1
|
Abstract
Centromere-near gain of copy number can be induced by intra- or inter-chromosomal rearrangements or by the presence of a small supernumerary marker chromosome (sSMC). Interestingly, partial trisomy to hexasomy of euchromatic material may be present in clinically healthy or affected individuals, depending on origin and size of chromosomal material involved. Here we report the known minimal sizes of all centromere-near, i.e., proximal auto-somal regions in humans, which are tolerated; over 100 Mb of coding DNA are comprised in these regions. Additionally, we have summarized the typical symptoms for nine proximal autosomal regions including genes obviously sensitive to copy numbers. Overall, studying the carriers of specific chromosomal imbalances using genomics-based medicine, combined with single cell analysis can provide the genotype-phenotype correlations and can also give hints where copy-number-sensitive genes are located in the human genome.
Collapse
|
2
|
Abstract
Experimental approaches for deciphering the function of human genes rely heavily on our ability to generate mutations in model organisms such as the mouse. However, because recessive mutations are masked by the wild-type allele in the diploid context, conventional mutagenesis and screening is often laborious and costly. Chromosome engineering combines the power of gene targeting in embryonic stem (ES) cells with Cre--loxP technology to create mice that are functionally haploid in discrete portions of the genome. Chromosome deletions, duplications and inversions can be tagged with visible markers, facilitating strain maintenance. These approaches allow for more refined mutagenesis screens that will greatly accelerate functional mouse genomics and generate mammalian models for developmental processes and cancer.
Collapse
Affiliation(s)
- A A Mills
- Cold Spring Harbor Laboratory, 1 BungtownRoad, Cold Spring Harbor, NY 11724, USA.
| | | |
Collapse
|
3
|
Takeda Y, Notsu T, Kitamura K, Uyemura K. Functional analysis for peripheral myelin protein PASII/PMP22: is it a member of claudin superfamily? Neurochem Res 2001; 26:599-607. [PMID: 11519720 DOI: 10.1023/a:1010927001378] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two major glycoproteins, P0 and PASII/PMP22, are specifically expressed in peripheral myelin. Point mutations of these proteins and over or under expression of PASII/PMP22 cause various hereditary peripheral neuropathies. P0 is well characterized as a major adhesion molecule in PNS myelin, but the function of PASII/PMP22 is still unknown. Recently, an oligodendrocyte-specific protein (OSP) was identified as a member of the claudin family and as a component of tight junctions of central myelins. Since PASII/PMP22 shows similarity in structure to OSP, which is a tetraspan membrane protein, we speculated if PASII/PMP22 could be a member of claudin superfamily. The primary structure of PASII/PMP22 showed a significant homology of 48% and a 21% identity with the OSP sequence. Exogenous expression of PASII/PMP22 in C6 cells significantly inhibited BrdU incorporation to the cells. The C6 cells stably transfected with PASII/PMP22 cDNA showed no homophilic cell adhesive activity. When dorsal root ganglion (DRG) neurons were cocultured on PASII/PMP22 expressing cells, both neurite extension and branching of DRG neurons were significantly inhibited. These results indicate that PASII/PMP22 may play a role in a turning point of Schwann cell development from proliferation to differentiation. On the other hand, the cells expressing claudin family proteins are reported to show strong cell adhesive activity and an ability to form tight junctions with neighboring cells. For this reason, we currently do not have any functional data supporting that PASII/PMP22 is the member of claudin superfamily.
Collapse
Affiliation(s)
- Y Takeda
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|
4
|
Zheng B, Mills AA, Bradley A. Introducing defined chromosomal rearrangements into the mouse genome. Methods 2001; 24:81-94. [PMID: 11327806 DOI: 10.1006/meth.2001.1160] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chromosomal rearrangements have been instrumental in genetic studies in Drosophila. Visibly marked deficiencies (deletions) are used in mapping studies and region-specific mutagenesis screens by providing segmental haploidy required to uncover recessive mutations. Marked recessive lethal inversions are used as balancer chromosomes to maintain recessive lethal mutations and to maintain the integrity of mutagenized chromosomes. In mice, studies on series of radiation-induced deletions that surround several visible mutations have yielded invaluable functional genomic information in the regions analyzed. However, most regions of the mouse genome are not accessible to such analyses due to a lack of marked chromosomal rearrangements. Here we describe a method to generate defined chromosomal rearrangements using the Cre--loxP recombination system based on a published strategy [R. Ramirez-Solis, P. Liu, and A. Bradley, (1995) Nature 378, 720--724]. Various types of rearrangements, such as deletions, duplications, inversions, and translocations, can be engineered using this strategy. Furthermore, the rearrangements can be visibly marked with coat color genes, providing essential reagents for large-scale recessive genetic screens in the mouse. The ability to generate marked chromosomal rearrangements will help to elevate the level of manipulative mouse genetics to that of Drosophila genetics.
Collapse
Affiliation(s)
- B Zheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
5
|
Jetten AM, Suter U. The peripheral myelin protein 22 and epithelial membrane protein family. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:97-129. [PMID: 10697408 DOI: 10.1016/s0079-6603(00)64003-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The peripheral myelin protein 22 (PMP22) and the epithelial membrane proteins (EMP-1, -2, and -3) comprise a subfamily of small hydrophobic membrane proteins. The putative four-transmembrane domain structure as well as the genomic structure are highly conserved among family members. PMP22 and EMPs are expressed in many tissues, and functions in cell growth, differentiation, and apoptosis have been reported. EMP-1 is highly up-regulated during squamous differentiation and in certain tumors, and a role in tumorigenesis has been proposed. PMP22 is most highly expressed in peripheral nerves, where it is localized in the compact portion of myelin. It plays a crucial role in normal physiological and pathological processes in the peripheral nervous system. Progress in molecular genetics has revealed that genetic alterations in the PMP22 gene, including duplications, deletions, and point mutations, are responsible for several forms of hereditary peripheral neuropathies, including Charcot-Marie-Tooth disease type 1A (CMT1A), Dejerine-Sottas syndrome (DDS), and hereditary neuropathy with liability to pressure palsies (HNPP). The natural mouse mutants Trembler and Trembler-J contain a missense mutation in different hydrophobic domains of PMP22, resulting in demyelination and Schwann cell proliferation. Transgenic mice carrying many copies of the PMP22 gene and PMP22-null mice display a variety of defects in the initial steps of myelination and/or maintenance of myelination, whereas no pathological alterations are detected in other tissues normally expressing PMP22. Further characterization of the interactions of PMP22 and EMPs with other proteins as well as their regulation will provide additional insight into their normal physiological function and their roles in disease and possibly will result in the development of therapeutic tools.
Collapse
Affiliation(s)
- A M Jetten
- Cell Biology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
6
|
Bort S, Sevilla T, García-Planells J, Blesa D, Paricio N, Vílchez JJ, Prieto F, Palau F. Déjérine-Sottas neuropathy associated with de novo S79P mutation of the peripheral myelin protein 22 (PMP22) gene. Hum Mutat 1998; Suppl 1:S95-8. [PMID: 9452053 DOI: 10.1002/humu.1380110132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- S Bort
- Genetics Unit, Hospital Universitari La Fe, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Chen CM, Chang HS, Lyu RK, Tang LM, Chen ST. Myasthenia gravis and Charcot-Marie-Tooth disease type 1A: an unusual combination of diseases. Muscle Nerve 1997; 20:1457-9. [PMID: 9342165 DOI: 10.1002/(sici)1097-4598(199711)20:11<1457::aid-mus16>3.0.co;2-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Concurrence of myasthenia gravis (MG) and Charcot-Marie-Tooth type 1 (CMT1A) neuropathy is rare. We describe a 60-year-old woman with MG and genetically proved CMT1A. The fluctuating ocular symptoms and proximal limb weakness were markedly improved by pyridostigmine treatment. Recognition of the possible association of MG and CMT1A in the same patient is important because the therapeutic result is rewarding.
Collapse
Affiliation(s)
- C M Chen
- Department of Neurology, Chang Gung Memorial Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
8
|
HNMP-1: a novel hematopoietic and neural membrane protein differentially regulated in neural development and injury. J Neurosci 1997. [PMID: 9204931 DOI: 10.1523/jneurosci.17-14-05493.1997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The hnmp-1 (hematopoietic neural membrane protein) gene encodes a protein with striking similarity to the tetra-transmembrane-spanning protein encoded by pmp22. hnmp-1 was cloned from an elutriated human monocyte library and is expressed in various human hematopoietic and lymphoid lineages as well as adult mouse spleen and thymus. In the mouse nervous system, HNMP-1 mRNA is temporally expressed by Schwann cells during sciatic nerve myelination. Dorsal root ganglia sensory and spinal cord alpha-motoneurons acquire HNMP-1 protein selectively throughout development. In the fiber tracts of the spinal cord and in sciatic nerve, HNMP-1 protein is axon-associated. Additionally a rapid and sustained level of HNMP-1 expression is observed in response to acute PNS injury. HNMP-1 is constituitively induced in sciatic nerve of Trembler J mice, which are mutant for pmp22 and have a demyelinating/hypomyelinating phenotype. The expression pattern of HNMP-1 suggests a possible role for this molecule during active myelination.
Collapse
|
9
|
Kirschner DA, Szumowski K, Gabreëls-Festen AA, Hoogendijk JE, Bolhuis PA. Inherited demyelinating peripheral neuropathies: relating myelin packing abnormalities to P0 molecular defects. J Neurosci Res 1996; 46:502-8. [PMID: 8950710 DOI: 10.1002/(sici)1097-4547(19961115)46:4<502::aid-jnr12>3.0.co;2-#] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
P0-glycoprotein, the major integral membrane protein of peripheral nerve myelin, is thought to mediate myelination and membrane interactions via its extracellular domain (P0-ED). Molecular modeling of P0-ED has suggested which of its amino acid side-chains may be involved in heterophilic and homophilic adhesions. We previously showed that some of these amino acids are the same ones that are substituted or deleted due to mutations in the human gene for P0 (MPZ), which correlate with certain cases of demyelinating motor and sensory peripheral neuropathies. In the current study, high magnification electron microscopy was used to examine the myelin membrane packing in sural nerve biopsies from patients with MPZ mutations. We found that there were distinguishable ultrastructural phenotypes that could be explained by the alterations in P0-ED. These phenotypes, which were not observed in a control nerve, included widening or irregularity of the extracellular apposition alone (delta Ser34; Arg69Cys), widening at both the extracellular and cytoplasmic appositions (Arg69His), the presence of focal bridges in the widened extracellular space (Arg69His), and a diminished (Arg69Cys) or absence (Arg69His) of staining of the double intraperiod line. Our study, which suggests that the altered P0 is incorporated into the myelin sheath, provides a unique basis for further molecular/ultrastructural correlations between P0-ED structure and myelination irregularities.
Collapse
Affiliation(s)
- D A Kirschner
- Department of Biological Sciences, University of Massachusetts Lowell, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
Spontaneous mutations that perturb myelination occur in a range of species including man, and together with engineered mutations have been used to study disease, normal myelination and axon/glial inter-relationships. Only a minority of the currently defined mutations have an apparently simple pathogenesis due to lack of a functional protein. Mutations in the myelin basic protein gene lead to a lack of protein, resulting in changes in the structure of myelin, which can be rescued by transgenic complementation. The pathogenesis of autosomal dominant and X-linked mutations affecting either oligodendrocytes or Schwann cells is more complex. Point mutations may act in a dominant negative manner and gene dosage is clearly linked to phenotypic change. Mutations in regulatory genes, such as those encoding transcription factors, can also disturb myelination by selected cell types. Other less-well studied and unexpected consequences of myelin mutations, such as seizures in mutations affecting genes expressed in Schwann cells and axonal changes associated with dysmyelination, are also considered. With the major developments in gene mapping and cloning it is now relevant to study mutations in a variety of species with the real prospect of defining their molecular basis. Examples are given of unusual, but potentially useful, uncharacterized mutations in dog and bovine.
Collapse
Affiliation(s)
- I R Griffiths
- Dept of Veterinary Clinical Studies, University of Glasgow, Bearsden, Scotland.
| |
Collapse
|
11
|
Greenberg F, Lewis RA, Potocki L, Glaze D, Parke J, Killian J, Murphy MA, Williamson D, Brown F, Dutton R, McCluggage C, Friedman E, Sulek M, Lupski JR. Multi-disciplinary clinical study of Smith-Magenis syndrome (deletion 17p11.2). AMERICAN JOURNAL OF MEDICAL GENETICS 1996; 62:247-54. [PMID: 8882782 DOI: 10.1002/(sici)1096-8628(19960329)62:3<247::aid-ajmg9>3.0.co;2-q] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Smith-Magenis syndrome (SMS) is a multiple congenital anomaly, mental retardation (MCA/MR) syndrome associated with deletion of chromosome 17 band p11.2. As part of a multi-disciplinary clinical, cytogenetic, and molecular approach to SMS, detailed clinical studies including radiographic, neurologic, developmental, ophthalmologic, otolaryngologic, and audiologic evaluations were performed on 27 SMS patients. Significant findings include otolaryngologic abnormalities in 94%, eye abnormalities in 85%, sleep abnormalities (especially reduced REM sleep) in 75%, hearing impairment in 68% (approximately 65% conductive and 35% sensorineural), scoliosis in 65%, brain abnormalities (predominantly ventriculomegaly) in 52%, cardiac abnormalities in at least 37%, renal anomalies (especially duplication of the collecting system) in 35%, low thyroxine levels in 29%, low immunoglobulin levels in 23%, and forearm abnormalities in 16%. The measured IQ ranged between 20-78, most patients falling in the moderate range of mental retardation at 40-54, although several patients scored in the mild or borderline range. The frequency of these many abnormalities in SMS suggests that patients should be evaluated thoroughly for associated complications both at the time of diagnosis and at least annually thereafter.
Collapse
Affiliation(s)
- F Greenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Reiter LT, Murakami T, Koeuth T, Pentao L, Muzny DM, Gibbs RA, Lupski JR. A recombination hotspot responsible for two inherited peripheral neuropathies is located near a mariner transposon-like element. Nat Genet 1996; 12:288-97. [PMID: 8589720 DOI: 10.1038/ng0396-288] [Citation(s) in RCA: 230] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Charcot-Marie Tooth disease type 1A (CMT1A) duplication and hereditary neuropathy with liability to pressure palsies (HNPP) deletion are reciprocal products of an unequal crossing-over event between misaligned flanking CMT1A-REP repeats. The molecular aetiology of this apparently homologous recombination event was examined by sequencing the crossover region. Through the detection of novel junction fragments from the recombinant CMT1A-REPs in both CMT1A and HNPP patients, a 1.7-kb recombination hotspot within the approximately 30-kb CMT1A-REPs was identified. This hotspot is 98% identical between CMT1A-REPs indicating that sequence identity is not likely the sole factor involved in promoting crossover events. Sequence analysis revealed a mariner transposon-like element (MITE) near the hotspot which we hypothesize could mediate strand exchange events via cleavage by a transposase at or near the 3' end of the element.
Collapse
Affiliation(s)
- L T Reiter
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
|
15
|
Roa BB, Warner LE, Garcia CA, Russo D, Lovelace R, Chance PF, Lupski JR. Myelin protein zero (MPZ) gene mutations in nonduplication type 1 Charcot-Marie-Tooth disease. Hum Mutat 1996; 7:36-45. [PMID: 8664899 DOI: 10.1002/(sici)1098-1004(1996)7:1<36::aid-humu5>3.0.co;2-n] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The myelin protein zero gene (MPZ) maps to chromosome 1q22-q23 and encodes the most abundant peripheral nerve myelin protein. The Po protein functions as a homophilic adhesion molecule in myelin compaction. Mutations in the MPZ gene are associated with the demyelinating peripheral neuropathies Charcot-Marie-Tooth disease type 1B (CMT1B), and the more severe Dejerine-Sottas syndrome (DSS). We have surveyed a cohort of 70 unrelated patients with demyelinating polyneuropathy for additional mutations in the MPZ gene. The 1.5-Mb DNA duplication on chromosome 17p11.2-p12 associated with CMT type 1A (CMT1A) was not present. By DNA heteroduplex analysis, four base mismatches were detected in three exons of MPZ. Nucleotide sequence analysis identified a de novo mutation in MPZ exon 3 that predicts an Ile(135)Thr substitution in a family with clinically severe early-onset CMT1, and an exon 3 mutation encoding a Gly(137)Ser substitution was identified in a second CMT1 family. Each predicted amino acid substitution resides in the extracellular domain of the Po protein. Heteroduplex analysis did not detect either base change in 104 unrelated controls, indicating that these substitutions are disease-associated mutations rather than common polymorphisms. In addition, two polymorphic mutations were identified in MPZ exon 5 and exon 6, which do not alter the codons for Gly(200) and Ser(228), respectively. These observations provide further confirmation of the role of MPZ in CMT1B and suggest that MPZ coding region mutations may account for a limited percentage of disease-causing mutations in nonduplication CMT1 patients.
Collapse
Affiliation(s)
- B B Roa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Reply to “Settling the myelin protein zero question in CMT1B”. Nat Genet 1995. [DOI: 10.1038/ng1095-120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|