1
|
Li C, Zang X, Liu H, Yin S, Cheng X, Zhang W, Meng X, Chen L, Lu S, Wu J. Olink Proteomics for the Identification of Biomarkers for Early Diagnosis of Postmenopausal Osteoporosis. J Proteome Res 2024; 23:4567-4578. [PMID: 39226440 PMCID: PMC11460326 DOI: 10.1021/acs.jproteome.4c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Abstract
This investigation aims to employ Olink proteomics in analyzing the distinct serum proteins associated with postmenopausal osteoporosis (PMOP) and identifying prognostic markers for early detection of PMOP via molecular mechanism research on postmenopausal osteoporosis. Postmenopausal women admitted to Beijing Jishuitan Hospital were randomly selected and categorized into three groups based on their dual-energy X-ray absorptiometry (DXA) T-scores: osteoporosis group (n = 24), osteopenia group (n = 20), and normal bone mass group (n = 16). Serum samples from all participants were collected for clinical and bone metabolism marker measurements. Olink proteomics was utilized to identify differentially expressed proteins (DEPs) that are highly associated with postmenopausal osteoporosis. The functional analysis of DEPs was performed using Gene Ontology and Kyto Encyclopedia Genes and Genomes (KEGG). The biological characteristics of these proteins and their correlation with PMOP were subsequently analyzed. ROC curve analysis was performed to identify potential biomarkers with the highest diagnostic accuracy for early stage PMOP. Through Olink proteomics, we identified five DEPs highly associated with PMOP, including two upregulated and three downregulated proteins. TWEAK and CDCP1 markers exhibited the highest area under the curve (0.8188 and 0.8031, respectively). TWEAK and CDCP1 have the potential to serve as biomarkers for early prediction of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Chunyan Li
- Beijing
Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing 100035, China
| | - Xinwei Zang
- Beijing
Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing 100035, China
- Cell
Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research
Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative
Diseases, Ministry of Education, Beijing 100053, China
| | - Heng Liu
- Beijing
Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing 100035, China
| | - Shangqi Yin
- Beijing
Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing 100035, China
| | - Xiang Cheng
- Beijing
Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing 100035, China
| | - Wei Zhang
- Beijing
Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing 100035, China
| | - Xiangyu Meng
- Beijing
Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing 100035, China
| | - Liyuan Chen
- Shijiazhuang
People’s Hospital, Shijiazhuang Changan District, Hebei 050000, China
| | - Shuai Lu
- Beijing
Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing 100035, China
| | - Jun Wu
- Beijing
Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing 100035, China
| |
Collapse
|
2
|
Wang S, Li L, Cook C, Zhang Y, Xia Y, Liu Y. A potential fate decision landscape of the TWEAK/Fn14 axis on stem and progenitor cells: a systematic review. Stem Cell Res Ther 2022; 13:270. [PMID: 35729659 PMCID: PMC9210594 DOI: 10.1186/s13287-022-02930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022] Open
Abstract
Stem and progenitor cells (SPCs) possess self-remodeling ability and differentiation potential and are responsible for the regeneration and development of organs and tissue systems. However, the precise mechanisms underlying the regulation of SPC biology remain unclear. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) acts on miscellaneous cells via binding to fibroblast growth factor-inducible 14 (Fn14) and exerts pleiotropic functions in the regulation of divergent stem cell fates. TWEAK/Fn14 signaling can regulate the proliferation, differentiation, and migration of multiple SPCs as well as tumorigenesis in certain contexts. Although TWEAK’s roles in modulating multiple SPCs are sparsely reported, the systemic effector functions of this multifaceted protein have not been fully elucidated. In this review, we summarized the fate decisions of TWEAK/Fn14 signaling on multiple stem cells and characterized its potential in stem cell therapy.
Collapse
Affiliation(s)
- Sijia Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Liang Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Christopher Cook
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Yufei Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China.
| | - Yale Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
3
|
Wang W, Wei Q, Hao Q, Zhang Y, Li Y, Bi Y, Jin Z, Liu H, Liu X, Yang Z, Xiao S. Cellular CARD11 Inhibits the Fusogenic Activity of Newcastle Disease Virus via CBM Signalosome-Mediated Furin Reduction in Chicken Fibroblasts. Front Microbiol 2021; 12:607451. [PMID: 33603723 PMCID: PMC7884349 DOI: 10.3389/fmicb.2021.607451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/07/2021] [Indexed: 12/02/2022] Open
Abstract
Newcastle disease virus (NDV) causes an infectious disease that poses a major threat to poultry health. Our previous study identified a chicken brain-specific caspase recruitment domain-containing protein 11 (CARD11) that was upregulated in chicken neurons and inhibited NDV replication. This raises the question of whether CARD11 plays a role in inhibiting viruses in non-neural cells. Here, chicken fibroblasts were used as a non-neural cell model to investigate the role. CARD11 expression was not significantly upregulated by either velogenic or lentogenic NDV infection in chicken fibroblasts. Viral replication was decreased in DF-1 cells stably overexpressing CARD11, while viral growth was significantly increased in the CARD11-knockdown DF-1 cell line. Moreover, CARD11 colocalized with the viral P protein and aggregated around the fibroblast nucleus, suggesting that an interaction existed between CARD11 and the viral P protein; this interaction was further examined by suppressing viral RNA polymerase activity by using a minigenome assay. Viral replication was inhibited by CARD11 in fibroblasts, and this result was consistent with our previous report in chicken neurons. Importantly, CARD11 was observed to reduce the syncytia induced by either velogenic virus infection or viral haemagglutinin-neuraminidase (HN) and F cotransfection in fibroblasts. We found that CARD11 inhibited the expression of the host protease furin, which is essential for cleavage of the viral F protein to trigger fusogenic activity. Furthermore, the CARD11-Bcl10-MALT1 (CBM) signalosome was found to suppress furin expression, which resulted in a reduction in the cleavage efficiency of the viral F protein to further inhibit viral syncytia. Taken together, our findings mainly demonstrated a novel CARD11 inhibitory mechanism for viral fusogenic activity in chicken fibroblasts, and this mechanism explains the antiviral roles of this molecule in NDV pathogenesis.
Collapse
Affiliation(s)
- Wenbin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Poultry Institute, Shandong Academy of Agricultural Science, Jinan, China
| | - Qiaolin Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qiqi Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yajie Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongshan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Youkun Bi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhongyuan Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuelan Liu
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Poveda J, Vázquez-Sánchez S, Sanz AB, Ortiz A, Ruilope LM, Ruiz-Hurtado G. TWEAK-Fn14 as a common pathway in the heart and the kidneys in cardiorenal syndrome. J Pathol 2021; 254:5-19. [PMID: 33512736 DOI: 10.1002/path.5631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
There is a complex relationship between cardiac and renal disease, often referred to as the cardiorenal syndrome. Heart failure adversely affects kidney function, and both acute and chronic kidney disease are associated with structural and functional changes to the myocardium. The pathological mechanisms and contributing interactions that surround this relationship remain poorly understood, limiting the opportunities for therapeutic intervention. The cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor, fibroblast growth factor-inducible 14 (Fn14), are abundantly expressed in injured kidneys and heart. The TWEAK-Fn14 axis promotes responses that drive tissue injury such as inflammation, proliferation, fibrosis, and apoptosis, while restraining the expression of tissue protective factors such as the anti-aging factor Klotho and the master regulator of mitochondrial biogenesis peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). High levels of TWEAK induce cardiac remodeling, and promote inflammation, tubular and podocyte injury and death, fibroblast proliferation, and, ultimately, renal fibrosis. Accordingly, targeting the TWEAK-Fn14 axis is protective in experimental kidney and heart disease. TWEAK has also emerged as a biomarker of kidney damage and cardiovascular outcomes and has been successfully targeted in clinical trials. In this review, we update our current knowledge of the roles of the TWEAK-Fn14 axis in cardiovascular and kidney disease and its potential contribution to the cardiorenal syndrome. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jonay Poveda
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Sara Vázquez-Sánchez
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana B Sanz
- Research Institute - Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Alberto Ortiz
- Research Institute - Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Luis M Ruilope
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,School of Doctoral Studies and Research, European University of Madrid, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
5
|
TRAIL, OPG, and TWEAK in kidney disease: biomarkers or therapeutic targets? Clin Sci (Lond) 2019; 133:1145-1166. [PMID: 31097613 PMCID: PMC6526163 DOI: 10.1042/cs20181116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/19/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Abstract
Ligands and receptors of the tumor necrosis factor (TNF) superfamily regulate immune responses and homeostatic functions with potential diagnostic and therapeutic implications. Kidney disease represents a global public health problem, whose prevalence is rising worldwide, due to the aging of the population and the increasing prevalence of diabetes, hypertension, obesity, and immune disorders. In addition, chronic kidney disease is an independent risk factor for the development of cardiovascular disease, which further increases kidney-related morbidity and mortality. Recently, it has been shown that some TNF superfamily members are actively implicated in renal pathophysiology. These members include TNF-related apoptosis-inducing ligand (TRAIL), its decoy receptor osteoprotegerin (OPG), and TNF-like weaker inducer of apoptosis (TWEAK). All of them have shown the ability to activate crucial pathways involved in kidney disease development and progression (e.g. canonical and non-canonical pathways of the transcription factor nuclear factor-kappa B), as well as the ability to regulate cell proliferation, differentiation, apoptosis, necrosis, inflammation, angiogenesis, and fibrosis with double-edged effects depending on the type and stage of kidney injury. Here we will review the actions of TRAIL, OPG, and TWEAK on diabetic and non-diabetic kidney disease, in order to provide insights into their full clinical potential as biomarkers and/or therapeutic options against kidney disease.
Collapse
|
6
|
Affiliation(s)
- Guanglei Hu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
7
|
Gilbreth RN, Novarra S, Wetzel L, Florinas S, Cabral H, Kataoka K, Rios-Doria J, Christie RJ, Baca M. Lipid- and polyion complex-based micelles as agonist platforms for TNFR superfamily receptors. J Control Release 2016; 234:104-14. [DOI: 10.1016/j.jconrel.2016.05.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022]
|
8
|
Meulendijks D, Lassen UN, Siu LL, Huitema ADR, Karanikas V, Mau-Sorensen M, Jonker DJ, Hansen AR, Simcox ME, Schostack KJ, Bottino D, Zhong H, Roessler M, Vega-Harring SM, Jarutat T, Geho D, Wang K, DeMario M, Goss GD, Schellens JHM. Exposure and Tumor Fn14 Expression as Determinants of Pharmacodynamics of the Anti-TWEAK Monoclonal Antibody RG7212 in Patients with Fn14-Positive Solid Tumors. Clin Cancer Res 2015; 22:858-67. [PMID: 26446946 DOI: 10.1158/1078-0432.ccr-15-1506] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/12/2015] [Indexed: 12/16/2022]
Abstract
PURPOSE The TWEAK-Fn14 pathway represents a novel anticancer target that is being actively investigated. Understanding the relationship between pharmacokinetics of anti-TWEAK therapeutics and tumor pharmacodynamics is critical. We investigated exposure-response relationships of RG7212, an anti-TWEAK mAb, in patients with Fn14-expressing tumors. EXPERIMENTAL DESIGN Patients with Fn14-positive tumors (IHC ≥ 1+) treated in a phase I first-in-human study with ascending doses of RG7212 were the basis for this analysis. Pharmacokinetics of RG7212 and dynamics of TWEAK were determined, as were changes in tumor TWEAK-Fn14 signaling in paired pre- and posttreatment tumor biopsies. The objectives of the analysis were to define exposure-response relationships and the relationship between pretreatment tumor Fn14 expression and pharmacodynamic effect. Associations between changes in TWEAK-Fn14 signaling and clinical outcome were explored. RESULTS Thirty-six patients were included in the analysis. RG7212 reduced plasma TWEAK to undetectable levels at all observed RG7212 exposures. In contrast, reductions in tumor Fn14 and TRAF1 protein expression were observed only at higher exposure (≥ 300 mg*h/mL). Significant reductions in tumor Ki-67 expression and early changes in serum concentrations of CCL-2 and MMP-9 were observed exclusively in patients with higher drug exposure who had high pretreatment tumor Fn14 expression. Pretreatment tumor Fn14 expression was not associated with outcome, but a trend toward longer time on study was observed with high versus low RG7212 exposure. CONCLUSIONS RG7212 reduced tumor TWEAK-Fn14 signaling in a systemic exposure-dependent manner. In addition to higher exposure, relatively high Fn14 expression might be required for pharmacodynamic effect of anti-TWEAK monoclonal antibodies.
Collapse
Affiliation(s)
- Didier Meulendijks
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ulrik N Lassen
- Department of Oncology, The Finsen Centre, Rigshospitalet, Copenhagen, Denmark
| | - Lillian L Siu
- Ontario Cancer Institute/Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Vaios Karanikas
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Zurich, Switzerland
| | - Morten Mau-Sorensen
- Department of Oncology, The Finsen Centre, Rigshospitalet, Copenhagen, Denmark
| | | | - Aaron R Hansen
- Ontario Cancer Institute/Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mary E Simcox
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, New York, New York
| | - Kathleen J Schostack
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, New York, New York
| | - Dean Bottino
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, New York, New York
| | - Hua Zhong
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, New York, New York
| | - Markus Roessler
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Penzberg, Germany
| | - Suzana M Vega-Harring
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Penzberg, Germany
| | - Tiantom Jarutat
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Penzberg, Germany
| | - David Geho
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, New York, New York
| | - Karen Wang
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, New York, New York
| | - Mark DeMario
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, New York, New York
| | | | - Jan H M Schellens
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands. Department of Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|