1
|
Ng JKM, Li JJX. Cytomorphologic analysis of pulmonary neuroendocrine tumors - The physical effect of abrasion and aspiration on cytomorphology. Ann Diagn Pathol 2024; 73:152378. [PMID: 39342665 DOI: 10.1016/j.anndiagpath.2024.152378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Neuroendocrine tumors of the lung display characteristic cytomorphologic features allowing direct diagnosis. The specificity of these features in distinguishing subtypes of neuroendocrine tumors, and their differences among types of cytologic specimen poses as interpretative potential pitfalls. This study reviewed and compared bronchial, effusion fluid and fine-needle aspiration cytology specimens of neuroendocrine tumors of the lung to address these issues. Histology-proven cytology specimens of neuroendocrine tumors were reviewed for cytomorphological parameters focusing on reported specific neuroendocrine nuclear and background features. Totally, 46 cases (26 bronchial, 11 effusion and 9 aspirate specimens), corresponding to 37 small cell carcinomas, 7 neuroendocrine carcinomas and 2 carcinoids were reviewed. Nuclear moulding (n = 35/37, 95 %), naked nuclei (n = 33/37, 89 %) and marked nuclear irregularity (n = 32/37, 86 %) were the three most common features of small cell carcinoma. The only specific feature for small cell carcinoma was the lack of prominent nucleoli (p = 0.004). For pulmonary carcinoids, in addition to the above features, other features associated with neuroendocrine carcinoma reviewed including crush artifact and necrotic material were absent. Compared to bronchial and aspiration cytology, crush artifact (p < 0.001) and necrotic material (p = 0.014) were absent on effusion fluid specimens and naked nuclei were less frequently seen (p = 0.022), while prominent nucleoli were more often observed (p = 0.005). Nuclear moulding, irregularity and naked nuclei are common but not unique features to small cell carcinomas. Effusion fluid specimens have "cleaner" backgrounds while displaying greater nuclear atypia. The type of cytologic preparation/specimen is an important factor which must be considered during diagnostic interpretation.
Collapse
Affiliation(s)
- Joanna K M Ng
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Joshua J X Li
- Department of Pathology, Queen Mary Hospital, The University of Hong Kong, Hong Kong.
| |
Collapse
|
2
|
Rose M, Burgess JT, Cheong CM, Adams MN, Shahrouzi P, O’Byrne KJ, Richard DJ, Bolderson E. The expression and role of the Lem-D proteins Ankle2, Emerin, Lemd2, and TMPO in triple-negative breast cancer cell growth. Front Oncol 2024; 14:1222698. [PMID: 38720803 PMCID: PMC11076778 DOI: 10.3389/fonc.2024.1222698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/28/2024] [Indexed: 05/12/2024] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a sub-classification of breast carcinomas, which leads to poor survival outcomes for patients. TNBCs do not possess the hormone receptors that are frequently targeted as a therapeutic in other cancer subtypes and, therefore, chemotherapy remains the standard treatment for TNBC. Nuclear envelope proteins are frequently dysregulated in cancer cells, supporting their potential as novel cancer therapy targets. The Lem-domain (Lem-D) (LAP2, Emerin, MAN1 domain, and Lem-D) proteins are a family of inner nuclear membrane proteins, which share a ~45-residue Lem-D. The Lem-D proteins, including Ankle2, Lemd2, TMPO, and Emerin, have been shown to be associated with many of the hallmarks of cancer. This study aimed to define the association between the Lem-D proteins and TNBC and determine whether these proteins could be promising therapeutic targets. Methods GENT2, TCGA, and KM plotter were utilized to investigate the expression and prognostic implications of several Lem-D proteins: Ankle2, TMPO, Emerin, and Lemd2 in publicly available breast cancer patient data. Immunoblotting and immunofluorescent analysis of immortalized non-cancerous breast cells and a panel of TNBC cells were utilized to establish whether protein expression of the Lem-D proteins was significantly altered in TNBC. SiRNA was used to decrease individual Lem-D protein expression, and functional assays, including proliferation assays and apoptosis assays, were conducted. Results The Lem-D proteins were generally overexpressed in TNBC patient samples at the mRNA level and showed variable expression at the protein level in TNBC cell lysates. Similarly, protein levels were generally negatively correlated with patient survival outcomes. siRNA-mediated depletion of the individual Lem-D proteins in TNBC cells induced aberrant nuclear morphology, decreased proliferation, and induced cell death. However, minimal effects on nuclear morphology or cell viability were observed following Lem-D depletion in non-cancerous MCF10A cells. Conclusion There is evidence to suggest that Ankle2, TMPO, Emerin, and Lemd2 expressions are correlated with breast cancer patient outcomes, but larger patient sample numbers are required to confirm this. siRNA-mediated depletion of these proteins was shown to specifically impair TNBC cell growth, suggesting that the Lem-D proteins may be a specific anti-cancer target.
Collapse
Affiliation(s)
- Maddison Rose
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Joshua T. Burgess
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Chee Man Cheong
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mark N. Adams
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Parastoo Shahrouzi
- Department of Medical Genetics, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kenneth J. O’Byrne
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Cancer Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J. Richard
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Schirmer EC, Latonen L, Tollis S. Nuclear size rectification: A potential new therapeutic approach to reduce metastasis in cancer. Front Cell Dev Biol 2022; 10:1022723. [PMID: 36299481 PMCID: PMC9589484 DOI: 10.3389/fcell.2022.1022723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 03/07/2024] Open
Abstract
Research on metastasis has recently regained considerable interest with the hope that single cell technologies might reveal the most critical changes that support tumor spread. However, it is possible that part of the answer has been visible through the microscope for close to 200 years. Changes in nuclear size characteristically occur in many cancer types when the cells metastasize. This was initially discarded as contributing to the metastatic spread because, depending on tumor types, both increases and decreases in nuclear size could correlate with increased metastasis. However, recent work on nuclear mechanics and the connectivity between chromatin, the nucleoskeleton, and the cytoskeleton indicate that changes in this connectivity can have profound impacts on cell mobility and invasiveness. Critically, a recent study found that reversing tumor type-dependent nuclear size changes correlated with reduced cell migration and invasion. Accordingly, it seems appropriate to now revisit possible contributory roles of nuclear size changes to metastasis.
Collapse
Affiliation(s)
- Eric C. Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Sylvain Tollis
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
The Role of Emerin in Cancer Progression and Metastasis. Int J Mol Sci 2021; 22:ijms222011289. [PMID: 34681951 PMCID: PMC8537873 DOI: 10.3390/ijms222011289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022] Open
Abstract
It is commonly recognized in the field that cancer cells exhibit changes in the size and shape of their nuclei. These features often serve as important biomarkers in the diagnosis and prognosis of cancer patients. Nuclear size can significantly impact cell migration due to its incredibly large size. Nuclear structural changes are predicted to regulate cancer cell migration. Nuclear abnormalities are common across a vast spectrum of cancer types, regardless of tissue source, mutational spectrum, and signaling dependencies. The pervasiveness of nuclear alterations suggests that changes in nuclear structure may be crucially linked to the transformation process. The factors driving these nuclear abnormalities, and the functional consequences, are not completely understood. Nuclear envelope proteins play an important role in regulating nuclear size and structure in cancer. Altered expression of nuclear lamina proteins, including emerin, is found in many cancers and this expression is correlated with better clinical outcomes. A model is emerging whereby emerin, as well as other nuclear lamina proteins, binding to the nucleoskeleton regulates the nuclear structure to impact metastasis. In this model, emerin and lamins play a central role in metastatic transformation, since decreased emerin expression during transformation causes the nuclear structural defects required for increased cell migration, intravasation, and extravasation. Herein, we discuss the cellular functions of nuclear lamina proteins, with a particular focus on emerin, and how these functions impact cancer progression and metastasis.
Collapse
|
5
|
An HJ, Kim MH, Na JM, Yang JW, Baek HJ, Ryu KH, Song DH. Diagnostic Utility of p62 Expression in Intranuclear Inclusions in Thyroid Core Needle Biopsy Specimens. In Vivo 2021; 35:1769-1775. [PMID: 33910861 DOI: 10.21873/invivo.12436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Core needle biopsy (CNB) has been widely used as an alternative method to ultrasound-guided fine-needle aspiration cytology for histological diagnosis of thyroid specimens. However, nuclear artifactual vacuoles (NuVas) produced during tissue processing can be very difficult and sometimes impossible to distinguish from intranuclear inclusions (NuIns). P62 is an autophagy receptor that recognizes, targets, and eliminates toxic cellular materials during autophagy. Herein, we examined the utility of p62 immunohistochemical staining to detect NuIns in thyroid core needle biopsy specimens. PATIENTS AND METHODS Thirty-five thyroid CNB slides from 32 patients and corresponding resection specimens stained with hematoxylin and eosin were reviewed by two pathologists. The immunohistochemical staining pattern of p62 was used to differentiate NuIns from NuVas. The diameter of each nucleus (A) and NuIn (B) was measured, and the number of p62-expressing NuIn-positive (p62In) cells was counted using 1/2 (B/A) and 1/3 (B/A) criteria. The criterion of 1/3 includes NuIns larger than 1/3 and smaller than 1/2 of the nuclear diameter. The criteria of 1/2 includes NuIns larger than 1/2 of the nuclear diameter. RESULTS By applying the 1/2 criterion, there were no p62In cells in follicular adenoma (FA) samples. However, in papillary thyroid carcinoma (PTC) samples, 22 of 25 specimens exhibited p62In cells. The sensitivity and specificity to distinguish FA from PTC using the 1/2 criterion were 0.88 and 1.00, respectively. By applying the 1/3 criterion, there was one p62In cell hit in FA samples. However, 23 of 25 PTC specimens showed p62In cells. The sensitivity and specificity to distinguish FA from PTC using the 1/3 criterion were 1.00 and 0.90, respectively. CONCLUSION P62 is a useful marker for distinguishing FA and PTC based on CNB specimens. We suggest the 1/2 criteria for identifying p62In cells.
Collapse
Affiliation(s)
- Hyo Jung An
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea.,Department of Pathology, Gyeongsang National University School of Medicine, Jinju, Republic of Korea.,Department of Pathology, Gyeongsang Institute of Health Science, Jinju, Republic of Korea
| | - Min Hye Kim
- Department of Pathology, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Ji Min Na
- Department of Pathology, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jung Wook Yang
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, Republic of Korea.,Department of Pathology, Gyeongsang Institute of Health Science, Jinju, Republic of Korea.,Department of Pathology, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Hye Jin Baek
- Department of Radiology, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea.,Department of Radiology, Gyeongsang National University School of Medicine, Jinju, Republic of Korea.,Department of Radiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Kyeong Hwa Ryu
- Department of Radiology, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea.,Department of Radiology, Gyeongsang National University School of Medicine, Jinju, Republic of Korea.,Department of Radiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Dae Hyun Song
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea; .,Department of Pathology, Gyeongsang National University School of Medicine, Jinju, Republic of Korea.,Department of Pathology, Gyeongsang Institute of Health Science, Jinju, Republic of Korea
| |
Collapse
|
6
|
Emerging roles of lamins and DNA damage repair mechanisms in ovarian cancer. Biochem Soc Trans 2020; 48:2317-2333. [DOI: 10.1042/bst20200713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Lamins are type V intermediate filament proteins which are ubiquitously present in all metazoan cells providing a platform for binding of chromatin and related proteins, thereby serving a wide range of nuclear functions including DNA damage repair. Altered expression of lamins in different subtypes of cancer is evident from researches worldwide. But whether cancer is a consequence of this change or this change is a consequence of cancer is a matter of future investigation. However changes in the expression levels of lamins is reported to have direct or indirect association with cancer progression or have regulatory roles in common neoplastic symptoms like higher nuclear deformability, increased genomic instability and reduced susceptibility to DNA damaging agents. It has already been proved that loss of A type lamin positively regulates cathepsin L, eventually leading to degradation of several DNA damage repair proteins, hence impairing DNA damage repair pathways and increasing genomic instability. It is established in ovarian cancer, that the extent of alteration in nuclear morphology can determine the degree of genetic changes and thus can be utilized to detect low to high form of serous carcinoma. In this review, we have focused on ovarian cancer which is largely caused by genomic alterations in the DNA damage response pathways utilizing proteins like RAD51, BRCA1, 53BP1 which are regulated by lamins. We have elucidated the current understanding of lamin expression in ovarian cancer and its implications in the regulation of DNA damage response pathways that ultimately result in telomere deformation and genomic instability.
Collapse
|
7
|
Fischer EG. Nuclear Morphology and the Biology of Cancer Cells. Acta Cytol 2020; 64:511-519. [PMID: 32570234 DOI: 10.1159/000508780] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/19/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND For more than a century, diagnostic pathologists have used morphologic abnormalities of the nucleus as essential diagnostic features to distinguish benign from malignant cells. These features include nuclear enlargement and increased nuclear-to-cytoplasmic ratio, nuclear membrane irregularities, hyperchromasia, and abnormal chromatin distribution. As our knowledge about the genetic and epigenetic abnormalities of cancer cells has increased in recent decades, the pathophysiologic mechanisms that underlie these morphologic abnormalities remain incompletely understood. SUMMARY This review attempts to summarize biologic abnormalities in malignant cells related to these morphologic changes. The molecular anatomy of the nuclear envelope in normal and malignant cells is discussed as well as regulation of nuclear size and shape, regulation of signal transduction pathways by molecules of the nuclear envelope, chromatin distribution, and the effects of HPV infection on dysplastic cells in the uterine cervix. Key Message: Causes of morphologic nuclear abnormalities in malignant cells are likely multifactorial. They probably include mutations, dysregulation of signal transduction pathways, abnormal gene expression patterns, alterations of nuclear envelope proteins and chromatin, and aneuploidy.
Collapse
Affiliation(s)
- Edgar G Fischer
- Division of Surgical Pathology and Cytopathology, Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA,
| |
Collapse
|
8
|
Schwertheim S, Theurer S, Jastrow H, Herold T, Ting S, Westerwick D, Bertram S, Schaefer CM, Kälsch J, Baba HA, Schmid KW. New insights into intranuclear inclusions in thyroid carcinoma: Association with autophagy and with BRAFV600E mutation. PLoS One 2019; 14:e0226199. [PMID: 31841566 PMCID: PMC6913918 DOI: 10.1371/journal.pone.0226199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background Intranuclear inclusions (NI) in normal and neoplastic tissues have been known for years, representing one of the diagnostic criteria for papillary thyroid carcinoma (PTC). BRAF activation is involved among others in autophagy. NI in hepatocellular carcinoma contain autophagy-associated proteins. Our aim was to clarify if NI in thyroid carcinoma (TC) have a biological function. Methods NI in 107 paraffin-embedded specimens of TC including all major subtypes were analyzed. We considered an inclusion as positive if it was delimited by a lamin AC (nuclear membrane marker) stained intact membrane and completely closed. Transmission electron microscopy (TEM), immunohistochemistry (IHC), immunofluorescence (IF) and 3D reconstruction were performed to investigate content and shape of NI; BRAFV600E mutation was analyzed by next generation sequencing. Results In 29% of the TCs at least one lamin AC positive intranuclear inclusion was detected; most frequently (76%) in PTCs. TEM analyses revealed degenerated organelles and heterolysosomes within such NI; 3D reconstruction of IF stained nuclei confirmed complete closure by the nuclear membrane without any contact to the cytoplasm. NI were positively stained for the autophagy-associated proteins LC3B, ubiquitin, cathepsin D, p62/sequestosome1 and cathepsin B in 14–29% of the cases. Double-IF revealed co-localization of LC3B & ubiquitin, p62 & ubiquitin and LC3B & p62 in the same NI. BRAFV600E mutation, exclusively detected in PTCs, was significantly associated with the number of NI/PTC (p = 0.042) and with immunoreactivity for autophagy-associated proteins in the NI (p≤0.035). BRAF-IHC revealed that some of these BRAF-positive thyrocytes contained mutant BRAF in their NI co-localized with autophagy-associated proteins. Conclusions NI are completely delimited by nuclear membrane in TC. The presence of autophagy-associated proteins within the NI together with degenerated organelles and lysosomal proteases suggests their involvement in autophagy and proteolysis. Whether and how BRAFV600E protein is degraded in NI needs further investigation.
Collapse
Affiliation(s)
- Suzan Schwertheim
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail: (HAB); (SS)
| | - Sarah Theurer
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Holger Jastrow
- Institute of Anatomy and Electron Microscopy Unit of Imaging Center Essen, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Thomas Herold
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Saskia Ting
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniela Westerwick
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefanie Bertram
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph M. Schaefer
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Julia Kälsch
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Hideo A. Baba
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail: (HAB); (SS)
| | - Kurt W. Schmid
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Abstract
Pancreatic cancer is an aggressive and intractable malignancy with high mortality. This is due in part to a high resistance to chemotherapeutics and radiation treatment conferred by diverse regulatory mechanisms. Among these, constituents of the nuclear envelope play a significant role in regulating oncogenesis and pancreatic tumor biology, and this review focuses on three specific components and their roles in cancer. The LINC complex is a nuclear envelope component formed by proteins with SUN and KASH domains that interact in the periplasmic space of the nuclear envelope. These interactions functionally and structurally couple the cytoskeleton to chromatin and facilitates gene regulation informed by cytoplasmic activity. Furthermore, cancer cell invasiveness is impacted by LINC complex biology. The nuclear lamina is adjacent to the inner nuclear membrane of the nuclear envelope and can actively regulate chromatin in addition to providing structural integrity to the nucleus. A disrupted lamina can impart biophysical compromise to nuclear structure and function, as well as form dysfunctional micronuclei that may lead to genomic instability and chromothripsis. In close relationship to the nuclear lamina is the nuclear pore complex, a large megadalton structure that spans both outer and inner membranes of the nuclear envelope. The nuclear pore complex mediates bidirectional nucleocytoplasmic transport and is comprised of specialized proteins called nucleoporins that are overexpressed in many cancers and are diagnostic markers for oncogenesis. Furthermore, recent demonstration of gene regulatory functions for discrete nucleoporins independent of their nuclear trafficking function suggests that these proteins may contribute more to malignant phenotypes beyond serving as biomarkers. The nuclear envelope is thus a complex, intricate regulator of cell signaling, with roles in pancreatic tumorigenesis and general oncogenic transformation.
Collapse
Affiliation(s)
| | - Randolph S. Faustino
- Genetics and Genomics, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD 57105, USA
| |
Collapse
|
10
|
Detection of SUN1 Splicing Variants at the mRNA and Protein Levels in Cancer. Methods Mol Biol 2018. [PMID: 30141053 DOI: 10.1007/978-1-4939-8691-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex, containing the proteins SUN and nesprin, is the fundamental structural unit of the nuclear envelope. The neoplastic-based regulation of the LINC complex in cancer tissues has become increasingly recognized in recent years, including the altered expression, somatic mutation, and methylation of genes. However, precisely how mutations and deregulated expression of the LINC complex contribute to the pathogenic mechanisms of tumorigenesis remain to be elucidated, mainly because of several technical difficulties. First, both the SUN and SYNE (encoding nesprin) genes give rise to a vast number of splicing variants. Second, immunoprecipitation experiments of endogenous SUN and nesprin proteins are difficult owing to the lack of suitable reagents as well as the limited solubility of these proteins in mild extraction conditions. Here, we describe three protocols to investigate these aspects: (1) immunohistochemistry to determine the expression levels and localization of the LINC complex in cancer tissue, (2) detection of SUN1 splicing variants at the mRNA level, and (3) detection of SUN1 splicing variants and binding partners at the protein level.
Collapse
|
11
|
Basic Molecular Pathology and Cytogenetics for Practicing Pathologists: Correlation With Morphology and With a Focus on Aspects of Diagnostic or Therapeutic Utility. Adv Anat Pathol 2016; 23:368-380. [PMID: 27740961 DOI: 10.1097/pap.0000000000000124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Morphology, as confronted in the everyday practice, often correlates with specific molecular features, which have important implications not only in pathogenesis and in diagnosis but also in prognosis and therapy. Thus, it is important that the classical pathology includes a sound knowledge of molecular aspects of disease. These molecular concepts are complex and not easily understood by all engaged in the routine practice of histopathology. Thus, the aim of this review is to present a summary of most of the necessary concepts for pathologists involving molecular pathology and genetics, beginning from basic definitions and mechanisms to major abnormalities and the methodology to detect them, correlating at the same time, the specific morphologic features associated with every abnormality.
Collapse
|
12
|
Bell ES, Lammerding J. Causes and consequences of nuclear envelope alterations in tumour progression. Eur J Cell Biol 2016; 95:449-464. [PMID: 27397692 DOI: 10.1016/j.ejcb.2016.06.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022] Open
Abstract
Morphological changes in the size and shape of the nucleus are highly prevalent in cancer, but the underlying molecular mechanisms and the functional relevance remain poorly understood. Nuclear envelope proteins, which can modulate nuclear shape and organization, have emerged as key components in a variety of signalling pathways long implicated in tumourigenesis and metastasis. The expression of nuclear envelope proteins is altered in many cancers, and changes in levels of nuclear envelope proteins lamins A and C are associated with poor prognosis in multiple human cancers. In this review we highlight the role of the nuclear envelope in different processes important for tumour initiation and cancer progression, with a focus on lamins A and C. Lamin A/C controls many cellular processes with key roles in cancer, including cell invasion, stemness, genomic stability, signal transduction, transcriptional regulation, and resistance to mechanical stress. In addition, we discuss potential mechanisms mediating the changes in lamin levels observed in many cancers. A better understanding of cause-and-effect relationships between lamin expression and tumour progression could reveal important mechanisms for coordinated regulation of oncogenic processes, and indicate therapeutic vulnerabilities that could be exploited for improved patient outcome.
Collapse
Affiliation(s)
- Emily S Bell
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, United States
| | - Jan Lammerding
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
13
|
|
14
|
Matsumoto A, Sakamoto C, Matsumori H, Katahira J, Yasuda Y, Yoshidome K, Tsujimoto M, Goldberg IG, Matsuura N, Nakao M, Saitoh N, Hieda M. Loss of the integral nuclear envelope protein SUN1 induces alteration of nucleoli. Nucleus 2016; 7:68-83. [PMID: 26962703 DOI: 10.1080/19491034.2016.1149664] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A supervised machine learning algorithm, which is qualified for image classification and analyzing similarities, is based on multiple discriminative morphological features that are automatically assembled during the learning processes. The algorithm is suitable for population-based analysis of images of biological materials that are generally complex and heterogeneous. Here we used the algorithm wndchrm to quantify the effects on nucleolar morphology of the loss of the components of nuclear envelope in a human mammary epithelial cell line. The linker of nucleoskeleton and cytoskeleton (LINC) complex, an assembly of nuclear envelope proteins comprising mainly members of the SUN and nesprin families, connects the nuclear lamina and cytoskeletal filaments. The components of the LINC complex are markedly deficient in breast cancer tissues. We found that a reduction in the levels of SUN1, SUN2, and lamin A/C led to significant changes in morphologies that were computationally classified using wndchrm with approximately 100% accuracy. In particular, depletion of SUN1 caused nucleolar hypertrophy and reduced rRNA synthesis. Further, wndchrm revealed a consistent negative correlation between SUN1 expression and the size of nucleoli in human breast cancer tissues. Our unbiased morphological quantitation strategies using wndchrm revealed an unexpected link between the components of the LINC complex and the morphologies of nucleoli that serves as an indicator of the malignant phenotype of breast cancer cells.
Collapse
Affiliation(s)
- Ayaka Matsumoto
- a Osaka University , Graduate School of Medicine and Health Science , Suita City , Osaka , Japan
| | - Chiyomi Sakamoto
- b Department of Medical Cell Biology , Institute of Molecular Embryology and Genetics, Kumamoto University , Kumamoto , Japan
| | - Haruka Matsumori
- b Department of Medical Cell Biology , Institute of Molecular Embryology and Genetics, Kumamoto University , Kumamoto , Japan
| | - Jun Katahira
- c Osaka University , Graduate School of Frontier Bioscience , Suita City , Osaka , Japan
| | - Yoko Yasuda
- b Department of Medical Cell Biology , Institute of Molecular Embryology and Genetics, Kumamoto University , Kumamoto , Japan
| | - Katsuhide Yoshidome
- d Department of Breast Surgery , Osaka Police Hospital , Tennoji-ku , Osaka , Japan
| | - Masahiko Tsujimoto
- e Department of Pathology , Osaka Police Hospital , Tennoji-ku , Osaka , Japan
| | - Ilya G Goldberg
- f Image Informatics and Computational Biology Unit, Laboratory of Genetics , National Institute on Aging, National Institutes of Health , Baltimore , MD USA
| | - Nariaki Matsuura
- a Osaka University , Graduate School of Medicine and Health Science , Suita City , Osaka , Japan
| | - Mitsuyoshi Nakao
- b Department of Medical Cell Biology , Institute of Molecular Embryology and Genetics, Kumamoto University , Kumamoto , Japan.,g Core Research for Evolutional Science and Technology (CREST) , Japan Agency for Medical Research and Development , Tokyo , Japan
| | - Noriko Saitoh
- b Department of Medical Cell Biology , Institute of Molecular Embryology and Genetics, Kumamoto University , Kumamoto , Japan
| | - Miki Hieda
- a Osaka University , Graduate School of Medicine and Health Science , Suita City , Osaka , Japan
| |
Collapse
|
15
|
Vuković LD, Jevtić P, Edens LJ, Levy DL. New Insights into Mechanisms and Functions of Nuclear Size Regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:1-59. [PMID: 26940517 DOI: 10.1016/bs.ircmb.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nuclear size is generally maintained within a defined range in a given cell type. Changes in cell size that occur during cell growth, development, and differentiation are accompanied by dynamic nuclear size adjustments in order to establish appropriate nuclear-to-cytoplasmic volume relationships. It has long been recognized that aberrations in nuclear size are associated with certain disease states, most notably cancer. Nuclear size and morphology must impact nuclear and cellular functions. Understanding these functional implications requires an understanding of the mechanisms that control nuclear size. In this review, we first provide a general overview of the diverse cellular structures and activities that contribute to nuclear size control, including structural components of the nucleus, effects of DNA amount and chromatin compaction, signaling, and transport pathways that impinge on the nucleus, extranuclear structures, and cell cycle state. We then detail some of the key mechanistic findings about nuclear size regulation that have been gleaned from a variety of model organisms. Lastly, we review studies that have implicated nuclear size in the regulation of cell and nuclear function and speculate on the potential functional significance of nuclear size in chromatin organization, gene expression, nuclear mechanics, and disease. With many fundamental cell biological questions remaining to be answered, the field of nuclear size regulation is still wide open.
Collapse
Affiliation(s)
- Lidija D Vuković
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Lisa J Edens
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America.
| |
Collapse
|
16
|
Thompson LL, McManus KJ. A novel multiplexed, image-based approach to detect phenotypes that underlie chromosome instability in human cells. PLoS One 2015; 10:e0123200. [PMID: 25893404 PMCID: PMC4404342 DOI: 10.1371/journal.pone.0123200] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/19/2015] [Indexed: 11/30/2022] Open
Abstract
Chromosome instability (CIN) is characterized by a progressive change in chromosome numbers. It is a characteristic common to virtually all tumor types, and is commonly observed in highly aggressive and drug resistant tumors. Despite this information, the majority of human CIN genes have yet to be elucidated. In this study, we developed and validated a multiplexed, image-based screen capable of detecting three different phenotypes associated with CIN. Large-scale chromosome content changes were detected by quantifying changes in nuclear volumes following RNAi-based gene silencing. Using a DsRED-LacI reporter system to fluorescently label chromosome 11 within a human fibrosarcoma cell line, we were able to detect deviations from the expected number of two foci per nucleus (one focus/labelled chromosome) that occurred following CIN gene silencing. Finally, micronucleus enumeration was performed, as an increase in micronucleus formation is a classic hallmark of CIN. To validate the ability of each assay to detect phenotypes that underlie CIN, we silenced the established CIN gene, SMC1A. Following SMC1A silencing we detected an increase in nuclear volumes, a decrease in the number of nuclei harboring two DsRED-LacI foci, and an increase in micronucleus formation relative to controls (untreated and siGAPDH). Similar results were obtained in an unrelated human fibroblast cell line. The results of this study indicate that each assay is capable of detecting CIN-associated phenotypes, and can be utilized in future experiments to uncover novel human CIN genes, which will provide novel insight into the pathogenesis of cancer.
Collapse
Affiliation(s)
- Laura L. Thompson
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Institute of Cell Biology, Winnipeg, Manitoba, Canada
| | - Kirk J. McManus
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Institute of Cell Biology, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
17
|
Bianchi A, Lanzuolo C. Into the chromatin world: Role of nuclear architecture in epigenome regulation. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.4.585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|