1
|
Bkaily G, Jazzar A, Normand A, Simon Y, Al-Khoury J, Jacques D. Taurine and cardiac disease: state of the art and perspectives. Can J Physiol Pharmacol 2020; 98:67-73. [DOI: 10.1139/cjpp-2019-0313] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Taurine is a nonessential amino acid that has received much attention. Two organs, the heart and the brain, are known to produce their own taurine, but in very limited quantities. It is for this reason that supplementation with this amino acid is necessary. Today, taurine is present in almost all energy drinks. A very vast literature reported beneficial effects of taurine in hepatic dysfunction, gastrointestinal injury, kidney diseases, diabetes, and cardiovascular diseases. Most of its effects were attributed to its modulation of Ca2+homeostasis as well as to its antioxidant properties. In this review, we will focus on the current status of taurine modulation of the cardiovascular system and discuss future avenues for its use as a supplement therapy in a specific cardiovascular disease, namely hypertrophy, and heart failure.
Collapse
Affiliation(s)
- Ghassan Bkaily
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Ashley Jazzar
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Alexandre Normand
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Yanick Simon
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Johny Al-Khoury
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Danielle Jacques
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
2
|
|
3
|
Oien DB, Moskovitz J. Ablation of the mammalian methionine sulfoxide reductase A affects the expression level of cysteine deoxygenase. Biochem Biophys Res Commun 2006; 352:556-9. [PMID: 17126812 DOI: 10.1016/j.bbrc.2006.11.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 11/10/2006] [Indexed: 11/20/2022]
Abstract
Methionine sulfoxide reductases (Msrs) are able to reduce methionine sulfoxide to methionine both in proteins and free amino acids. By their action it is possible to regulate the function of specific proteins and the cellular antioxidant defense against oxidative damage. Similarly, cysteine deoxygenase (CDO) may be involved in the regulation of protein function and antioxidant defense mechanisms by its ability to oxidized cysteine residues. The two enzymes' involvement in sulfur amino-acids metabolism seems to be connected. Lack of methionine sulfoxide reductase A (MsrA) in liver of MsrA-/- led to a significant drop in the cellular level of thiol groups and lowered the CDO level of expression. Moreover, following selenium deficient diet (applied to decrease the expression levels of selenoproteins like MsrB), the latter effect was maintained while the basal levels of thiol decreased in both mouse strains. We suggest that both enzymes are working in coordination to balance cellular antioxidant defense.
Collapse
Affiliation(s)
- Derek B Oien
- University of Kansas, School of Pharmacy, Department of Pharmacology and Toxicology, Lawrence, KS 66045, USA
| | | |
Collapse
|
4
|
Chai SC, Jerkins AA, Banik JJ, Shalev I, Pinkham JL, Uden PC, Maroney MJ. Heterologous expression, purification, and characterization of recombinant rat cysteine dioxygenase. J Biol Chem 2004; 280:9865-9. [PMID: 15623508 DOI: 10.1074/jbc.m413733200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine dioxygenase (CDO, EC 1.13.11.20) catalyzes the oxidation of cysteine to cysteine sulfinic acid, which is the first major step in cysteine catabolism in mammalian tissues. Rat liver CDO was cloned and expressed in Escherichia coli as a 26.8-kDa N-terminal fusion protein bearing a polyhistidine tag. Purification by immobilized metal affinity chromatography yielded homogeneous protein, which was catalytically active even in the absence of the secondary protein-A, which has been reported to be essential for activity in partially purified native preparations. As compared with those existing purification protocols for native CDO, the milder conditions used in the isolation of the recombinant CDO allowed a more controlled study of the properties and activity of CDO, clarifying conflicting findings in the literature. Apo-protein was inactive in catalysis and was only activated by iron. Metal analysis of purified recombinant protein indicated that only 10% of the protein contained iron and that the iron was loosely bound to the protein. Kinetic studies showed that the recombinant enzyme displayed a K(m) value of 2.5 +/- 0.4 mm at pH 7.5 and 37 degrees C. The enzyme was shown to be specific for l-cysteine oxidation, whereas homocysteine inhibited CDO activity.
Collapse
Affiliation(s)
- Sergio C Chai
- Department of Chemistry and Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Oudit GY, Trivieri MG, Khaper N, Husain T, Wilson GJ, Liu P, Sole MJ, Backx PH. Taurine Supplementation Reduces Oxidative Stress and Improves Cardiovascular Function in an Iron-Overload Murine Model. Circulation 2004; 109:1877-85. [PMID: 15037530 DOI: 10.1161/01.cir.0000124229.40424.80] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Iron overload has an increasing worldwide prevalence and is associated with significant cardiovascular morbidity and mortality. Elevated iron levels in the myocardium lead to impaired systolic and diastolic function and elevated oxidative stress. Taurine accounts for 25% to 50% of the amino acid pool in myocardium, possesses antioxidant properties, and can inhibit L-type Ca2+ channels. Thus, we hypothesized that this agent would reduce the cardiovascular effects of iron overload. METHODS AND RESULTS Iron-overloaded mice were generated by intraperitoneal injection of iron either chronically (5 days per week for 13 weeks) or subacutely (5 days per week for 4 weeks). Iron overload causes increased mortality, elevated oxidative stress, systolic and diastolic dysfunction, hypotension, and bradycardia. Taurine supplementation increased myocardial taurine levels by 45% and led to reductions in mortality and improved cardiac function, heart rate, and blood pressure in iron-overloaded mice. Histological examination of the myocardium revealed reduced apoptosis and interstitial fibrosis in iron-overloaded mice supplemented with taurine. Taurine mediated reduced oxidative stress in iron-overloaded mice along with attenuation of myocardial lipid peroxidation and protection of reduced glutathione level. CONCLUSIONS These results demonstrate that treatment with taurine reduces iron-mediated myocardial oxidative stress, preserves cardiovascular function, and improves survival in iron-overloaded mice. The role of taurine in protecting reduced glutathione levels provides an important mechanism by which oxidative stress-induced myocardial damage can be curtailed. Taurine, as a dietary supplement, represents a potential new therapeutic agent to reduce the cardiovascular burden from iron-overload conditions.
Collapse
Affiliation(s)
- Gavin Y Oudit
- Department of Physiology, Toronto General Hospital, University Health Network, Heart and Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Bustamante J, Lobo MV, Alonso FJ, Mukala NT, Giné E, Solís JM, Tamarit-Rodriguez J, Martín Del Río R. An osmotic-sensitive taurine pool is localized in rat pancreatic islet cells containing glucagon and somatostatin. Am J Physiol Endocrinol Metab 2001; 281:E1275-85. [PMID: 11701444 DOI: 10.1152/ajpendo.2001.281.6.e1275] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous reports have dealt with the hypoglycemic properties of taurine and its effects on insulin secretion by adult and fetal isolated islets. We have studied the presence and cellular distribution of taurine in rat islets, the conditions to evoke its release, and its possible modulatory action on insulin secretion. We localized taurine by techniques of double immunolabeling in most glucagon-positive cells and in some somatostatin-positive cells, whereas insulin-positive cells were not labeled with the taurine antibody. Although high-glucose stimulation did not evoke any taurine release, a hyposmotic solution (17% osmolarity reduction) induced a specific phasic release of taurine and GABA (34 and 52% increase on their basal release rate). On the other hand, taurine (10 mmol/l) application slightly reduced the second phase of insulin secretion induced by glucose stimulation. In conclusion, taurine is highly concentrated in glucagon-containing cells of the islet periphery. It is not liberated by glucose stimulation but is strongly released under hyposmotic conditions. All of these data suggest that taurine plays an osmoregulatory role in alpha-cells.
Collapse
Affiliation(s)
- J Bustamante
- Department of Physiology, Faculty of Medicine, Universidad Complutense, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ruiz-Feria CA, Wideman RF. Taurine, cardiopulmonary hemodynamics, and pulmonary hypertension syndrome in broilers. Poult Sci 2001; 80:1607-18. [PMID: 11732678 DOI: 10.1093/ps/80.11.1607] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies have suggested cardiac taurine is released into the plasma in response to hypoxemia (low blood oxygen levels) during the pathogenesis of pulmonary hypertension syndrome (PHS, ascites). In the present study, broilers reared under cool temperature conditions (16 C) were provided tap water (control group), tap water supplemented with taurine, or tap water supplemented with the taurine transport antagonist beta-alanine. When compared with control values, taurine supplementation consistently elevated free taurine concentrations in the plasma but not in cardiac tissues, whereas beta-alanine supplementation consistently reduced free taurine concentrations in cardiac tissues but not in the plasma. Neither the incidence of PHS nor specific predictors of PHS susceptibility (electrocardiogram Lead II S-wave amplitude, % saturation of hemoglobin with oxygen, heart rate, right to total ventricular weight ratio) were affected by taurine or beta-alanine supplementation. Cardiopulmonary hemodynamic evaluations were conducted to compare control and beta-alanine supplemented broilers breathing room air or air containing 12% oxygen (low oxygen challenge). While breathing room air, the betaalanine-supplemented broilers had higher baseline values for cardiac output (186.2 vs. 146.9 mL/min/kg BW) and pulmonary arterial pressure (27.4 vs. 22.4 mm Hg), similar values for mean systemic arterial pressure (100 vs. 104 mm Hg) and pulmonary vascular resistance (0.062 vs. 0.064 resistance units), and lower values for total peripheral resistance (0.228 vs. 0.296 resistance units) when compared with control broilers breathing room air. During low oxygen challenges, the beta-alanine-supplemented broilers exhibited larger reductions in cardiac output, mean systemic arterial pressure, and pulmonary arterial pressure and greater increases in pulmonary vascular resistance than control broilers. These observations indicate that beta-alanine-supplemented broilers breathing room air had a higher systemic demand for oxygen as evidenced by their lower total peripheral resistance (systemic vasodilation) and had a capacity sufficient to pump a higher cardiac output and, thereby, maintain a similar mean systemic arterial pressure when compared with control broilers. However, cardiac function rapidly deteriorated in beta-alanine-supplemented broilers during low oxygen challenges, leading to substantially greater reductions in cardiac output, stroke volume, and mean systemic arterial pressure when compared with control broilers. Concurrent changes in pulmonary arterial pressure within the beta-alanine group reflect interactions between cardiac output and pulmonary vascular resistance. Overall, depleting cardiac taurine did not appear to initiate PHS, but systemic hypoxemia developing during the mid- to late-pathogenesis of PHS may expose and incipient cardiac weakness attributable to depleted taurine reserves.
Collapse
Affiliation(s)
- C A Ruiz-Feria
- Department of Poultry Science, University of Arkansas, Fayetteville 72701, USA.
| | | |
Collapse
|
8
|
del Olmo N, Galarreta M, Bustamante J, Martín del Rio R, Solís JM. Taurine-induced synaptic potentiation: role of calcium and interaction with LTP. Neuropharmacology 2000; 39:40-54. [PMID: 10665818 DOI: 10.1016/s0028-3908(99)00078-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Taurine induces a long-lasting potentiation of excitatory synaptic potentials due to the enhancement of both synaptic efficacy and axon excitability in the CA1 area of rat hippocampal slices. In this study, we characterized the role of Ca2+ in the generation of these long-lasting taurine effects. Taurine perfusion in a free-Ca2+ medium did not induce changes in either field excitatory synaptic potentials (fEPSP) slope or fiber volley (FV) amplitude. Intracellular recordings with a micropipette filled with the Ca2+ chelator BAPTA, prevented the EPSP potentiation induced by taurine in the impaled cell, whereas a long-lasting potentiation of the simultaneously recorded fEPSP was obtained. The depletion of intracellular Ca2+ stores by thapsigargin (1 microM), an inhibitor of endosomal Ca2+-ATPase, transformed the taurine-induced potentiation into a transitory process that declined to basal values after taurine withdrawal. Taurine-induced potentiation was not significantly affected by kynurenate (glutamate receptor antagonist), or nifedipine (high-voltage-activated Ca2+ channel antagonist). But, the presence of nickel (50 microM), an antagonist of low-voltage-activated Ca2+ channel, inhibited the taurine-induced potentiation, indicating that Ca2+ influx through this type of Ca2+ channels could account for the Ca2+ requirement of the taurine-induced potentiation. Occlusion experiments between tetanus-induced long-term potentiation (LTP) and taurine-induced potentiation indicate that both processes share some common mechanisms during the maintenance period.
Collapse
Affiliation(s)
- N del Olmo
- Departamento de Investigación, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | | | | |
Collapse
|
9
|
Satoh H. Inhibition by taurine of the inwardly rectifying K+ current in guinea pig ventricular cardiomyocytes. Eur J Pharmacol 1998; 346:309-13. [PMID: 9652374 DOI: 10.1016/s0014-2999(98)00048-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Effects of taurine on the inwardly rectifying K+ current (IK1) in isolated guinea pig ventricular cardiomyocytes were examined using patch voltage-clamp methods. All experiments were performed at 36 degrees C. Taurine (10-20 mM) increased the action potential duration, but failed to affect the resting potential. Holding potential was maintained at -30 mV. The current was activated with an inwardly going rectification, and was completely blocked by Ba2+ (2 mM). Taurine inhibited IK1 at - 120 mV by 28.3+/-1.1% (n=6, P < 0.05) at 10 mM and by 36.0+/-2.1% (n=6, P < 0.01) at 20 mM. The reversal potential was shifted in the hyperpolarizing direction by 3.7+/-0.6 mV (n=6) at 20 mM. In inside-out patch-clamp experiments, the amplitude of unitary channels was -2.7+/-0.3 pA (n=21) at -90 mV. Symmetrical high-K+ (150 mM) solutions in both bath and pipette were used. The channel conductance was 32+/-2 pS (n=9). Taurine did not affect channel conductance, but markedly decreased the open probability at - 120 mV of channel by 21.5+/-2.4% (n=8, P < 0.01) at 10 mM, and by 56.7+/-3.8% (n=8, P < 0.001) at 20 mM. These responses were almost reversible. These results suggest that taurine directly modulates the open probability of the inwardly rectifying K+ current, resulting in regulation of the functions of heart cells.
Collapse
Affiliation(s)
- H Satoh
- Department of Pharmacology, Nara Medical University, Kashihara, Japan.
| |
Collapse
|