1
|
Rais M, Abdelaal H, Reese VA, Ferede D, Larsen SE, Pecor T, Erasmus JH, Archer J, Khandhar AP, Cooper SK, Podell BK, Reed SG, Coler RN, Baldwin SL. Immunogenicity and protection against Mycobacterium avium with a heterologous RNA prime and protein boost vaccine regimen. Tuberculosis (Edinb) 2023; 138:102302. [PMID: 36586154 PMCID: PMC10361416 DOI: 10.1016/j.tube.2022.102302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Prophylactic efficacy of two different delivery platforms for vaccination against Mycobacterium avium (M. avium) were tested in this study; a subunit and an RNA-based vaccine. The vaccine antigen, ID91, includes four mycobacterial antigens: Rv3619, Rv2389, Rv3478, and Rv1886. We have shown that ID91+GLA-SE is effective against a clinical NTM isolate, M. avium 2-151 smt. Here, we extend these results and show that a heterologous prime/boost strategy with a repRNA-ID91 (replicon RNA) followed by protein ID91+GLA-SE boost is superior to the subunit protein vaccine given as a homologous prime/boost regimen. The repRNA-ID91/ID91+GLA-SE heterologous regimen elicited a higher polyfunctional CD4+ TH1 immune response when compared to the homologous protein prime/boost regimen. More significantly, among all the vaccine regimens tested only repRNA-ID91/ID91+GLA-SE induced IFN-γ and TNF-secreting CD8+ T cells. Furthermore, the repRNA-ID91/ID91+GLA-SE vaccine strategy elicited high systemic proinflammatory cytokine responses and induced strong ID91 and an Ag85B-specific humoral antibody response a pre- and post-challenge with M. avium 2-151 smt. Finally, while all prophylactic prime/boost vaccine regimens elicited a degree of protection in beige mice, the heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen provided greater pulmonary protection than the homologous protein prime/boost regimen. These data indicate that a prophylactic heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen augments immunogenicity and confers protection against M. avium.
Collapse
Affiliation(s)
- Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Hazem Abdelaal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Valerie A Reese
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Debora Ferede
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Sasha E Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Tiffany Pecor
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | | | | | | | - Sarah K Cooper
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Brendan K Podell
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | | | - Rhea N Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA; Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Susan L Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA.
| |
Collapse
|
2
|
Mir MA, Mir B, Kumawat M, Alkhanani M, Jan U. Manipulation and exploitation of host immune system by pathogenic Mycobacterium tuberculosis for its advantage. Future Microbiol 2022; 17:1171-1198. [PMID: 35924958 DOI: 10.2217/fmb-2022-0026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can become a long-term infection by evading the host immune response. Coevolution of Mtb with humans has resulted in its ability to hijack the host's immune systems in a variety of ways. So far, every Mtb defense strategy is essentially dependent on a subtle balance that, if shifted, can promote Mtb proliferation in the host, resulting in disease progression. In this review, the authors summarize many important and previously unknown mechanisms by which Mtb evades the host immune response. Besides recently found strategies by which Mtb manipulates the host molecular regulatory machinery of innate and adaptive immunity, including the intranuclear regulatory machinery, costimulatory molecules, the ubiquitin system and cellular intrinsic immune components will be discussed. A holistic understanding of these immune-evasion mechanisms is of foremost importance for the prevention, diagnosis and treatment of tuberculosis and will lead to new insights into tuberculosis pathogenesis and the development of more effective vaccines and treatment regimens.
Collapse
Affiliation(s)
- Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Bilkees Mir
- Department of Biochemistry & Biochemical Engineering, SHUATS, Allahabad, UP, India
| | - Manoj Kumawat
- Department of Microbiology, Indian Council of Medical Research (ICMR)-NIREH, Bhopal, MP, India
| | - Mustfa Alkhanani
- Biology Department, College of Sciences, University of Hafr Al Batin, P. O. Box 1803, Hafar Al Batin, Saudi Arabia
| | - Ulfat Jan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| |
Collapse
|
3
|
Farias Amorim C, O. Novais F, Nguyen BT, Nascimento MT, Lago J, Lago AS, Carvalho LP, Beiting DP, Scott P. Localized skin inflammation during cutaneous leishmaniasis drives a chronic, systemic IFN-γ signature. PLoS Negl Trop Dis 2021; 15:e0009321. [PMID: 33793565 PMCID: PMC8043375 DOI: 10.1371/journal.pntd.0009321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/13/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cutaneous leishmaniasis is a localized infection controlled by CD4+ T cells that produce IFN-γ within lesions. Phagocytic cells recruited to lesions, such as monocytes, are then exposed to IFN-γ which triggers their ability to kill the intracellular parasites. Consistent with this, transcriptional analysis of patient lesions identified an interferon stimulated gene (ISG) signature. To determine whether localized L. braziliensis infection triggers a systemic immune response that may influence the disease, we performed RNA sequencing (RNA-seq) on the blood of L. braziliensis-infected patients and healthy controls. Functional enrichment analysis identified an ISG signature as the dominant transcriptional response in the blood of patients. This ISG signature was associated with an increase in monocyte- and macrophage-specific marker genes in the blood and elevated serum levels IFN-γ. A cytotoxicity signature, which is a dominant feature in the lesions, was also observed in the blood and correlated with an increased abundance of cytolytic cells. Thus, two transcriptional signatures present in lesions were found systemically, although with a substantially reduced number of differentially expressed genes (DEGs). Finally, we found that the number of DEGs and ISGs in leishmaniasis was similar to tuberculosis-another localized infection-but significantly less than observed in malaria. In contrast, the cytolytic signature and increased cytolytic cell abundance was not found in tuberculosis or malaria. Our results indicate that systemic signatures can reflect what is occurring in leishmanial lesions. Furthermore, the presence of an ISG signature in blood monocytes and macrophages suggests a mechanism to limit systemic spread of the parasite, as well as enhance parasite control by pre-activating cells prior to lesion entry.
Collapse
Affiliation(s)
- Camila Farias Amorim
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Fernanda O. Novais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Ba T. Nguyen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Mauricio T. Nascimento
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz–Fiocruz, Salvador, Brazil
| | - Jamile Lago
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz–Fiocruz, Salvador, Brazil
| | - Alexsandro S. Lago
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz–Fiocruz, Salvador, Brazil
| | - Lucas P. Carvalho
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz–Fiocruz, Salvador, Brazil
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
4
|
Kim SH, Jo KW, Shim TS. QuantiFERON-TB Gold PLUS versus QuantiFERON- TB Gold In-Tube test for diagnosing tuberculosis infection. Korean J Intern Med 2020; 35:383-391. [PMID: 31875668 PMCID: PMC7061006 DOI: 10.3904/kjim.2019.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/11/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS QuantiFERON-TB Gold PLUS (QFT-PLUS) was developed as a new version of the interferon-γ (IFN-γ) release assay that contains an extra antigen tube to elicit a CD8+ T-cell response in addition to a CD4+ T-cell response. This study aimed to evaluate the performances of QFT-PLUS versus QuantiFERON-TB Gold In-Tube (QFT-GIT) for detecting tuberculosis (TB) infection. METHODS Between October, 2016 and May, 2018, 137 participants were prospectively recruited and subjected to QFT-GIT and QFT-PLUS testing. The concordance between tests and performance based on different immune states and/or TB infection risk were evaluated. RESULTS The 137 participants were classified as follows: active TB (n = 14), TB contact (n = 14), screening before biologic therapy (n = 85) and other disease (n = 24). The positive results for either test were 100% (n = 14/14), 42.9% (n = 6/14), 15.3% (n = 13/85), and 62.5% (n = 15/24) in each four groups, respectively. The QFT-GIT and QFT-PLUS test results showed good concordance with 91.2% agreement and a Cohen's κ of 0.807. The good concordance between two tests was also observed in 64 immunocompromised subjects (agreement of 90.6% and a Cohen's κ of 0.711). The intra-class correlation coefficient for each antigen tube of the QFT-PLUS showed a good correlation with the IFN-γ release of the QFT-GIT (TB1 = 0.912, p < 0.001; TB2 = 0.918, p < 0.001). CONCLUSION QFT-PLUS showed highly comparable results to those of QFT-GIT for diagnosing TB infection in South Korea as well as in immunocompromised subjects.
Collapse
Affiliation(s)
- Soo Han Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung-Wook Jo
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae Sun Shim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Correspondence to Tae Sun Shim, M.D. Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea Tel: +82-2-3010-3892 Fax: +82-2-3010-6968 E-mail:
| |
Collapse
|
5
|
Li G, Yang F, He X, Liu Z, Pi J, Zhu Y, Ke X, Liu S, Ou M, Guo H, Zhang Z, Zeng G, Zhang G. Anti-tuberculosis (TB) chemotherapy dynamically rescues Th1 and CD8+ T effector levels in Han Chinese pulmonary TB patients. Microbes Infect 2019; 22:119-126. [PMID: 31678658 DOI: 10.1016/j.micinf.2019.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/30/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
CD4+/CD8+ T cells play a major role in conferring immune protection against tuberculosis (TB), but it remains unknown how the immune responses of CD4+/CD8+ T cells exactly correlate with the clinical variables and disease statuses during anti-TB chemotherapy. To address this, several major immune parameters of CD4+/CD8+ T cells in peripheral blood derived from pulmonary TB patients and healthy volunteers were evaluated. We observed that active TB infection induced lower CD3+ T cell and CD4+ T cell levels but higher CD8+T cell levels, while anti-TB chemotherapy reversed these effects. Also, anti-TB treatment induced enhanced production of IL-2 and IFN-γ but reduced expression of IL-10 and IL-6. Moreover, the dynamic changes of CD3, CD4, and CD8 levels did not show a significant association with sputum smear positivity. However, the frequencies of IL-2+CD4+ or IL-10 + CD4+ T effector subpopulation or IL-1β production in peripheral blood showed significant difference between patients positive for sputum smear and patients negative for sputum smear after anti-TB treatment. These findings implicated that recovery of Th1/CD8+T cell effector levels might be critical immunological events in pulmonary TB patients after treatment and further suggested the importance of these immunological parameters as potential biomarkers for prediction of TB progress and prognosis.
Collapse
Affiliation(s)
- Guobao Li
- Department of Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Fang Yang
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xing He
- National Clinical Research Center for Tuberculosis, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Zhi Liu
- Department of Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Jiang Pi
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yuzhen Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China
| | - Xue Ke
- Department of Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Shuyan Liu
- Department of Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Min Ou
- Department of Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Huixin Guo
- National Clinical Research Center for Tuberculosis and Guangdong Center for Tuberculosis Control, Guangzhou, 510430, China
| | - Zhuoran Zhang
- Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA, 92618, USA
| | - Gucheng Zeng
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Guoliang Zhang
- National Clinical Research Center for Tuberculosis, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China.
| |
Collapse
|
6
|
Amelio P, Portevin D, Reither K, Mhimbira F, Mpina M, Tumbo A, Nickel B, Marti H, Knopp S, Ding S, Penn-Nicholson A, Darboe F, Ohmiti K, Scriba TJ, Pantaleo G, Daubenberger C, Perreau M. Mixed Th1 and Th2 Mycobacterium tuberculosis-specific CD4 T cell responses in patients with active pulmonary tuberculosis from Tanzania. PLoS Negl Trop Dis 2017; 11:e0005817. [PMID: 28759590 PMCID: PMC5552332 DOI: 10.1371/journal.pntd.0005817] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/10/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) and helminth infections elicit antagonistic immune effector functions and are co-endemic in several regions of the world. We therefore hypothesized that helminth infection may influence Mtb-specific T-cell immune responses. We evaluated the cytokine profile of Mtb-specific T cells in 72 individuals with pulmonary TB disease recruited from two Sub-Saharan regions with high and moderate helminth burden i.e. 55 from Tanzania (TZ) and 17 from South Africa (SA), respectively. We showed that Mtb-specific CD4 T-cell functional profile of TB patients from Tanzania are primarily composed of polyfunctional Th1 and Th2 cells, associated with increased expression of Gata-3 and reduced expression of T-bet in memory CD4 T cells. In contrast, the cytokine profile of Mtb-specific CD4 T cells of TB patients from SA was dominated by single IFN-γ and dual IFN-γ/TNF-α and associated with TB-induced systemic inflammation and elevated serum levels of type I IFNs. Of note, the proportion of patients with Mtb-specific CD8 T cells was significantly reduced in Mtb/helminth co-infected patients from TZ. It is likely that the underlying helminth infection and possibly genetic and other unknown environmental factors may have caused the induction of mixed Th1/Th2 Mtb-specific CD4 T cell responses in patients from TZ. Taken together, these results indicate that the generation of Mtb-specific CD4 and CD8 T cell responses may be substantially influenced by environmental factors in vivo. These observations may have major impact in the identification of immune biomarkers of disease status and correlates of protection. Mycobacterium tuberculosis (Mtb) and helminth infections are co-endemic in several regions of the world and their immune responses may be mutually antagonistic. We therefore hypothesized that helminth infection would impact and potentially shape Mtb-specific T-cell responses and systemic inflammation in patients suffering from active pulmonary tuberculosis (TB) enrolled from two helminth endemic regions i.e. Tanzania (TZ) and South Africa (SA). In this study, we demonstrate for the first time that TB patients from SA and TZ harbor distinct immune responses to Mtb antigens. Indeed, we showed that Mtb-specific CD4 T-cell responses of TB patients from TZ were composed by a mixed T helper type 1 (Th1) and Th2 responses. In contrast, the cytokine profile of Mtb-specific CD4 T cells of TB patients from SA was dominated by Th1 cells and associated with TB-induced systemic inflammation and elevated serum levels of type I IFN. Taken together, these data indicate that Mtb-specific T-cell responses are diverse in human populations and can be strongly influenced by host and pathogen genetic background, co-infections and yet unknown environmental factors. Identification of correlates of risk and protection from TB disease will help in the rational development of protective T-cell based vaccines against TB, early monitoring TB treatment outcomes and focused follow up of high risk populations.
Collapse
Affiliation(s)
- Patrizia Amelio
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Damien Portevin
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | | | - Beatrice Nickel
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hanspeter Marti
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Stefanie Knopp
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Song Ding
- EuroVacc Foundation, Lausanne, Switzerland
| | - Adam Penn-Nicholson
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Fatoumatta Darboe
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Khalid Ohmiti
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- SVRI, Lausanne, Switzerland
| | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
7
|
CD4+ T-cell-independent mechanisms suppress reactivation of latent tuberculosis in a macaque model of HIV coinfection. Proc Natl Acad Sci U S A 2016; 113:E5636-44. [PMID: 27601645 DOI: 10.1073/pnas.1611987113] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The synergy between Mycobacterium tuberculosis (Mtb) and HIV in coinfected patients has profoundly impacted global mortality because of tuberculosis (TB) and AIDS. HIV significantly increases rates of reactivation of latent TB infection (LTBI) to active disease, with the decline in CD4(+) T cells believed to be the major causality. In this study, nonhuman primates were coinfected with Mtb and simian immunodeficiency virus (SIV), recapitulating human coinfection. A majority of animals exhibited rapid reactivation of Mtb replication, progressing to disseminated TB and increased SIV-associated pathology. Although a severe loss of pulmonary CD4(+) T cells was observed in all coinfected macaques, a subpopulation of the animals was still able to prevent reactivation and maintain LTBI. Investigation of pulmonary immune responses and pathology in this cohort demonstrated that increased CD8(+) memory T-cell proliferation, higher granzyme B production, and expanded B-cell follicles correlated with protection from reactivation. Our findings reveal mechanisms that control SIV- and TB-associated pathology. These CD4-independent protective immune responses warrant further studies in HIV coinfected humans able to control their TB infection. Moreover, these findings will provide insight into natural immunity to Mtb and will guide development of novel vaccine strategies and immunotherapies.
Collapse
|
8
|
Ronacher K, Joosten SA, van Crevel R, Dockrell HM, Walzl G, Ottenhoff THM. Acquired immunodeficiencies and tuberculosis: focus on HIV/AIDS and diabetes mellitus. Immunol Rev 2015; 264:121-37. [PMID: 25703556 DOI: 10.1111/imr.12257] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The spread of human immunodeficiency virus (HIV) infection within Africa led to marked increases in numbers of cases of tuberculosis (TB), and although the epidemic peaked in 2006, there were still 1.8 million new cases in 2013, with 29.2 million prevalent cases. Half of all TB cases in Africa are in those with HIV co-infection. A brief review of the well-documented main immunological mechanisms of HIV-associated increased susceptibility to TB is presented. However, a new threat is facing TB control, which presents itself in the form of a rapid increase in the number of people living with type II diabetes mellitus (T2DM), particularly in areas that are already hardest hit by the TB epidemic. T2DM increases susceptibility to TB threefold, and the TB burden attributable to T2DM is 15%. This review addresses the much smaller body of research information available on T2DM-TB, compared to HIV-TB comorbidity. We discuss the altered clinical presentation of TB in the context of T2DM comorbidity, changes in innate and adaptive immune responses, including lymphocyte subsets and T-cell phenotypes, the effect of treatment of the different comorbidities, changes in biomarker expression and genetic predisposition to the respective morbidities, and other factors affecting the comorbidity. Although significant gains have been made in improving our understanding of the underlying mechanisms of T2DM-associated increased susceptibility, knowledge gaps still exist that require urgent attention.
Collapse
Affiliation(s)
- Katharina Ronacher
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
9
|
Prezzemolo T, Guggino G, La Manna MP, Di Liberto D, Dieli F, Caccamo N. Functional Signatures of Human CD4 and CD8 T Cell Responses to Mycobacterium tuberculosis. Front Immunol 2014; 5:180. [PMID: 24795723 PMCID: PMC4001014 DOI: 10.3389/fimmu.2014.00180] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/07/2014] [Indexed: 12/17/2022] Open
Abstract
With 1.4 million deaths and 8.7 million new cases in 2011, tuberculosis (TB) remains a global health care problem and together with HIV and Malaria represents one of the three infectious diseases world-wide. Control of the global TB epidemic has been impaired by the lack of an effective vaccine, by the emergence of drug-resistant forms of Mycobacterium tuberculosis (Mtb) and by the lack of sensitive and rapid diagnostics. It is estimated, by epidemiological reports, that one third of the world’s population is latently infected with Mtb, but the majority of infected individuals develop long-lived protective immunity, which controls and contains Mtb in a T cell-dependent manner. Development of TB disease results from interactions among the environment, the host, and the pathogen, and known risk factors include HIV co-infection, immunodeficiency, diabetes mellitus, overcrowding, malnutrition, and general poverty; therefore, an effective T cell response determines whether the infection resolves or develops into clinically evident disease. Consequently, there is great interest in determining which T cells subsets mediate anti-mycobacterial immunity, delineating their effector functions. On the other hand, many aspects remain unsolved in understanding why some individuals are protected from Mtb infection while others go on to develop disease. Several studies have demonstrated that CD4+ T cells are involved in protection against Mtb, as supported by the evidence that CD4+ T cell depletion is responsible for Mtb reactivation in HIV-infected individuals. There are many subsets of CD4+ T cells, such as T-helper 1 (Th1), Th2, Th17, and regulatory T cells (Tregs), and all these subsets co-operate or interfere with each other to control infection; the dominant subset may differ between active and latent Mtb infection cases. Mtb-specific-CD4+ Th1 cell response is considered to have a protective role for the ability to produce cytokines such as IFN-γ or TNF-α that contribute to the recruitment and activation of innate immune cells, like monocytes and granulocytes. Thus, while other antigen (Ag)-specific T cells such as CD8+ T cells, natural killer (NK) cells, γδ T cells, and CD1-restricted T cells can also produce IFN-γ during Mtb infection, they cannot compensate for the lack of CD4+ T cells. The detection of Ag-specific cytokine production by intracellular cytokine staining (ICS) and the use of flow cytometry techniques are a common routine that supports the studies aimed at focusing the role of the immune system in infectious diseases. Flow cytometry permits to evaluate simultaneously the presence of different cytokines that can delineate different subsets of cells as having “multifunctional/polyfunctional” profile. It has been proposed that polyfunctional T cells, are associated with protective immunity toward Mtb, in particular it has been highlighted that the number of Mtb-specific T cells producing a combination of IFN-γ, IL-2, and/or TNF-α may be correlated with the mycobacterial load, while other studies have associated the presence of this particular functional profile as marker of TB disease activity. Although the role of CD8 T cells in TB is less clear than CD4 T cells, they are generally considered to contribute to optimal immunity and protection. CD8 T cells possess a number of anti-microbial effector mechanisms that are less prominent or absent in CD4 Th1 and Th17 T cells. The interest in studying CD8 T cells that are either MHC-class Ia or MHC-class Ib-restricted, has gained more attention. These studies include the role of HLA-E-restricted cells, lung mucosal-associated invariant T-cells (MAIT), and CD1-restricted cells. Nevertheless, the knowledge about the role of CD8+ T cells in Mtb infection is relatively new and recent studies have delineated that CD8 T cells, which display a functional profile termed “multifunctional,” can be a better marker of protection in TB than CD4+ T cells. Their effector mechanisms could contribute to control Mtb infection, as upon activation, CD8 T cells release cytokines or cytotoxic molecules, which cause apoptosis of target cells. Taken together, the balance of the immune response in the control of infection and possibly bacterial eradication is important in understanding whether the host immune response will be appropriate in contrasting the infection or not, and, consequently, the inability of the immune response, will determine the dissemination and the transmission of bacilli to new subjects. In conclusion, the recent highlights on the role of different functional signatures of T cell subsets in the immune response toward Mtb infection will be discerned in this review, in order to summarize what is known about the immune response in human TB. In particular, we will discuss the role of CD4 and CD8 T cells in contrasting the advance of the intracellular pathogen in already infected people or the progression to active disease in subjects with latent infection. All the information will be aimed at increasing the knowledge of this complex disease in order to improve diagnosis, prognosis, drug treatment, and vaccination.
Collapse
Affiliation(s)
- Teresa Prezzemolo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Giuliana Guggino
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Marco Pio La Manna
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Diana Di Liberto
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Francesco Dieli
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Nadia Caccamo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| |
Collapse
|
10
|
Rozot V, Vigano S, Mazza-Stalder J, Idrizi E, Day CL, Perreau M, Lazor-Blanchet C, Petruccioli E, Hanekom W, Goletti D, Bart PA, Nicod L, Pantaleo G, Harari A. Mycobacterium tuberculosis-specific CD8+ T cells are functionally and phenotypically different between latent infection and active disease. Eur J Immunol 2013; 43:1568-77. [PMID: 23456989 DOI: 10.1002/eji.201243262] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/29/2013] [Accepted: 02/26/2013] [Indexed: 12/23/2022]
Abstract
Protective immunity to Mycobacterium tuberculosis (Mtb) remains poorly understood and the role of Mtb-specific CD8(+) T cells is controversial. Here we performed a broad phenotypic and functional characterization of Mtb-specific CD8(+) T cells in 326 subjects with latent Mtb infection (LTBI) or active TB disease (TB). Mtb-specific CD8(+) T cells were detected in most (60%) TB patients and few (15%) LTBI subjects but were of similar magnitude. Mtb-specific CD8(+) T cells in LTBI subjects were mostly T EMRA cells (CD45RA(+) CCR7(-)), coexpressing 2B4 and CD160, and in TB patients were mostly TEM cells (CD45RA(-) CCR7(-)), expressing 2B4 but lacking PD-1 and CD160. The cytokine profile was not significantly different in both groups. Furthermore, Mtb-specific CD8(+) T cells expressed low levels of perforin and granulysin but contained granzymes A and B. However, in vitro-expanded Mtb-specific CD8(+) T cells expressed perforin and granulysin. Finally, Mtb-specific CD8(+) T-cell responses were less frequently detected in extrapulmonary TB compared with pulmonary TB patients. Mtb-specific CD8(+) T-cell proliferation was also greater in patients with extrapulmonary compared with pulmonary TB. Thus, the activity of Mtb infection and clinical presentation are associated with distinct profiles of Mtb-specific CD8(+) T-cell responses. These results provide new insights in the interaction between Mtb and the host immune response.
Collapse
Affiliation(s)
- Virginie Rozot
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat Med 2009; 15:267-76. [PMID: 19252503 DOI: 10.1038/nm.1928] [Citation(s) in RCA: 377] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 01/12/2009] [Indexed: 02/02/2023]
Abstract
The variable efficacy of Bacille Calmette Guerin (BCG) vaccination against tuberculosis has prompted efforts to improve the vaccine. In this study, we used autophagy to enhance vaccine efficacy against tuberculosis in a mouse model. We examined the effect of autophagy on the processing of the immunodominant mycobacterial antigen Ag85B by antigen presenting cells (APCs), macrophages and dendritic cells (DCs). We found that rapamycin-induced autophagy enhanced Ag85B presentation by APCs infected with wild-type Mycobacterium tuberculosis H37Rv, H37Rv-derived DeltafbpA attenuated candidate vaccine or BCG. Furthermore, rapamycin enhanced localization of mycobacteria with autophagosomes and lysosomes. Rapamycin-enhanced antigen presentation was attenuated when autophagy was suppressed by 3-methyladenine or by small interfering RNA against beclin-1. Notably, mice immunized with rapamycin-treated DCs infected with either DeltafbpA or BCG showed enhanced T helper type 1-mediated protection when challenged with virulent Mycobacterium tuberculosis. Finally, overexpression of Ag85B in BCG induced autophagy in APCs and enhanced immunogenicity in mice, suggesting that vaccine efficacy can be enhanced by augmenting autophagy-mediated antigen presentation.
Collapse
|
12
|
Abstract
Tuberculosis remains a major health problem in the world, which is compounded further by the alarmingly high rate of M. tuberculosis infections in AIDS patients. Thus, there is an urgent need to advance our understanding of the mycobacterium to develop new drugs. The extraordinary recent developments in mycobacterial genetic research, particularly in genomics will greatly facilitate this goal. The knowledge of the entire genome sequence of M. tuberculosis will help in designing new chemotherapeutic and immunotherapeutic interventions. This review highlights recent developments in genomics, mycobacterial genetics, novel vaccine strategies, and our understanding of tuberculous dormancy.
Collapse
Affiliation(s)
- A J Steyn
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, Massachusetts, USA
| | | | | |
Collapse
|
13
|
Denis M, Wedlock DN, Buddle BM. Vaccination of brushtail possums,
Trichosurus vulpecula
, with Bacille Calmette–Guerin induces T lymphocytes that reduce
Mycobacterium bovis
replication in alveolar macrophages via a contact‐dependent/nitric oxide‐independent mechanism. Immunol Cell Biol 2005; 83:57-66. [PMID: 15661042 DOI: 10.1111/j.1440-1711.2005.01309.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The permissiveness of alveolar macrophages from brushtail possums for the replication of Mycobacterium bovis was examined. Mycobacterium bovis replication was indirectly measured by assessing bacterial metabolism via the incorporation of [3-H]-uracil by bacilli released from lysed macrophages previously infected with mycobacteria. Alveolar macrophages allowed substantial replication of virulent M. bovis, in contrast to Bacille Calmette-Guerin (BCG) Pasteur, which replicated poorly. The addition of crude lymphokines enhanced the metabolic activity of phagocytosed M. bovis in possum macrophages. Possum lymphokines enhanced the ability of possum macrophages to generate reactive oxygen intermediates, measured by the reduction of nitroblue tetrazolium, which is indicative of an activation process. Similarly, the addition of recombinant possum TNF-alpha enhanced the permissiveness of alveolar macrophages for M. bovis. In contrast to mouse peritoneal macrophages, possum alveolar macrophages did not release significant levels of nitric oxide (NO) after stimulation with M. bovis and/or lymphokines. However, the uptake of virulent M. bovis by possum macrophages was associated with an enhanced ability of cells to release TNF-alpha, whereas very low levels of TNF-alpha were released after infection with BCG. The addition of a selective inhibitor of inducible NO synthase had no impact on the replication of M. bovis or BCG in possum macrophages in the presence or absence of lymphokines. Co-culturing infected possum alveolar macrophages with autologous blood mononuclear cells from BCG-vaccinated possums led to a significant decrease in the metabolic activity of intracellular M. bovis. This effect was contact dependent and NO independent and was mediated by a population of CD3+ cells. In addition, adding scavengers of reactive oxygen intermediates did not abrogate this phenomenon.
Collapse
Affiliation(s)
- Michel Denis
- AgResearch, Wallaceville Animal Research Centre, Upper Hutt, New Zealand.
| | | | | |
Collapse
|
14
|
Ehlers S, Hölscher C, Scheu S, Tertilt C, Hehlgans T, Suwinski J, Endres R, Pfeffer K. The lymphotoxin beta receptor is critically involved in controlling infections with the intracellular pathogens Mycobacterium tuberculosis and Listeria monocytogenes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5210-8. [PMID: 12734369 DOI: 10.4049/jimmunol.170.10.5210] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Containment of intracellularly viable microorganisms requires an intricate cooperation between macrophages and T cells, the most potent mediators known to date being IFN-gamma and TNF. To identify novel mechanisms involved in combating intracellular infections, experiments were performed in mice with selective defects in the lymphotoxin (LT)/LT beta R pathway. When mice deficient in LT alpha or LT beta were challenged intranasally with Mycobacterium tuberculosis, they showed a significant increase in bacterial loads in lungs and livers compared with wild-type mice, suggesting a role for LT alpha beta heterotrimers in resistance to infection. Indeed, mice deficient in the receptor for LT alpha(1)beta(2) heterotrimers (LT beta R-knockout (KO) mice) also had significantly higher numbers of M. tuberculosis in infected lungs and exhibited widespread pulmonary necrosis already by day 35 after intranasal infection. Furthermore, LT beta R-KO mice were dramatically more susceptible than wild-type mice to i.p. infection with Listeria monocytogenes. Compared with wild-type mice, LT beta R-KO mice had similar transcript levels of TNF and IFN-gamma and recruited similar numbers of CD3(+) T cells inside granulomatous lesions in M. tuberculosis-infected lungs. Flow cytometry revealed that the LT beta R is expressed on pulmonary macrophages obtained after digestion of M. tuberculosis-infected lungs. LT beta R-KO mice showed delayed expression of inducible NO synthase protein in granuloma macrophages, implicating deficient macrophage activation as the most likely cause for enhanced susceptibility of these mice to intracellular infections. Since LIGHT-KO mice proved to be equally resistant to M. tuberculosis infection as wild-type mice, these data demonstrate that signaling of LT alpha(1)beta(2) heterotrimers via the LT beta R is an essential prerequisite for containment of intracellular pathogens.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Bone Marrow Transplantation/immunology
- Genetic Predisposition to Disease
- Granuloma, Respiratory Tract/enzymology
- Granuloma, Respiratory Tract/genetics
- Granuloma, Respiratory Tract/immunology
- Granuloma, Respiratory Tract/microbiology
- Interferon-gamma/biosynthesis
- Interferon-gamma/deficiency
- Intracellular Fluid/immunology
- Intracellular Fluid/microbiology
- Listeria monocytogenes/immunology
- Listeriosis/genetics
- Listeriosis/immunology
- Listeriosis/microbiology
- Lung/enzymology
- Lung/immunology
- Lung/microbiology
- Lung/pathology
- Lymphotoxin beta Receptor
- Lymphotoxin-alpha/deficiency
- Lymphotoxin-alpha/genetics
- Lymphotoxin-alpha/metabolism
- Macrophage Activation/immunology
- Macrophages/enzymology
- Macrophages/immunology
- Macrophages/microbiology
- Macrophages/pathology
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mycobacterium tuberculosis/immunology
- Necrosis
- Nitric Oxide Synthase/biosynthesis
- Nitric Oxide Synthase Type II
- Radiation Chimera
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor/deficiency
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- Tuberculosis, Pulmonary/genetics
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/prevention & control
- Tumor Necrosis Factor Ligand Superfamily Member 14
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/deficiency
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- Stefan Ehlers
- Division of Molecular Infection Biology, Research Center Borstel, Borstel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Campos-Neto A, Webb JR, Greeson K, Coler RN, Skeiky YAW, Reed SG. Vaccination with plasmid DNA encoding TSA/LmSTI1 leishmanial fusion proteins confers protection against Leishmania major infection in susceptible BALB/c mice. Infect Immun 2002; 70:2828-36. [PMID: 12010969 PMCID: PMC128002 DOI: 10.1128/iai.70.6.2828-2836.2002] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently shown that a cocktail containing two leishmanial recombinant antigens (LmSTI1 and TSA) and interleukin-12 (IL-12) as an adjuvant induces solid protection in both a murine and a nonhuman primate model of cutaneous leishmaniasis. However, because IL-12 is difficult to prepare, is expensive, and does not have the stability required for a vaccine product, we have investigated the possibility of using DNA as an alternative means of inducing protective immunity. Here, we present evidence that the antigens TSA and LmSTI1 delivered in a plasmid DNA format either as single genes or in a tandem digene construct induce equally solid protection against Leishmania major infection in susceptible BALB/c mice. Immunization of mice with either TSA DNA or LmSTI1 DNA induced specific CD4(+)-T-cell responses of the Th1 phenotype without a requirement for specific adjuvant. CD8 responses, as measured by cytotoxic-T-lymphocyte activity, were generated after immunization with TSA DNA but not LmSTI1 DNA. Interestingly, vaccination of mice with TSA DNA consistently induced protection to a much greater extent than LmSTI1 DNA, thus supporting the notion that CD8 responses might be an important accessory arm of the immune response for acquired resistance against leishmaniasis. Moreover, the protection induced by DNA immunization was specific for infection with Leishmania, i.e., the immunization had no effect on the course of infection of the mice challenged with an unrelated intracellular pathogen such as Mycobacterium tuberculosis. Conversely, immunization of BALB/c mice with a plasmid DNA that is protective against challenge with M. tuberculosis had no effect on the course of infection of these mice with L. major. Together, these results indicate that the protection observed with the leishmanial DNA is mediated by acquired specific immune response rather than by the activation of nonspecific innate immune mechanisms. In addition, a plasmid DNA containing a fusion construct of the two genes was also tested. Similarly to the plasmids encoding individual proteins, the fusion construct induced both specific immune responses to the individual antigens and protection against challenge with L. major. These results confirm previous observations about the possibility of DNA immunization against leishmaniasis and lend support to the idea of using a single polygenic plasmid DNA construct to achieve polyspecific immune responses to several distinct parasite antigens.
Collapse
Affiliation(s)
- A Campos-Neto
- Infectious Disease Research Institute. Corixa Corporation, Seattle, Washington 98104, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Spierings E, de Boer T, Wieles B, Adams LB, Marani E, Ottenhoff TH. Mycobacterium leprae-specific, HLA class II-restricted killing of human Schwann cells by CD4+ Th1 cells: a novel immunopathogenic mechanism of nerve damage in leprosy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5883-8. [PMID: 11342602 DOI: 10.4049/jimmunol.166.10.5883] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peripheral nerve damage is a major complication of reversal (or type-1) reactions in leprosy. The pathogenesis of nerve damage remains largely unresolved, but detailed in situ analyses suggest that type-1 T cells play an important role. Mycobacterium leprae is known to have a remarkable tropism for Schwann cells of the peripheral nerve. Reversal reactions in leprosy are often accompanied by severe and irreversible nerve destruction and are associated with increased cellular immune reactivity against M. leprae. Thus, a likely immunopathogenic mechanism of Schwann cell and nerve damage in leprosy is that infected Schwann cells process and present Ags of M. leprae to Ag-specific, inflammatory type-1 T cells and that these T cells subsequently damage and lyse infected Schwann cells. Thus far it has been difficult to study this directly because of the inability to grow large numbers of human Schwann cells. We now have established long-term human Schwann cell cultures from sural nerves and show that human Schwann cells express MHC class I and II, ICAM-1, and CD80 surface molecules involved in Ag presentation. Human Schwann cells process and present M. leprae, as well as recombinant proteins and peptides to MHC class II-restricted CD4(+) T cells, and are efficiently killed by these activated T cells. These findings elucidate a novel mechanism that is likely involved in the immunopathogenesis of nerve damage in leprosy.
Collapse
Affiliation(s)
- E Spierings
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- H L Collins
- Department of Immunology, Max-Planck Institute for Infection Biology, Berlin, Germany.
| | | |
Collapse
|
18
|
Abstract
Tuberculosis is increasing. Current treatment regimens require at least 6 months, because latent or stationary phase organisms are difficult to kill. Such regimens do not achieve full compliance, and "directly observed therapy short course" (DOTS) is having less impact than expected. This worrying situation is aggravated by coinfection with human immunodeficiency virus (HIV), and by the increase in drug-resistant strains. We need new insights that lead to more rapid therapies and immunotherapies, and more reliable vaccines. Recent insights have come from: understanding of the relationship between Mycobacterium tuberculosis and macrophages; the multiple T cell types that recognise mycobacterial peptides, lipids and glycolipids; the critical role of interferon-gamma (IFNgamma) and interleukin-12 (IL-12) in human mycobacterial infection revealed by genetically defective children; quantitation of the presence and importance of Th2 lymphocyte activation in human tuberculosis; the role of local conversion of inactive cortisone to active cortisol in the lesions; the recognition that some effective prophylactic vaccines also work as immumotherapeutics whereas others do not. In the longer term the recent sequencing of the M. tuberculosis genome will lead to further advances. In the short term, effective immunotherapy remains the most accessible breakthrough in the management of tuberculosis. The types of practical advance that will result from sequencing the genome are discussed speculatively, but cannot yet be predicted with certainty.
Collapse
Affiliation(s)
- G A Rook
- Dept of Bacteriology, Royal Free and University College London Medical School, Windeyer Institute of Medical Sciences, UK
| | | | | |
Collapse
|
19
|
Schluger NW. Recent advances in our understanding of human host responses to tuberculosis. Respir Res 2001; 2:157-63. [PMID: 11686880 PMCID: PMC2002073 DOI: 10.1186/rr53] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2001] [Revised: 03/02/2001] [Accepted: 03/02/2001] [Indexed: 11/18/2022] Open
Abstract
Tuberculosis remains one of the world's greatest public health challenges: 2 billion persons have latent infection, 8 million people develop active tuberculosis annually, and 2-3 million die. Recently, significant advances in our understanding of the human immune response against tuberculosis have occurred. The present review focuses on recent work in macrophage and T-cell biology that sheds light on the human immune response to tuberculosis. The role of key cytokines such as interferon-gamma is discussed, as is the role of CD4+ and CD8+ T cells in immune regulation in tuberculosis, particularly with regard to implications for vaccine development and evaluation.
Collapse
Affiliation(s)
- N W Schluger
- Columbia University College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
20
|
Moreira AL, Tsenova L, Murray PJ, Freeman S, Bergtold A, Chiriboga L, Kaplan G. Aerosol infection of mice with recombinant BCG secreting murine IFN-gamma partially reconstitutes local protective immunity. Microb Pathog 2000; 29:175-85. [PMID: 10968949 DOI: 10.1006/mpat.2000.0382] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To better understand the contribution of interferon-gamma (IFN-gamma) to the immune response during the first 60 days of mycobacterial infection in the lungs, IFN-gamma gene disrupted (IFN-gamma-/-) mice were infected via aerosol with recombinant Mycobacterium bovis Bacillus Calmette-Guerin (BCG) secreting murine IFN-gamma (BCG-IFN-gamma) and compared to mice infected with recombinant BCG containing the vector only (BCG-vector). When IFN-gamma-/- mice were infected with BCG-vector, increasing bacillary loads and large undifferentiated granulomas that did not express inducible nitric oxide synthase (iNOS) were observed in the lungs. In contrast, infection with BCG-IFN-gamma resulted in reduced bacillary load and better differentiated granulomas containing epithelioid macrophages expressing iNOS as well as reduced levels of interleukin 10 (IL-10) mRNA. However, local production of IFN-gamma by the recombinant BCG did not protect IFN-gamma-/- mice from subsequent challenge with M. tuberculosis. Infection of IFN-gamma-/- peritoneal macrophages in vitro with BCG-IFN-gamma led to induction of iNOS expression and lower IL-10 mRNA levels. Nevertheless, the growth of the intracellular BCG was unaffected. Since IFN-gamma induced-iNOS protein and reduced IL-10 production were insufficient to control mycobacterial growth in vitro, the results suggest that additional mediator(s) present in vivo are required for control of mycobacterial growth.
Collapse
Affiliation(s)
- A L Moreira
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Soloski MJ, Szperka ME, Davies A, Wooden SL. Host immune response to intracellular bacteria: A role for MHC-linked class-Ib antigen-presenting molecules. PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE. SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE (NEW YORK, N.Y.) 2000; 224:231-9. [PMID: 10964257 DOI: 10.1046/j.1525-1373.2000.22426.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
MHC-linked class-Ib molecules are a subfamily of class-I molecules that display limited genetic polymorphism. At one time these molecules were considered to have an enigmatic function. However, recent studies have shown that MHC-linked class-Ib molecules can function as antigen presentation structures that bind bacteria-derived epitopes for recognition by CD8+ effector T cells. This role for class-Ib molecules has been demonstrated across broad classes of intracellular bacteria including Listeria moncytogenes, Salmonella typhimurium, and Mycobacterium tuberculosis. Additionally, evidence is emerging that MHC-linked class-Ib molecules also serve an integral role as recognition elements for NK cells as well as several TCR alpha/beta and TCR gamma/delta T-cell subsets. Thus, MHC-linked class-Ib molecules contribute to the host immune response by serving as antigen presentation molecules and recognition ligands in both the innate and adaptive immune response to infection. In this review, we will attempt to summarize the work that supports a role for MHC-linked class-Ib molecules in the host response to infection with intracellular bacteria.
Collapse
Affiliation(s)
- M J Soloski
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
22
|
Spierings E, De Boer T, Zulianello L, Ottenhoff TH. Novel mechanisms in the immunopathogenesis of leprosy nerve damage: the role of Schwann cells, T cells and Mycobacterium leprae. Immunol Cell Biol 2000; 78:349-55. [PMID: 10947859 DOI: 10.1046/j.1440-1711.2000.00939.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The major complication of reversal (or type 1) reactions in leprosy is peripheral nerve damage. The pathogenesis of nerve damage remains largely unresolved. In situ analyses suggest an important role for type 1 T cells. Mycobacterium leprae is known to have a remarkable tropism for Schwann cells that surround peripheral axons. Reversal reactions in leprosy are often accompanied by severe and irreversible nerve destruction and are associated with increased cellular immune reactivity against M. leprae. Thus, a likely immunopathogenic mechanism of Schwann cell and nerve damage in leprosy is that infected Schwann cells process and present antigens of M. Leprae to antigen-specific, inflammatory type 1 T cells and that these T cells subsequently damage and lyse infected Schwann cells. Previous studies using rodent CD8+ T cells and Schwann cells have revealed evidence for the existence of such a mechanism. Recently, a similar role has been suggested for human CD4+ T cells. These cells may be more important in causing leprosy nerve damage in vivo, given the predilection of M. leprae for Schwann cells and the dominant role of CD4+ serine esterase+ Th1 cells in leprosy lesions. Antagonism of molecular interactions between M. leprae, Schwann cells and inflammatory T cells may therefore provide a rational strategy to prevent Schwann cell and nerve damage in leprosy.
Collapse
Affiliation(s)
- E Spierings
- Departments of Immunohematology and Blood Transfusion and Infectious Diseases, Leiden University Medical Center, The Netherlands.
| | | | | | | |
Collapse
|
23
|
Abstract
Based on T cell subset depletion studies and the analysis of gene knockout mice, it is evident that CD8(+) T cells contribute to resistance against intracellular infections with certain viral, protozoan, and bacterial pathogens. Although they are known primarily for their capacity to kill infected cells, CD8(+) T cells elaborate a variety of effector mechanisms with the potential to defend against infection. Microbes use multiple strategies to cause infection, and the nature of the pathogenhost interaction may determine which CD8(+) T cell effector mechanisms are required for immunity. In this review, we summarize our current understanding of the effector functions used by CD8(+) T cells in resistance to pathogens. Analyses of mice deficient in perforin and/or Fas demonstrate that cytolysis is critical for immunity against some, but not all, infections and also reveal the contribution of cytolysis to the pathogenesis of disease. The role of CD8(+) T cell-derived cytokines in resistance to infection has been analyzed by systemic treatment with neutralizing antibodies and cytokine gene knockout mice. These studies are complicated by the fact that few, if any, cytokines are uniquely produced by CD8(+) T cells. Thus, the requirement for CD8(+) T cell- derived cytokines in resistance against most pathogens remains to be defined. Finally, recent studies of human CD8(+) T cells reveal the potential for novel effector mechanisms in resistance to infection.
Collapse
Affiliation(s)
- J T Harty
- Department of Microbiology and Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, USA.
| | | | | |
Collapse
|
24
|
Sugita M, Peters PJ, Brenner MB. Pathways for lipid antigen presentation by CD1 molecules: nowhere for intracellular pathogens to hide. Traffic 2000; 1:295-300. [PMID: 11208113 DOI: 10.1034/j.1600-0854.2000.010401.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A crucial feature of peptide antigen presentation by major histocompatibility complex (MHC) class I and II molecules is their differential ability to sample cytosolic and extracellular antigens. Intracellular viral infections and bacteria that are taken up in phagosomes, but then escape from the endocytic compartment efficiently, enter the class I pathway via the cytosol. In contrast, phagosome-resident bacteria yield protein antigens that are sampled deep in the endocytic compartment and presented in a vacuolar acidification-dependent pathway mediated by MHC class II molecules. Despite this potential for antigen sampling, microbes have evolved a variety of evasive mechanisms that affect peptide transport in the MHC class I pathway or blockade of endosomal acidification and inhibition of phagosome-lysosome fusion that may compromise the MHC class II pathway of antigen presentation. Thus, besides MHC class I and II, a third lineage of antigen-presenting molecules that bind lipid and glycolipid antigens rather than peptides exists and is mediated by the family of CD1 proteins. CD1 isoforms (CD1a, b, c, and d) differentially sample both recycling endosomes of the early endocytic system and late endosomes and lysosomes to which lipid antigens are differentially delivered. These CD1 pathways include vacuolar acidification-independent pathways for lipid antigen presentation. These features of presenting lipid antigens, independently monitoring various antigen-containing intracellular compartments and avoiding certain evasive techniques employed by microbes, enable CD1 molecules to provide distinct opportunities to function in host defense against the microbial world.
Collapse
Affiliation(s)
- M Sugita
- Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
25
|
Sugita M, Grant EP, van Donselaar E, Hsu VW, Rogers RA, Peters PJ, Brenner MB. Separate pathways for antigen presentation by CD1 molecules. Immunity 1999; 11:743-52. [PMID: 10626896 DOI: 10.1016/s1074-7613(00)80148-x] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ability to sample relevant intracellular compartments is necessary for effective antigen presentation. To detect peptide antigens, MHC class I and II molecules differentially sample cytosolic and endosomal compartments. CD1 constitutes another lineage of lipid antigen-presenting molecules. We show that CD1b traffics deeply into late endosomal compartments, while CD1a is excluded from these compartments and instead traffics independently in the recycling pathway of the early endocytic system. Further, CD1b but not CD1a antigen presentation is dependent upon vesicular acidification. Since lipids and various bacteria are known to traffic differentially, either penetrating deeply into the endocytic system or following the route of recycling endosomes, these findings elucidate efficient monitoring of distinct components of the endocytic compartment by CD1 lipid antigen-presenting molecules.
Collapse
Affiliation(s)
- M Sugita
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|