1
|
Santos-Peral A, Luppa F, Goresch S, Nikolova E, Zaucha M, Lehmann L, Dahlstroem F, Karimzadeh H, Thorn-Seshold J, Winheim E, Schuster EM, Dobler G, Hoelscher M, Kümmerer BM, Endres S, Schober K, Krug AB, Pritsch M, Barba-Spaeth G, Rothenfusser S. Prior flavivirus immunity skews the yellow fever vaccine response to cross-reactive antibodies with potential to enhance dengue virus infection. Nat Commun 2024; 15:1696. [PMID: 38402207 PMCID: PMC10894228 DOI: 10.1038/s41467-024-45806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/05/2024] [Indexed: 02/26/2024] Open
Abstract
The yellow fever 17D vaccine (YF17D) is highly effective but is frequently administered to individuals with pre-existing cross-reactive immunity, potentially impacting their immune responses. Here, we investigate the impact of pre-existing flavivirus immunity induced by the tick-borne encephalitis virus (TBEV) vaccine on the response to YF17D vaccination in 250 individuals up to 28 days post-vaccination (pv) and 22 individuals sampled one-year pv. Our findings indicate that previous TBEV vaccination does not affect the early IgM-driven neutralizing response to YF17D. However, pre-vaccination sera enhance YF17D virus infection in vitro via antibody-dependent enhancement (ADE). Following YF17D vaccination, TBEV-pre-vaccinated individuals develop high amounts of cross-reactive IgG antibodies with poor neutralizing capacity. In contrast, TBEV-unvaccinated individuals elicit a non-cross-reacting neutralizing response. Using YF17D envelope protein mutants displaying different epitopes, we identify quaternary dimeric epitopes as the primary target of neutralizing antibodies. Additionally, TBEV-pre-vaccination skews the IgG response towards the pan-flavivirus fusion loop epitope (FLE), capable of mediating ADE of dengue and Zika virus infections in vitro. Together, we propose that YF17D vaccination conceals the FLE in individuals without prior flavivirus exposure but favors a cross-reactive IgG response in TBEV-pre-vaccinated recipients directed to the FLE with potential to enhance dengue virus infection.
Collapse
Affiliation(s)
- Antonio Santos-Peral
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Fabian Luppa
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Goresch
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Elena Nikolova
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Magdalena Zaucha
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lisa Lehmann
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Frank Dahlstroem
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Hadi Karimzadeh
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Julia Thorn-Seshold
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
- Faculty of Chemistry and Pharmacy, LMU Munich, Munich, Germany
| | - Elena Winheim
- Institute for Immunology, Biomedical Center (BMC), Medical Faculty, LMU Munich, Munich, Germany
| | - Ev-Marie Schuster
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- German Centre for Infection Research, Partner Site Munich, 80799, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology, Infection and Pandemic Research, 80799, Munich, Germany
| | - Beate M Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, 53127, Bonn, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, 53127, Bonn, Germany
| | - Stefan Endres
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP) Helmholtz Zentrum München German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Kilian Schober
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Anne B Krug
- Institute for Immunology, Biomedical Center (BMC), Medical Faculty, LMU Munich, Munich, Germany
| | - Michael Pritsch
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Giovanna Barba-Spaeth
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France.
| | - Simon Rothenfusser
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP) Helmholtz Zentrum München German Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| |
Collapse
|
2
|
Plavec Z, Domanska A, Liu X, Laine P, Paulin L, Varjosalo M, Auvinen P, Wolf SG, Anastasina M, Butcher SJ. SARS-CoV-2 Production, Purification Methods and UV Inactivation for Proteomics and Structural Studies. Viruses 2022; 14:v14091989. [PMID: 36146795 PMCID: PMC9505060 DOI: 10.3390/v14091989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 is the causative agent of COVID-19. During the pandemic of 2019–2022, at least 500 million have been infected and over 6.3 million people have died from COVID-19. The virus is pleomorphic, and due to its pathogenicity is often handled in very restrictive biosafety containments laboratories. We developed two effective and rapid purification methods followed by UV inactivation that allow easy downstream handling of the virus. We monitored the purification through titering, sequencing, mass spectrometry and electron cryogenic microscopy. Although pelleting through a sucrose cushion, followed by gentle resuspension overnight gave the best particle recovery, infectivity decreased, and the purity was significantly worse than if using the size exclusion resin Capto Core. Capto Core can be used in batch mode, and was seven times faster than the pelleting method, obviating the need for ultracentrifugation in the containment laboratory, but resulting in a dilute virus. UV inactivation was readily optimized to allow handling of the inactivated samples under standard operating conditions. When containment laboratory space is limited, we recommend the use of Capto Core for purification and UV for inactivation as a simple, rapid workflow prior, for instance, to electron cryogenic microscopy or cell activation experiments.
Collapse
Affiliation(s)
- Zlatka Plavec
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Aušra Domanska
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Pia Laine
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Sharon G. Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maria Anastasina
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (M.A.); (S.J.B.); Tel.: +358-5044-84629 (M.A.); +358-5041-55492 (S.J.B.)
| | - Sarah J. Butcher
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (M.A.); (S.J.B.); Tel.: +358-5044-84629 (M.A.); +358-5041-55492 (S.J.B.)
| |
Collapse
|
3
|
Yu X, Tong L, Zhang L, Yang Y, Xiao X, Zhu Y, Wang P, Cheng G. Lipases secreted by a gut bacterium inhibit arbovirus transmission in mosquitoes. PLoS Pathog 2022; 18:e1010552. [PMID: 35679229 PMCID: PMC9182268 DOI: 10.1371/journal.ppat.1010552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Arboviruses are etiological agents of various severe human diseases that place a tremendous burden on global public health and the economy; compounding this issue is the fact that effective prophylactics and therapeutics are lacking for most arboviruses. Herein, we identified 2 bacterial lipases secreted by a Chromobacterium bacterium isolated from Aedes aegypti midgut, Chromobacterium antiviral effector-1 (CbAE-1) and CbAE-2, with broad-spectrum virucidal activity against mosquito-borne viruses, such as dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), yellow fever virus (YFV) and Sindbis virus (SINV). The CbAEs potently blocked viral infection in the extracellular milieu through their lipase activity. Mechanistic studies showed that this lipase activity directly disrupted the viral envelope structure, thus inactivating infectivity. A mutation in the lipase motif of CbAE-1 fully abrogated the virucidal ability. Furthermore, CbAEs also exert lipase-dependent entomopathogenic activity in mosquitoes. The anti-arboviral and entomopathogenic properties of CbAEs render them potential candidates for the development of novel transmission control strategies against vector-borne diseases. Mosquito-borne viruses are the etiological agents of severe human diseases and annually lead to a great number of deaths. These viruses have spread widely and raised major public health concerns throughout the world. Although effective vaccines have been developed for a few mosquito-borne viruses, such as JEV and yellow fever virus (YFV), vaccines or antiviral therapeutics against most mosquito-borne viruses are currently unavailable. In this study, we identified two virucidal and entomopathogenic effectors with lipase activity, CbAE-1 and CbAE-2, from a mosquito midgut derived bacterium Chromobacterium sp. Beijing. Both CbAEs showed potent virucidal activity against a variety of mosquito-borne viruses, including DENV, ZIKV, JEV, YFV, and SINV, as well as other enveloped viruses. Since CbAEs inactivate viruses through their lipase activity by directly disrupting the viral envelope structure, they may provide a novel option for genetically engineering microbiota symbiotic with mosquitoes for arboviral control. Overall, the anti-arboviral and entomopathogenic properties of Csp_BJ and CbAEs render them particularly interesting candidates for the development of novel transmission control strategies against vector-borne diseases.
Collapse
Affiliation(s)
- Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Liangqin Tong
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Liming Zhang
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yun Yang
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Xiaoping Xiao
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yibin Zhu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
- * E-mail:
| |
Collapse
|
4
|
FluoRNT: A robust, efficient assay for the detection of neutralising antibodies against yellow fever virus 17D. PLoS One 2022; 17:e0262149. [PMID: 35139078 PMCID: PMC8827462 DOI: 10.1371/journal.pone.0262149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022] Open
Abstract
There is an urgent need for better diagnostic and analytical methods for vaccine research and infection control in virology. This has been highlighted by recently emerging viral epidemics and pandemics (Zika, SARS-CoV-2), and recurring viral outbreaks like the yellow fever outbreaks in Angola and the Democratic Republic of Congo (2016) and in Brazil (2016–2018). Current assays to determine neutralising activity against viral infections in sera are costly in time and equipment and suffer from high variability. Therefore, both basic infection research and diagnostic population screenings would benefit from improved methods to determine virus-neutralising activity in patient samples. Here we describe a robust, objective, and scalable Fluorescence Reduction Neutralisation Test (FluoRNT) for yellow fever virus, relying on flow cytometric detection of cells infected with a fluorescent Venus reporter containing variant of the yellow fever vaccine strain 17D (YF-17D-Venus). It accurately measures neutralising antibody titres in human serum samples within as little as 24 h. Samples from 32 vaccinees immunised with YF-17D were tested for neutralising activity by both a conventional focus reduction neutralisation test (FRNT) and FluoRNT. Both types of tests proved to be equally reliable for the detection of neutralising activity, however, FluoRNT is significantly more precise and reproducible with a greater dynamic range than conventional FRNT. The FluoRNT assay protocol is substantially faster, easier to control, and cheaper in per-assay costs. FluoRNT additionally reduces handling time minimising exposure of personnel to patient samples. FluoRNT thus brings a range of desirable features that can accelerate and standardise the measurement of neutralising anti-yellow fever virus antibodies. It could be used in applications ranging from vaccine testing to large cohort studies in systems virology and vaccinology. We also anticipate the potential to translate the methodology and analysis of FluoRNT to other flaviviruses such as West Nile, Dengue and Zika or to RNA viruses more generally.
Collapse
|
5
|
Lim XN, Shan C, Marzinek JK, Dong H, Ng TS, Ooi JSG, Fibriansah G, Wang J, Verma CS, Bond PJ, Shi PY, Lok SM. Molecular basis of dengue virus serotype 2 morphological switch from 29°C to 37°C. PLoS Pathog 2019; 15:e1007996. [PMID: 31536610 PMCID: PMC6752767 DOI: 10.1371/journal.ppat.1007996] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/22/2019] [Indexed: 01/02/2023] Open
Abstract
The ability of DENV2 to display different morphologies (hence different antigenic properties) complicates vaccine and therapeutics development. Previous studies showed most strains of laboratory adapted DENV2 particles changed from smooth to “bumpy” surfaced morphology when the temperature is switched from 29°C at 37°C. Here we identified five envelope (E) protein residues different between two alternative passage history DENV2 NGC strains exhibiting smooth or bumpy surface morphologies. Several mutations performed on the smooth DENV2 infectious clone destabilized the surface, as observed by cryoEM. Molecular dynamics simulations demonstrated how chemically subtle substitution at various positions destabilized dimeric interactions between E proteins. In contrast, three out of four DENV2 clinical isolates showed a smooth surface morphology at 37°C, and only at high fever temperature (40°C) did they become “bumpy”. These results imply vaccines should contain particles representing both morphologies. For prophylactic and therapeutic treatments, this study also informs on which types of antibodies should be used at different stages of an infection, i.e., those that bind to monomeric E proteins on the bumpy surface or across multiple E proteins on the smooth surfaced virus. DENV2 particles have been shown to change their morphologies (compact smooth to loose bumpy surfaced) when temperature is switched from 28°C to 37°C. We used two DENV2 viruses both belonging to the same strain designation but with a different passage history—one of which exhibited the smooth surfaced morphology while the other was bumpy surfaced, observed by cryoEM. We mutated residues in the E protein of the DENV2 infectious clone that has the smooth surfaced morphology to determine if any could result in a bumpy morphology. Results showed several different mutations could lead to this change. Using molecular dynamics simulations, we showed how these mutations likely destabilize the E protein dimeric interactions. We investigated whether the bumpy morphology also occurs in DENV2 clinical isolates, and showed that these viruses can exhibit both morphologies, indicating that vaccine and therapeutics development should target both virus forms.
Collapse
Affiliation(s)
- Xin-Ni Lim
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Chao Shan
- Novartis Institute for Tropical Diseases, Singapore, Singapore
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jan K. Marzinek
- Bioinformatics Institute, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hongping Dong
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| | - Thiam Seng Ng
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Justin S. G. Ooi
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Guntur Fibriansah
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Jiaqi Wang
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Chandra S. Verma
- Bioinformatics Institute, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Peter J. Bond
- Bioinformatics Institute, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (PJB); (PS); (SL)
| | - Pei-Yong Shi
- Novartis Institute for Tropical Diseases, Singapore, Singapore
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Texas, United States of America
- * E-mail: (PJB); (PS); (SL)
| | - Shee-mei Lok
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (PJB); (PS); (SL)
| |
Collapse
|
6
|
Tharakaraman K, Watanabe S, Chan KR, Huan J, Subramanian V, Chionh YH, Raguram A, Quinlan D, McBee M, Ong EZ, Gan ES, Tan HC, Tyagi A, Bhushan S, Lescar J, Vasudevan SG, Ooi EE, Sasisekharan R. Rational Engineering and Characterization of an mAb that Neutralizes Zika Virus by Targeting a Mutationally Constrained Quaternary Epitope. Cell Host Microbe 2018; 23:618-627.e6. [PMID: 29746833 DOI: 10.1016/j.chom.2018.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/01/2018] [Accepted: 04/10/2018] [Indexed: 11/25/2022]
Abstract
Following the recent emergence of Zika virus (ZIKV), many murine and human neutralizing anti-ZIKV antibodies have been reported. Given the risk of virus escape mutants, engineering antibodies that target mutationally constrained epitopes with therapeutically relevant potencies can be valuable for combating future outbreaks. Here, we applied computational methods to engineer an antibody, ZAb_FLEP, that targets a highly networked and therefore mutationally constrained surface formed by the envelope protein dimer. ZAb_FLEP neutralized a breadth of ZIKV strains and protected mice in distinct in vivo models, including resolving vertical transmission and fetal mortality in infected pregnant mice. Serial passaging of ZIKV in the presence of ZAb_FLEP failed to generate viral escape mutants, suggesting that its epitope is indeed mutationally constrained. A single-particle cryo-EM reconstruction of the Fab-ZIKV complex validated the structural model and revealed insights into ZAb_FLEP's neutralization mechanism. ZAb_FLEP has potential as a therapeutic in future outbreaks.
Collapse
Affiliation(s)
- Kannan Tharakaraman
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Satoru Watanabe
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kuan Rong Chan
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jia Huan
- School of Biological Sciences and Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Vidya Subramanian
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Yok Hian Chionh
- Infectious Diseases Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Singapore, Singapore
| | - Aditya Raguram
- Harvard College, Harvard University, Cambridge, MA 02138, USA
| | - Devin Quinlan
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Megan McBee
- Infectious Diseases Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Singapore, Singapore
| | - Eugenia Z Ong
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Esther S Gan
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Hwee Cheng Tan
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Anu Tyagi
- School of Biological Sciences and Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Shashi Bhushan
- School of Biological Sciences and Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Julien Lescar
- School of Biological Sciences and Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore; Infectious Diseases Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Singapore, Singapore.
| | - Ram Sasisekharan
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Infectious Diseases Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Singapore, Singapore.
| |
Collapse
|
7
|
Saraiva RG, Fang J, Kang S, Angleró-Rodríguez YI, Dong Y, Dimopoulos G. Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein. PLoS Negl Trop Dis 2018; 12:e0006443. [PMID: 29694346 PMCID: PMC5937796 DOI: 10.1371/journal.pntd.0006443] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/07/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV) is the most prevalent and burdensome arbovirus transmitted by Aedes mosquitoes, against which there is only a limited licensed vaccine and no approved drug treatment. A Chromobacterium species, C. sp. Panama, isolated from the midgut of A. aegypti is able to inhibit DENV replication within the mosquito and in vitro. Here we show that C. sp. Panama mediates its anti-DENV activity through secreted factors that are proteinous in nature. The inhibitory effect occurs prior to virus attachment to cells, and is attributed to a factor that destabilizes the virion by promoting the degradation of the viral envelope protein. Bioassay-guided fractionation, coupled with mass spectrometry, allowed for the identification of a C. sp. Panama-secreted neutral protease and an aminopeptidase that are co-expressed and appear to act synergistically to degrade the viral envelope (E) protein and thus prevent viral attachment and subsequent infection of cells. This is the first study characterizing the anti-DENV activity of a common soil and mosquito-associated bacterium, thereby contributing towards understanding how such bacteria may limit disease transmission, and providing new tools for dengue prevention and therapeutics.
Collapse
Affiliation(s)
- Raúl G. Saraiva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Jingru Fang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Seokyoung Kang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Yesseinia I. Angleró-Rodríguez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
8
|
Keasey SL, Pugh CL, Jensen SMR, Smith JL, Hontz RD, Durbin AP, Dudley DM, O'Connor DH, Ulrich RG. Antibody Responses to Zika Virus Infections in Environments of Flavivirus Endemicity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00036-17. [PMID: 28228395 PMCID: PMC5382833 DOI: 10.1128/cvi.00036-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/18/2017] [Indexed: 12/20/2022]
Abstract
Zika virus (ZIKV) infections occur in areas where dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), and other viruses of the genus Flavivirus cocirculate. The envelope (E) proteins of these closely related flaviviruses induce specific long-term immunity, yet subsequent infections are associated with cross-reactive antibody responses that may enhance disease susceptibility and severity. To gain a better understanding of ZIKV infections against a background of similar viral diseases, we examined serological immune responses to ZIKV, WNV, DENV, and YFV infections of humans and nonhuman primates (NHPs). Using printed microarrays, we detected very specific antibody responses to primary infections with probes of recombinant E proteins from 15 species and lineages of flaviviruses pathogenic to humans, while high cross-reactivity between ZIKV and DENV was observed with 11 printed native viruses. Notably, antibodies from human primary ZIKV or secondary DENV infections that occurred in areas where flavivirus is endemic broadly recognized E proteins from many flaviviruses, especially DENV, indicating a strong influence of infection history on immune responses. A predictive algorithm was used to tentatively identify previous encounters with specific flaviviruses based on serum antibody interactions with the multispecies panel of E proteins. These results illustrate the potential impact of exposure to related viruses on the outcome of ZIKV infection and offer considerations for development of vaccines and diagnostics.
Collapse
Affiliation(s)
- Sarah L Keasey
- Department of Biology, University of Maryland-Baltimore County, Baltimore, Maryland, USA
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Christine L Pugh
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Stig M R Jensen
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Jessica L Smith
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Robert D Hontz
- Naval Medical Research Center, Silver Spring, Maryland, USA, and U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Anna P Durbin
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Dawn M Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert G Ulrich
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
9
|
Gerold G, Bruening J, Weigel B, Pietschmann T. Protein Interactions during the Flavivirus and Hepacivirus Life Cycle. Mol Cell Proteomics 2017; 16:S75-S91. [PMID: 28077444 DOI: 10.1074/mcp.r116.065649] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/11/2017] [Indexed: 12/28/2022] Open
Abstract
Protein-protein interactions govern biological functions in cells, in the extracellular milieu, and at the border between cells and extracellular space. Viruses are small intracellular parasites and thus rely on protein interactions to produce progeny inside host cells and to spread from cell to cell. Usage of host proteins by viruses can have severe consequences e.g. apoptosis, metabolic disequilibria, or altered cell proliferation and mobility. Understanding protein interactions during virus infection can thus educate us on viral infection and pathogenesis mechanisms. Moreover, it has led to important clinical translations, including the development of new therapeutic and vaccination strategies. Here, we will discuss protein interactions of members of the Flaviviridae family, which are small enveloped RNA viruses. Dengue virus, Zika virus and hepatitis C virus belong to the most prominent human pathogenic Flaviviridae With a genome of roughly ten kilobases encoding only ten viral proteins, Flaviviridae display intricate mechanisms to engage the host cell machinery for their purpose. In this review, we will highlight how dengue virus, hepatitis C virus, Japanese encephalitis virus, tick-borne encephalitis virus, West Nile virus, yellow fever virus, and Zika virus proteins engage host proteins and how this knowledge helps elucidate Flaviviridae infection. We will specifically address the protein composition of the virus particle as well as the protein interactions during virus entry, replication, particle assembly, and release from the host cell. Finally, we will give a perspective on future challenges in Flaviviridae interaction proteomics and why we believe these challenges should be met.
Collapse
Affiliation(s)
- Gisa Gerold
- From the Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Janina Bruening
- From the Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Bettina Weigel
- From the Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Thomas Pietschmann
- From the Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| |
Collapse
|
10
|
Singapore Grouper Iridovirus ORF75R is a Scaffold Protein Essential for Viral Assembly. Sci Rep 2015; 5:13151. [PMID: 26286371 PMCID: PMC4541339 DOI: 10.1038/srep13151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/04/2015] [Indexed: 12/11/2022] Open
Abstract
Singapore Grouper Iridovirus (SGIV) is a member of nucleo cytoplasmic large DNA viruses (NCLDV). This paper reports the functional analysis of ORF75R, a major structural protein of SGIV. Immuno fluorescence studies showed that the protein was accumulated in the viral assembly site. Immunogold-labelling indicated that it was localized between the viral capsid shell and DNA core. Knockdown of ORF75R by morpholinos resulted in the reduction of coreshell thickness, the failure of DNA encapsidation, and the low yield of infectious particles. Comparative proteomics further identified the structural proteins affected by ORF75R knockdown. Two-dimensional gel electrophoresis combined with proteomics demonstrated that ORF75R was phosphorylated at multiple sites in SGIV-infected cell lysate and virions, but the vast majority of ORF75R in virions was the dephosphorylated isoform. A kinase assay showed that ORF75R could be phosphorylated in vitro by the SGIV structural protein ORF39L. Addition of ATP and Mg2+ into purified virions prompted extensive phosphorylation of structural proteins and release of ORF75R from virions. These data suggest that ORF75R is a novel scaffold protein important for viral assembly and DNA encapsidation, but its phosphorylation facilitates virion disassembly. Compared to proteins from other viruses, we found that ORF75R shares common features with herpes simplex virus VP22.
Collapse
|