Indexed: 11/20/2022]
Abstract
Infection by pathogens is generally initiated by the specific recognition of host epithelia surfaces and subsequent adhesion is essential for invasion. In their infection strategy, microorganisms often use sugar-binding proteins, that is lectins and adhesins, to recognize and bind to host glycoconjugates where sialylated and fucosylated oligosaccharides are the major targets. The lectin/glycoconjugate interactions are characterized by their high specificity and most of the time by multivalency to generate higher affinity of binding. Recent crystal structures of viral, bacterial, and parasite receptors in complex with human histo-blood group epitopes or sialylated derivatives reveal new folds and novel sugar-binding modes. They illustrate the tight specificity between tissue glycosylation and lectins.
Collapse
|
46
|
Gross G, van der Meulen J, Snel J, van der Meer R, Kleerebezem M, Niewold TA, Hulst MM, Smits MA. Mannose-specific interaction of Lactobacillus plantarum with porcine jejunal epithelium. ACTA ACUST UNITED AC 2008; 54:215-23. [PMID: 18673389 DOI: 10.1111/j.1574-695x.2008.00466.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Host-microorganism interactions in the intestinal tract are complex, and little is known about specific nonpathogenic microbial factors triggering host responses in the gut. In this study, mannose-specific interactions of Lactobacillus plantarum 299v with jejunal epithelium were investigated using an in situ pig Small Intestinal Segment Perfusion model. The effects of L. plantarum 299v wild-type strain were compared with those of two corresponding mutant strains either lacking the gene encoding for the mannose-specific adhesin (msa) or sortase (srtA; responsible for anchoring of cell surface proteins like Msa to the cell wall). A slight enrichment of the wild-type strain associated with the intestinal surface could be observed after 8 h of perfusion when a mixture of wild-type and msa-mutant strain had been applied. In contrast to the mutant strains, the L. plantarum wild-type strain tended to induce a decrease in jejunal net fluid absorption compared with control conditions. Furthermore, after 8 h of perfusion expression of the host gene encoding pancreatitis-associated protein, a protein with proposed bactericidal properties, was found to be upregulated by the wild-type strain only. These observations suggest a role of Msa in the induction of host responses in the pig intestine.
Collapse
Affiliation(s)
- Gabriele Gross
- Animal Breeding and Genomics Centre, Animal Sciences Group of Wageningen UR, Lelystad, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Tumbale P, Jamaluddin H, Thiyagarajan N, Brew K, Acharya KR. Structural basis of UDP-galactose binding by alpha-1,3-galactosyltransferase (alpha3GT): role of negative charge on aspartic acid 316 in structure and activity. Biochemistry 2008; 47:8711-8. [PMID: 18651752 DOI: 10.1021/bi800852a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
alpha-1,3-Galactosyltransferase (alpha3GT) catalyzes the transfer of galactose from UDP-galactose to form an alpha 1-3 link with beta-linked galactosides; it is part of a family of homologous retaining glycosyltransferases that includes the histo-blood group A and B glycosyltransferases, Forssman glycolipid synthase, iGb3 synthase, and some uncharacterized prokaryotic glycosyltransferases. In mammals, the presence or absence of active forms of these enzymes results in antigenic differences between individuals and species that modulate the interplay between the immune system and pathogens. The catalytic mechanism of alpha3GT is controversial, but the structure of an enzyme complex with the donor substrate could illuminate both this and the basis of donor substrate specificity. We report here the structure of the complex of a low-activity mutant alpha3GT with UDP-galactose (UDP-gal) exhibiting a bent configuration stabilized by interactions of the galactose with multiple residues in the enzyme including those in a highly conserved region (His315 to Ser318). Analysis of the properties of mutants containing substitutions for these residues shows that catalytic activity is strongly affected by His315 and Asp316. The negative charge of Asp316 is crucial for catalytic activity, and structural studies of two mutants show that its interaction with Arg202 is needed for an active site structure that facilitates the binding of UDP-gal in a catalytically competent conformation.
Collapse
Affiliation(s)
- Percy Tumbale
- Department of Biomedical Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, USA
| | | | | | | | | |
Collapse
|
48
|
Kulikova GA, Parfenyuk EV. Influence of Side Chain of L-α-amino Acids on Their Interaction with D-glucose in Dilute Aqueous Solutions. J SOLUTION CHEM 2008. [DOI: 10.1007/s10953-008-9275-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
|
50
|
Reneer DV, Kearns SA, Yago T, Sims J, Cummings RD, McEver RP, Carlyon JA. Characterization of a sialic acid- and P-selectin glycoprotein ligand-1-independent adhesin activity in the granulocytotropic bacterium Anaplasma phagocytophilum. Cell Microbiol 2006; 8:1972-84. [PMID: 16869829 DOI: 10.1111/j.1462-5822.2006.00764.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anaplasma phagocytophilum, the aetiologic agent of human granulocytic anaplasmosis, is an obligate intracellular bacterium that colonizes neutrophils and neutrophil precursors. The granulocytotropic bacterium uses multiple adhesins that cooperatively bind to the N-terminal region of P-selectin glycoprotein ligand-1 (PSGL-1) and to sialyl Lewis x (sLe(x)) expressed on myeloid cell surfaces. Recognition of sLe(x) occurs through interactions with alpha2,3-sialic acid and alpha1,3-fucose. It is unknown whether other bacteria-host cell interactions are involved. In this study, we have enriched for A. phagocytophilum organisms that do not rely on sialic acid for cellular adhesion and entry by maintaining strain NCH-1 in HL-60 cells that are severely undersialylated. The selected bacteria, termed NCH-1A, also exhibit lessened dependencies on PSGL-1 and alpha1,3-fucose. Optimal adhesion and invasion by NCH-1A require interactions with the known determinants (sialic acid, PSGL-1 and alpha1,3-fucose), but none of them is absolutely necessary. NCH-1A binding to sLe(x)-modified PSGL-1 requires recognition of the known determinants in the same manners as other A. phagocytophilum strains. These data suggest that A. phagocytophilum expresses a separate adhesin from those targeting sialic acid, alpha1,3-fucose and the N-terminal region of PSGL-1. We propose that NCH-1A upregulates expression of this adhesin.
Collapse
Affiliation(s)
- Dexter V Reneer
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| | | | | | | | | | | | | |
Collapse
|