3
|
Bjånes TK, Jordheim LP, Schjøtt J, Kamceva T, Cros-Perrial E, Langer A, Ruiz de Garibay G, Kotopoulis S, McCormack E, Riedel B. Intracellular Cytidine Deaminase Regulates Gemcitabine Metabolism in Pancreatic Cancer Cell Lines. Drug Metab Dispos 2020; 48:153-158. [PMID: 31871136 PMCID: PMC11022907 DOI: 10.1124/dmd.119.089334] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/11/2019] [Indexed: 04/19/2024] Open
Abstract
Cytidine deaminase (CDA) is a determinant of in vivo gemcitabine elimination kinetics and cellular toxicity. The impact of CDA activity in pancreatic ductal adenocarcinoma (PDAC) cell lines has not been elucidated. We hypothesized that CDA regulates gemcitabine flux through its inactivation and activation pathways in PDAC cell lines. Three PDAC cell lines (BxPC-3, MIA PaCa-2, and PANC-1) were incubated with 10 or 100 µM gemcitabine for 60 minutes or 24 hours, with or without tetrahydrouridine, a CDA inhibitor. Extracellular inactive gemcitabine metabolite (dFdU) and intracellular active metabolite (dFdCTP) were quantified with liquid chromatography tandem mass spectrometry. Cellular expression of CDA was assessed with real-time PCR and Western blot. Gemcitabine conversion to dFdU was extensive in BxPC-3 and low in MIA PaCa-2 and PANC-1, in accordance with their respective CDA expression levels. CDA inhibition was associated with low or undetectable dFdU in all three cell lines. After 24 hours gemcitabine incubation, dFdCTP was highest in MIA PaCa-2 and lowest in BxPC-3. CDA inhibition resulted in a profound dFdCTP increase in BxPC-3 but not in MIA PaCa-2 or PANC-1. dFdCTP concentrations were not higher after exposure to 100 versus 10 µM gemcitabine when CDA activities were low (MIA PaCa-2 and PANC-1) or inhibited (BxPC-3). The results suggest a regulatory role of CDA for gemcitabine activation in PDAC cells but within limits related to the capacity in the activation pathway in the cell lines. SIGNIFICANCE STATEMENT: The importance of cytidine deaminase (CDA) for cellular gemcitabine toxicity, linking a lower activity to higher toxicity, is well described. An underlying assumption is that CDA, by inactivating gemcitabine, limits the amount available for the intracellular activation pathway. Our study is the first to illustrate this regulatory role of CDA in pancreatic ductal adenocarcinoma cell lines by quantifying intracellular and extracellular gemcitabine metabolite concentrations.
Collapse
Affiliation(s)
- Tormod K Bjånes
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology (T.K.B., J.S., T.K., B.R.) and National Centre for Ultrasound in Gastroenterology (S.K.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine (T.K.B., J.S., A.L., G.R.G., E.M., B.R.), Centre for Cancer Biomarkers, Department of Clinical Science (A.L., G.R.G., E.M.), and Department of Clinical Medicine (S.K.), University of Bergen, Bergen, Norway; Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France (L.P.J., E.C.-P.); and Phoenix Solutions AS, Oslo, Norway (S.K.)
| | - Lars Petter Jordheim
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology (T.K.B., J.S., T.K., B.R.) and National Centre for Ultrasound in Gastroenterology (S.K.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine (T.K.B., J.S., A.L., G.R.G., E.M., B.R.), Centre for Cancer Biomarkers, Department of Clinical Science (A.L., G.R.G., E.M.), and Department of Clinical Medicine (S.K.), University of Bergen, Bergen, Norway; Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France (L.P.J., E.C.-P.); and Phoenix Solutions AS, Oslo, Norway (S.K.)
| | - Jan Schjøtt
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology (T.K.B., J.S., T.K., B.R.) and National Centre for Ultrasound in Gastroenterology (S.K.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine (T.K.B., J.S., A.L., G.R.G., E.M., B.R.), Centre for Cancer Biomarkers, Department of Clinical Science (A.L., G.R.G., E.M.), and Department of Clinical Medicine (S.K.), University of Bergen, Bergen, Norway; Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France (L.P.J., E.C.-P.); and Phoenix Solutions AS, Oslo, Norway (S.K.)
| | - Tina Kamceva
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology (T.K.B., J.S., T.K., B.R.) and National Centre for Ultrasound in Gastroenterology (S.K.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine (T.K.B., J.S., A.L., G.R.G., E.M., B.R.), Centre for Cancer Biomarkers, Department of Clinical Science (A.L., G.R.G., E.M.), and Department of Clinical Medicine (S.K.), University of Bergen, Bergen, Norway; Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France (L.P.J., E.C.-P.); and Phoenix Solutions AS, Oslo, Norway (S.K.)
| | - Emeline Cros-Perrial
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology (T.K.B., J.S., T.K., B.R.) and National Centre for Ultrasound in Gastroenterology (S.K.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine (T.K.B., J.S., A.L., G.R.G., E.M., B.R.), Centre for Cancer Biomarkers, Department of Clinical Science (A.L., G.R.G., E.M.), and Department of Clinical Medicine (S.K.), University of Bergen, Bergen, Norway; Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France (L.P.J., E.C.-P.); and Phoenix Solutions AS, Oslo, Norway (S.K.)
| | - Anika Langer
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology (T.K.B., J.S., T.K., B.R.) and National Centre for Ultrasound in Gastroenterology (S.K.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine (T.K.B., J.S., A.L., G.R.G., E.M., B.R.), Centre for Cancer Biomarkers, Department of Clinical Science (A.L., G.R.G., E.M.), and Department of Clinical Medicine (S.K.), University of Bergen, Bergen, Norway; Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France (L.P.J., E.C.-P.); and Phoenix Solutions AS, Oslo, Norway (S.K.)
| | - Gorka Ruiz de Garibay
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology (T.K.B., J.S., T.K., B.R.) and National Centre for Ultrasound in Gastroenterology (S.K.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine (T.K.B., J.S., A.L., G.R.G., E.M., B.R.), Centre for Cancer Biomarkers, Department of Clinical Science (A.L., G.R.G., E.M.), and Department of Clinical Medicine (S.K.), University of Bergen, Bergen, Norway; Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France (L.P.J., E.C.-P.); and Phoenix Solutions AS, Oslo, Norway (S.K.)
| | - Spiros Kotopoulis
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology (T.K.B., J.S., T.K., B.R.) and National Centre for Ultrasound in Gastroenterology (S.K.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine (T.K.B., J.S., A.L., G.R.G., E.M., B.R.), Centre for Cancer Biomarkers, Department of Clinical Science (A.L., G.R.G., E.M.), and Department of Clinical Medicine (S.K.), University of Bergen, Bergen, Norway; Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France (L.P.J., E.C.-P.); and Phoenix Solutions AS, Oslo, Norway (S.K.)
| | - Emmet McCormack
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology (T.K.B., J.S., T.K., B.R.) and National Centre for Ultrasound in Gastroenterology (S.K.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine (T.K.B., J.S., A.L., G.R.G., E.M., B.R.), Centre for Cancer Biomarkers, Department of Clinical Science (A.L., G.R.G., E.M.), and Department of Clinical Medicine (S.K.), University of Bergen, Bergen, Norway; Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France (L.P.J., E.C.-P.); and Phoenix Solutions AS, Oslo, Norway (S.K.)
| | - Bettina Riedel
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology (T.K.B., J.S., T.K., B.R.) and National Centre for Ultrasound in Gastroenterology (S.K.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine (T.K.B., J.S., A.L., G.R.G., E.M., B.R.), Centre for Cancer Biomarkers, Department of Clinical Science (A.L., G.R.G., E.M.), and Department of Clinical Medicine (S.K.), University of Bergen, Bergen, Norway; Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France (L.P.J., E.C.-P.); and Phoenix Solutions AS, Oslo, Norway (S.K.)
| |
Collapse
|
4
|
Huff SE, Mohammed FA, Yang M, Agrawal P, Pink J, Harris ME, Dealwis CG, Viswanathan R. Structure-Guided Synthesis and Mechanistic Studies Reveal Sweetspots on Naphthyl Salicyl Hydrazone Scaffold as Non-Nucleosidic Competitive, Reversible Inhibitors of Human Ribonucleotide Reductase. J Med Chem 2018; 61:666-680. [PMID: 29253340 PMCID: PMC5808567 DOI: 10.1021/acs.jmedchem.7b00530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribonucleotide reductase (RR), an established cancer target, is usually inhibited by antimetabolites, which display multiple cross-reactive effects. Recently, we discovered a naphthyl salicyl acyl hydrazone-based inhibitor (NSAH or E-3a) of human RR (hRR) binding at the catalytic site (C-site) and inhibiting hRR reversibly. We herein report the synthesis and biochemical characterization of 25 distinct analogs. We designed each analog through docking to the C-site of hRR based on our 2.7 Å X-ray crystal structure (PDB ID: 5TUS). Broad tolerance to minor structural variations preserving inhibitory potency is observed. E-3f (82% yield) displayed an in vitro IC50 of 5.3 ± 1.8 μM against hRR, making it the most potent in this series. Kinetic assays reveal that E-3a, E-3c, E-3t, and E-3w bind and inhibit hRR through a reversible and competitive mode. Target selectivity toward the R1 subunit of hRR is established, providing a novel way of inhibition of this crucial enzyme.
Collapse
Affiliation(s)
- Sarah E. Huff
- Department of Chemistry, Case Western Reserve University, College of Arts and Sciences, Millis Science Center: Rm 216, 2074, Adelbert Road, Cleveland, OH 44106-7078
| | - Faiz Ahmad Mohammed
- Department of Pharmacology, Case Western Reserve University, School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106
| | - Mu Yang
- Department of Chemistry, Case Western Reserve University, College of Arts and Sciences, Millis Science Center: Rm 216, 2074, Adelbert Road, Cleveland, OH 44106-7078
| | - Prashansa Agrawal
- Department of Chemistry, Case Western Reserve University, College of Arts and Sciences, Millis Science Center: Rm 216, 2074, Adelbert Road, Cleveland, OH 44106-7078
| | - John Pink
- Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106
| | - Michael E. Harris
- Department of Chemistry, University of Florida, PO Box 117200, Gainseville, FL 32611
| | - Chris G. Dealwis
- Department of Pharmacology, Case Western Reserve University, School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106
- Center for Proteomics and the Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106
| | - Rajesh Viswanathan
- Frank Hovorka Assistant Professor of Chemistry and Scientific Oversight Board Member – Small Molecule Drug Discovery Core, CWRU, 10900 Euclid Ave, Cleveland, OH 44106
- Department of Chemistry, Case Western Reserve University, College of Arts and Sciences, Millis Science Center: Rm 216, 2074, Adelbert Road, Cleveland, OH 44106-7078
| |
Collapse
|