1
|
Raikwar SP, Kikkeri NS, Sakuru R, Saeed D, Zahoor H, Premkumar K, Mentor S, Thangavel R, Dubova I, Ahmed ME, Selvakumar GP, Kempuraj D, Zaheer S, Iyer SS, Zaheer A. Next Generation Precision Medicine: CRISPR-mediated Genome Editing for the Treatment of Neurodegenerative Disorders. J Neuroimmune Pharmacol 2019; 14:608-641. [PMID: 31011884 PMCID: PMC8211357 DOI: 10.1007/s11481-019-09849-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022]
Abstract
Despite significant advancements in the field of molecular neurobiology especially neuroinflammation and neurodegeneration, the highly complex molecular mechanisms underlying neurodegenerative diseases remain elusive. As a result, the development of the next generation neurotherapeutics has experienced a considerable lag phase. Recent advancements in the field of genome editing offer a new template for dissecting the precise molecular pathways underlying the complex neurodegenerative disorders. We believe that the innovative genome and transcriptome editing strategies offer an excellent opportunity to decipher novel therapeutic targets, develop novel neurodegenerative disease models, develop neuroimaging modalities, develop next-generation diagnostics as well as develop patient-specific precision-targeted personalized therapies to effectively treat neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, Frontotemporal dementia etc. Here, we review the latest developments in the field of CRISPR-mediated genome editing and provide unbiased futuristic insights regarding its translational potential to improve the treatment outcomes and minimize financial burden. However, despite significant advancements, we would caution the scientific community that since the CRISPR field is still evolving, currently we do not know the full spectrum of CRISPR-mediated side effects. In the wake of the recent news regarding CRISPR-edited human babies being born in China, we urge the scientific community to maintain high scientific and ethical standards and utilize CRISPR for developing in vitro disease in a dish model, in vivo testing in nonhuman primates and lower vertebrates and for the development of neurotherapeutics for the currently incurable neurodegenerative disorders. Graphical Abstract.
Collapse
Affiliation(s)
- Sudhanshu P Raikwar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Nidhi S Kikkeri
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Ragha Sakuru
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Daniyal Saeed
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Haris Zahoor
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Keerthivaas Premkumar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Shireen Mentor
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- Department of Medical Biosciences, University of the Western Cape, Bellville, 7535, Republic of South Africa
| | - Ramasamy Thangavel
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Iuliia Dubova
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Mohammad Ejaz Ahmed
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Govindhasamy P Selvakumar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Smita Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Shankar S Iyer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Asgar Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA.
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA.
| |
Collapse
|
2
|
Kempuraj D, Selvakumar GP, Thangavel R, Ahmed ME, Zaheer S, Kumar KK, Yelam A, Kaur H, Dubova I, Raikwar SP, Iyer SS, Zaheer A. Glia Maturation Factor and Mast Cell-Dependent Expression of Inflammatory Mediators and Proteinase Activated Receptor-2 in Neuroinflammation. J Alzheimers Dis 2019; 66:1117-1129. [PMID: 30372685 DOI: 10.3233/jad-180786] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is characterized by the presence of inflammation-mediated dopaminergic neurodegeneration in the substantia nigra. Inflammatory mediators from activated microglia, astrocytes, neurons, T-cells and mast cells mediate neuroinflammation and neurodegeneration. Administration of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induces PD like motor deficits in rodents. 1-methyl-4-phenylpyridinium (MPP+), a toxic metabolite of MPTP activates glial cells, neurons and mast cells to release neuroinflammatory mediators. Glia maturation factor (GMF), mast cells and proteinase activated receptor-2 (PAR-2) are implicated in neuroinflammation. Alpha-synuclein which induces neurodegeneration increases PAR-2 expression in the brain. However, the exact mechanisms are not yet understood. In this study, we quantified inflammatory mediators in the brains of MPTP-administered wild type (Wt), GMF-knockout (GMF-KO), and mast cell knockout (MC-KO) mice. Additionally, we analyzed the effect of MPP+, GMF, and mast cell proteases on PAR-2 expression in astrocytes and neurons in vitro. Results show that the levels of interleukin-1beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and the chemokine (C-C motif) ligand 2 (CCL2) were lesser in the brains of GMF-KO mice and MC-KO mice when compared to Wt mice brain after MPTP administration. Incubation of astrocytes and neurons with MPP+, GMF, and mouse mast cell protease-6 (MMCP-6) and MMCP-7 increased the expression of PAR-2. Our studies show that the absence of mast cells and GMF reduce the expression of neuroinflammatory mediators in the brain. We conclude that GMF along with mast cell interactions with glial cells and neurons during neuroinflammation can be explored as a new therapeutic target for PD and other neuroinflammatory disorders.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.,Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.,Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.,Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Mohammad Ejaz Ahmed
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.,Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Smita Zaheer
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Keerthana Kuppamma Kumar
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Anudeep Yelam
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Harleen Kaur
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Iuliia Dubova
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Sudhanshu P Raikwar
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.,Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Shankar S Iyer
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.,Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Asgar Zaheer
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.,Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Raikwar SP, Thangavel R, Dubova I, Selvakumar GP, Ahmed ME, Kempuraj D, Zaheer SA, Iyer SS, Zaheer A. Targeted Gene Editing of Glia Maturation Factor in Microglia: a Novel Alzheimer's Disease Therapeutic Target. Mol Neurobiol 2019; 56:378-393. [PMID: 29704201 PMCID: PMC6344368 DOI: 10.1007/s12035-018-1068-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/08/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a devastating, progressive neurodegenerative disorder that leads to severe cognitive impairment in elderly patients. Chronic neuroinflammation plays an important role in the AD pathogenesis. Glia maturation factor (GMF), a proinflammatory molecule discovered in our laboratory, is significantly upregulated in various regions of AD brains. We have previously reported that GMF is predominantly expressed in the reactive glial cells surrounding the amyloid plaques (APs) in the mouse and human AD brain. Microglia are the major source of proinflammatory cytokines and chemokines including GMF. Recently clustered regularly interspaced short palindromic repeats (CRISPR) based genome editing has been recognized to study the functions of genes that are implicated in various diseases. Here, we investigated if CRISPR-Cas9-mediated GMF gene editing leads to inhibition of GMF expression and suppression of microglial activation. Confocal microscopy of murine BV2 microglial cell line transduced with an adeno-associated virus (AAV) coexpressing Staphylococcus aureus (Sa) Cas9 and a GMF-specific guide RNA (GMF-sgRNA) revealed few cells expressing SaCas9 while lacking GMF expression, thereby confirming successful GMF gene editing. To further improve GMF gene editing efficiency, we developed lentiviral vectors (LVs) expressing either Streptococcus pyogenes (Sp) Cas9 or GMF-sgRNAs. BV2 cells cotransduced with LVs expressing SpCas9 and GMF-sgRNAs revealed reduced GMF expression and the presence of indels in the exons 2 and 3 of the GMF coding sequence. Lipopolysaccharide (LPS) treatment of GMF-edited cells led to reduced microglial activation as shown by reduced p38 MAPK phosphorylation. We believe that targeted in vivo GMF gene editing has a significant potential for developing a unique and novel AD therapy.
Collapse
Affiliation(s)
- Sudhanshu P Raikwar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- Harry S. Truman Memorial Veteran's Hospital, US Department of Veterans Affairs, Columbia, MO, USA
| | - Ramasamy Thangavel
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- Harry S. Truman Memorial Veteran's Hospital, US Department of Veterans Affairs, Columbia, MO, USA
| | - Iuliia Dubova
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- Harry S. Truman Memorial Veteran's Hospital, US Department of Veterans Affairs, Columbia, MO, USA
| | - Mohammad Ejaz Ahmed
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- Harry S. Truman Memorial Veteran's Hospital, US Department of Veterans Affairs, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- Harry S. Truman Memorial Veteran's Hospital, US Department of Veterans Affairs, Columbia, MO, USA
| | - Smita A Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Shankar S Iyer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- Harry S. Truman Memorial Veteran's Hospital, US Department of Veterans Affairs, Columbia, MO, USA
| | - Asgar Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA.
- Harry S. Truman Memorial Veteran's Hospital, US Department of Veterans Affairs, Columbia, MO, USA.
| |
Collapse
|
4
|
Kempuraj D, Thangavel R, Selvakumar GP, Ahmed ME, Zaheer S, Raikwar SP, Zahoor H, Saeed D, Dubova I, Giler G, Herr S, Iyer SS, Zaheer A. Mast Cell Proteases Activate Astrocytes and Glia-Neurons and Release Interleukin-33 by Activating p38 and ERK1/2 MAPKs and NF-κB. Mol Neurobiol 2018; 56:1681-1693. [PMID: 29916143 DOI: 10.1007/s12035-018-1177-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Inflammatory mediators released from activated microglia, astrocytes, neurons, and mast cells mediate neuroinflammation. Parkinson's disease (PD) is characterized by inflammation-dependent dopaminergic neurodegeneration in substantia nigra. 1-Methyl-4-phenylpyridinium (MPP+), a metabolite of parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), induces inflammatory mediators' release from brain cells and mast cells. Brain cells' interaction with mast cells is implicated in neuroinflammation. However, the exact mechanisms involved are not yet clearly understood. Mouse fetal brain-derived cultured primary astrocytes and glia-neurons were incubated with mouse mast cell protease-6 (MMCP-6) and MMCP-7, and mouse bone marrow-derived mast cells (BMMCs) were incubated with MPP+ and brain protein glia maturation factor (GMF). Interleukin-33 (IL-33) released from these cells was quantitated by enzyme-linked immunosorbent assay. Both MMCP-6 and MMCP-7 induced IL-33 release from astrocytes and glia-neurons. MPP+ and GMF were used as a positive control-induced IL-33 and reactive oxygen species expression in mast cells. Mast cell proteases and MPP+ activate p38 and extracellular signal-regulated kinases 1/2 (ERK1/2), mitogen-activated protein kinases (MAPKs), and transcription factor nuclear factor-kappa B (NF-κB) in astrocytes, glia-neurons, or mast cells. Addition of BMMCs from wt mice and transduction with adeno-GMF show higher chemokine (C-C motif) ligand 2 (CCL2) release. MPP+ activated glial cells and reduced microtubule-associated protein 2 (MAP-2) expression indicating neurodegeneration. IL-33 expression increased in the midbrain and striatum of PD brains as compared with age- and sex-matched control subjects. Glial cells and neurons interact with mast cells and accelerate neuroinflammation and these interactions can be explored as a new therapeutic target to treat PD.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA.
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Gvindhasamy Pushpavathi Selvakumar
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Mohammad Ejaz Ahmed
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Smita Zaheer
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Sudhanshu P Raikwar
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Haris Zahoor
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Daniyal Saeed
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Iuliia Dubova
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Gema Giler
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Shelby Herr
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Shankar S Iyer
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Asgar Zaheer
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA.
| |
Collapse
|
5
|
Kempuraj D, Selvakumar GP, Zaheer S, Thangavel R, Ahmed ME, Raikwar S, Govindarajan R, Iyer S, Zaheer A. Cross-Talk between Glia, Neurons and Mast Cells in Neuroinflammation Associated with Parkinson's Disease. J Neuroimmune Pharmacol 2017; 13:100-112. [PMID: 28952015 DOI: 10.1007/s11481-017-9766-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/13/2017] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is a progressive movement disorder characterized by neuroinflammation and dopaminergic neurodegeneration in the brain. 1-methyl-4-phenylpyridinium (MPP+), a metabolite of the parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces the release of inflammatory mediators from glial cells and neurons. Glia maturation factor (GMF), a brain proinflammatory protein, MPP+, and mast cell-derived inflammatory mediators induce neurodegeneration which eventually leads to PD. However, the precise mechanisms underlying interaction between glial cells, neurons and mast cells in PD still remain elusive. In the present study, mouse bone marrow-derived mast cells (BMMCs) and mouse fetal brain-derived mixed glia/neurons, astrocytes and neurons were incubated with MPP+, GMF and mast cell-derived inflammatory mediators mouse mast cell protease-6 (MMCP-6), MMCP-7 or tryptase/brain-specific serine protease-4 (tryptase/BSSP-4). Inflammatory mediators released from these cells in the culture medium were quantitated by enzyme-linked immunosorbent assay. Neurodegeneration was quantified by measuring total neurite outgrowth following microtubule-associated protein-2 immunocytochemistry. MPP+-induced significant neurodegeneration with reduced total neurite outgrowth. MPP+induced the release of tryptase/BSSP-4 from the mouse mast cells, and tryptase/BSSP-4 induced chemokine (C-C motif) ligand 2 (CCL2) release from astrocytes and glia/neurons. Overall our results suggest that MPP+, GMF, MMCP-6 or MMCP-7 stimulate glia/neurons, astrocytes or neurons to release CCL2 and matrix metalloproteinase-3. Additionally, CD40L expression is increased in BMMCs after incubation with MPP+ in a co-culture system consisting of BMMCs and glia/neurons. We propose that mast cell interaction with glial cells and neurons during neuroinflammation can be explored as a new therapeutic target for PD.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, 65201, USA.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65201, USA
| | - Govindhasamy Pushpavathi Selvakumar
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, 65201, USA.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65201, USA
| | - Smita Zaheer
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65201, USA
| | - Ramasamy Thangavel
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, 65201, USA.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65201, USA
| | - Mohammad Ejaz Ahmed
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, 65201, USA.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65201, USA
| | - Sudhanshu Raikwar
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, 65201, USA.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65201, USA
| | - Raghav Govindarajan
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65201, USA
| | - Shankar Iyer
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, 65201, USA.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65201, USA
| | - Asgar Zaheer
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, 65201, USA. .,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65201, USA.
| |
Collapse
|
6
|
Kempuraj D, Thangavel R, Fattal R, Pattani S, Yang E, Zaheer S, Santillan DA, Santillan MK, Zaheer A. Mast Cells Release Chemokine CCL2 in Response to Parkinsonian Toxin 1-Methyl-4-Phenyl-Pyridinium (MPP(+)). Neurochem Res 2015; 41:1042-9. [PMID: 26646004 DOI: 10.1007/s11064-015-1790-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/18/2015] [Accepted: 11/24/2015] [Indexed: 01/29/2023]
Abstract
Microglial activation and release of inflammatory cytokines and chemokines are crucial events in neuroinflammation. Microglial cells interact and respond to other inflammatory cells such as T cells and mast cells as well as inflammatory mediators secreted from these cells. Recent studies have shown that neuroinflammation causes and accelerates neurodegenerative disease such as Parkinson's disease (PD) pathogenesis. 1-methyl-4-phenyl-pyridinium ion (MPP(+)), the active metabolite of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydro pyridine activates glial cells and mediate neurodegeneration through release of inflammatory mediators. We have shown that glia maturation factor (GMF) activates glia and induces neuroinflammation and neurodegeneration and that MPP(+) activates mast cells and release proinflammatory cytokines and chemokines. The chemokine (C-C motif) ligand 2 (CCL2) levels have been shown to be elevated and play a role in PD pathogenesis. In the present study, we analyzed if MPP(+) activates mouse and human mast cells to release chemokine CCL2. Mouse bone marrow-derived mast cells (BMMCs) and human umbilical cord blood-derived cultured mast cells (hCBMCs) were incubated with MPP(+) (10 µM) for 24 h and CCL2 levels were measured in the supernatant media by ELISA. MPP(+)-significantly induced CCL2 release from BMMCs and hCBMCs. Additionally, GMF overexpression in BMMCs obtained from wild-type mice released significantly more CCL2, while BMMCs obtained from GMF-deficient mice showed less CCL2 release. Further, we show that MPP(+)-induced CCL2 release was greater in BMMCs-astrocyte co-culture conditions. Uncoupling protein 4 (UCP4) which is implicated in neurodegenerative diseases including PD was detected in BMMCs by immunocytochemistry. Our results suggest that mast cells may play role in PD pathogenesis.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Veterans Affairs Health Care System, Iowa City, IA, 52242, USA
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Ramasamy Thangavel
- Veterans Affairs Health Care System, Iowa City, IA, 52242, USA
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Ranan Fattal
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Sagar Pattani
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Evert Yang
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Smita Zaheer
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Donna A Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Mark K Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Asgar Zaheer
- Veterans Affairs Health Care System, Iowa City, IA, 52242, USA.
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.
| |
Collapse
|
7
|
Kempuraj D, Thangavel R, Yang E, Pattani S, Zaheer S, Santillan DA, Santillan MK, Zaheer A. Dopaminergic Toxin 1-Methyl-4-Phenylpyridinium, Proteins α-Synuclein and Glia Maturation Factor Activate Mast Cells and Release Inflammatory Mediators. PLoS One 2015; 10:e0135776. [PMID: 26275153 PMCID: PMC4537263 DOI: 10.1371/journal.pone.0135776] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/24/2015] [Indexed: 12/23/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by the presence of Lewy bodies and degeneration of dopaminergic neurons. 1-methyl-4-phenylpyridinium (MPP+), a metabolite of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and Lewy body component α-synuclein activates glia in PD pathogenesis. Mast cells and glia maturation factor (GMF) are implicated in neuroinflammatory conditions including Multiple Sclerosis. However, the role of mast cells in PD is not yet known. We have analyzed the effect of recombinant GMF, MPP+, α-synuclein and interleukin-33 (IL-33) on mouse bone marrow-derived cultured mast cells (BMMCs), human umbilical cord blood-derived cultured mast cells (hCBMCs) and mouse brain-derived cultured astrocytes by quantifying cytokines/chemokines released using ELISA or by detecting the expression of co-stimulatory molecules CD40 and CD40L by flow cytometry. GMF significantly released chemokine (C-C motif) ligand 2 (CCL2) from BMMCs but its release was reduced in BMMCs from GMF knockout mice. GMF, α-synuclein and MPP+ released IL-1β, β-hexosaminidase from BMMCs, and IL-8 from hCBMCs. GMF released CCL5, and IL-33- induced the expression of GMF from hCBMCs. Novel GMF expression was detected in hCBMCs and BMMCs by immunocytochemistry. GMF released tumor necrosis factor-alpha (TNF-α) from mouse astrocytes, and this release was greater in BMMC- astrocyte coculture than in individual cultures. Flow cytometry results showed increased IL-33 expression by GMF and MPP+, and GMF-induced CD40 expression in astrocytes. Proinflammatory mediator release by GMF, MPP+ and α-synuclein, as well as GMF expression by mast cells indicate a potential therapeutic target for neurodegenerative diseases including PD.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Veterans Affairs Health Care System, Iowa City, Iowa, United States of America
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Ramasamy Thangavel
- Veterans Affairs Health Care System, Iowa City, Iowa, United States of America
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Evert Yang
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Sagar Pattani
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Smita Zaheer
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Donna A. Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Mark K. Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Asgar Zaheer
- Veterans Affairs Health Care System, Iowa City, Iowa, United States of America
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
8
|
Zaheer S, Thangavel R, Wu Y, Khan MM, Kempuraj D, Zaheer A. Enhanced expression of glia maturation factor correlates with glial activation in the brain of triple transgenic Alzheimer's disease mice. Neurochem Res 2012; 38:218-25. [PMID: 23086473 DOI: 10.1007/s11064-012-0913-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/12/2012] [Accepted: 10/11/2012] [Indexed: 11/26/2022]
Abstract
We previously demonstrated that glia maturation factor (GMF), a brain specific protein, isolated, sequenced and cloned in our laboratory, induce expression of proinflammatory cytokines and chemokines in the central nervous system. We also reported that the up-regulation of GMF in astrocytes leads to the destruction of neurons suggesting a novel pathway of GMF-mediated cytotoxicity of brain cells, and implicated its involvement in the pathogenesis of inflammatory neurodegenerative diseases. In the present study, we examined the expressions of GMF in triple-transgenic Alzheimer's disease (3xTg-AD) mice. Our results show a 13-fold up-regulation of GMF and 8-12-fold up-regulation of proinflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-1β, interferon gamma (IFN-γ), and chemokine (C-C motif) ligand 2 (CCL2) and C-X-C motif chemokine 10 (CXCL10/IP-10) mRNA as determined by quantitative real-time RT-PCR in the brain of 3xTg-AD mice as compared to non-transgenic (Non-Tg) mice. In conclusion, the increase in GMF and cytokine/chemokine expression was correlated with reactive glial fibrillary acidic protein positive astrocytes and ionized calcium binding adaptor molecule 1 (Iba-1)-positive microglia in 3xTg-AD mice.
Collapse
Affiliation(s)
- Smita Zaheer
- Department of Neurology, The University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
9
|
Clinical course of myelin oligodendrocyte glycoprotein 35-55 induced experimental autoimmune encephalomyelitis is aggravated by glia maturation factor. Neurochem Int 2011; 60:215-9. [PMID: 22226840 DOI: 10.1016/j.neuint.2011.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 11/22/2022]
Abstract
The role of glia maturation factor (GMF) in myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide-induced experimental autoimmune encephalomyelitis (EAE) was investigated using GMF-deficient (GMF-KO) mice. We demonstrate that GMF-KO mice were resistant to the MOG 35-55 peptide-induced EAE as compared to wild type (Wt) mice (two in eight versus 10 in 10). Next, we examined the effect of administration of recombinant human GMF (rGMF) on MOG 35-55 peptide-induced EAE in mice. Daily administration of rGMF, staring days 1-14, resulted in significant exacerbation of clinical symptoms. Following rGMF injections, both GMF-KO (six in eight) and Wt mice (eight in eight) developed severe EAE (maximal clinical score of 3.5-4.0) with high frequency. The histological examination revealed severe infiltration of inflammatory cells in the spinal cord of MOG-immunized Wt mice while the resistance to EAE in GMF-KO mice was characterized by the absence of inflammatory cells. Administration of rGMF in Wt mice and GMF-KO mice resulted in a significant increase in infiltrating cells in the spinal cord following MOG-immunizations. We also evaluated cytokines and chemokines production as parameters of severity of inflammation in the spinal cord of Wt versus GMF-KO mice with and without GMF-reconstitution following MOG-immunizations. Cytokines (TNF-α, IFN-γ, IL-1β, IL-6) and chemokines (CCL2, CCL3, CXCL10, GM-CSF) production were significantly greater in Wt mice than in GMF-KO mice following MOG-immunization. Furthermore, the reconstitution experiment with rGMF showed that the administration of rGMF in both, Wt mice and GMF-KO mice produced significant increase in the GMF-mediated cytokine/chemokine production.
Collapse
|
10
|
Rabert D, Xiao Y, Yiangou Y, Kreder D, Sangameswaran L, Segal MR, Hunt CA, Birch R, Anand P. Plasticity of gene expression in injured human dorsal root ganglia revealed by GeneChip oligonucleotide microarrays. J Clin Neurosci 2007; 11:289-99. [PMID: 14975420 DOI: 10.1016/j.jocn.2003.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Accepted: 05/09/2003] [Indexed: 11/29/2022]
Abstract
Root avulsion from the spinal cord occurs in brachial plexus lesions. It is the practice to repair such injuries by transferring an intact neighbouring nerve to the distal stump of the damaged nerve; avulsed dorsal root ganglia (DRG) are removed to enable nerve transfer. Such avulsed adult human cervical DRG ( [Formula: see text] ) obtained at surgery were compared to controls, for the first time, using GeneChip oligonucleotide arrays. We report 91 genes whose expression levels are clearly altered by the injury. This first study provides a global assessment of the molecular events or "gene switches" as a consequence of DRG injuries, as the tissues represent a wide range of surgical delay, from 1 to 100 days. A number of these genes are novel with respect to sensory ganglia, while others are known to be involved in neurotransmission, trophism, cytokine functions, signal transduction, myelination, transcription regulation, and apoptosis. Cluster analysis showed that genes involved in the same functional groups are largely positioned close to each other. This study represents an important step in identifying new genes and molecular mechanisms in human DRG, with potential therapeutic relevance for nerve repair and relief of chronic neuropathic pain.
Collapse
|
11
|
Oshikawa M, Sugano N, Ishigaki R, Ito K. Gene expression in the developing rat mandible: a gene array study. Arch Oral Biol 2004; 49:325-9. [PMID: 15003551 DOI: 10.1016/j.archoralbio.2003.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2003] [Indexed: 11/19/2022]
Abstract
To analyse the molecular events that occur in the developing mandible, gene arrays containing probes for 1176 known genes were used. Total RNA was extracted from the mandibles of 1- and 6-day-old rats. Radiolabeled probes were then synthesised and used to probe the DNA arrays. Of the 1176 genes examined, 306 were detectable, and the latter were analyzed by bioinformatics algorithms. K-means clustering grouped 72 genes into Up, 56 genes into Down and 178 genes into NO change. A large number of genes related to cell receptors (by ligands) were grouped into the Down cluster. Gene array technology appears to be a useful tool for studying the complex process of mandibular development.
Collapse
Affiliation(s)
- Maiko Oshikawa
- Nihon University Graduate School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | | | | | | |
Collapse
|