1
|
Plummer R, Sodergren MH, Hodgson R, Ryan BM, Raulf N, Nicholls JP, Reebye V, Voutila J, Sinigaglia L, Meyer T, Pinato DJ, Sarker D, Basu B, Blagden S, Cook N, Jeffrey Evans TR, Yachnin J, Chee CE, Li D, El-Khoueiry A, Diab M, Huang KW, Pai M, Spalding D, Talbot T, Noel MS, Keenan B, Mahalingam D, Song MS, Grosso M, Arnaud D, Auguste A, Zacharoulis D, Storkholm J, McNeish I, Habib R, Rossi JJ, Habib NA. TIMEPOINT, a phase 1 study combining MTL-CEBPA with pembrolizumab, supports the immunomodulatory effect of MTL-CEBPA in solid tumors. Cell Rep Med 2025; 6:102041. [PMID: 40168999 PMCID: PMC12047497 DOI: 10.1016/j.xcrm.2025.102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/05/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025]
Abstract
Many patients with cancer do not benefit from currently approved immune checkpoint inhibitors (ICIs), suggesting that additional immunomodulation of the immunosuppressive tumor microenvironment (TME) is required. MTL-CCAAT enhancer-binding protein alpha (CEBPA) specifically upregulates the expression of the master myeloid transcription factor, CEBPA, relieving myeloid-driven immunosuppression. Here, we report the safety, tolerability, pharmacokinetics, and efficacy of MTL-CEBPA in combination with pembrolizumab in patients with advanced solid tumors that typically show ICI resistance. Multimodal exploratory analyses of paired patient biopsies demonstrate biological changes associated with the combination treatment of MTL-CEBPA and pembrolizumab, including increased infiltration of T cell and antigen-presenting cells supporting conversion from an immune-desert toward a more immune-inflamed TME. Patients with disease stabilization demonstrate reductions in immunosuppressive myeloid cells post treatment. Collectively, these data support a role for MTL-CEBPA in reducing immunosuppression in the TME. This study was registered at ClinicalTrials.gov (NCT04105335).
Collapse
Affiliation(s)
- Ruth Plummer
- The Northern Centre for Cancer Care, Freeman Hospital, NE7 7DN Newcastle, UK
| | - Mikael H Sodergren
- Department of Surgery & Cancer, Imperial College London, W12 0NN London, UK
| | | | | | - Nina Raulf
- MiNA Therapeutics Ltd, W12 0BZ London, UK
| | - Joanna P Nicholls
- Department of Surgery & Cancer, Imperial College London, W12 0NN London, UK; MiNA Therapeutics Ltd, W12 0BZ London, UK
| | - Vikash Reebye
- Department of Surgery & Cancer, Imperial College London, W12 0NN London, UK; MiNA Therapeutics Ltd, W12 0BZ London, UK
| | | | | | - Tim Meyer
- Research Department of Oncology, UCL Cancer Institute, University College London, WC1E 6DD London, UK
| | - David J Pinato
- Department of Surgery & Cancer, Imperial College London, W12 0NN London, UK; Department of Translational Medicine (DIMET), Università Del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Debashis Sarker
- Department of Research Oncology, Guys Hospital, Kings College London, SE1 9RT London, UK
| | - Bristi Basu
- University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, CB2 0QQ Cambridge, UK
| | - Sarah Blagden
- Department of Oncology, Oxford University, Churchill Hospital, OX3 7LE Oxford, UK
| | - Natalie Cook
- University of Manchester and The Christie NHS Foundation Trust, M20 4BX Manchester, UK
| | | | - Jeffrey Yachnin
- Centrum Kliniska Cancerstudier, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Cheng E Chee
- National University Hospital, National University Cancer Institute Singapore, Singapore 11928, Singapore
| | - Daneng Li
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Anthony El-Khoueiry
- Norris Comprehensive Cancer Centre, Keck Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Maria Diab
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | - Madhava Pai
- Department of Surgery & Cancer, Imperial College London, W12 0NN London, UK
| | - Duncan Spalding
- Department of Surgery & Cancer, Imperial College London, W12 0NN London, UK
| | - Thomas Talbot
- Department of Surgery & Cancer, Imperial College London, W12 0NN London, UK
| | - Marcus S Noel
- Medstar Georgetown University Hospital, Washington, DC 20007, USA
| | - Bridget Keenan
- University of California San Francisco, San Francisco, CA 94143, USA
| | - Devalingam Mahalingam
- Robert H Lurie Comprehensive Cancer Centre, Northwestern University, Chicago, IL 60611, USA
| | - Min-Sun Song
- Beckman Research Institute, City of Hope, CA, USA
| | | | | | | | | | - Jan Storkholm
- Department of Surgery & Cancer, Imperial College London, W12 0NN London, UK
| | - Iain McNeish
- Department of Surgery & Cancer, Imperial College London, W12 0NN London, UK
| | | | - John J Rossi
- Beckman Research Institute, City of Hope, CA, USA
| | - Nagy A Habib
- Department of Surgery & Cancer, Imperial College London, W12 0NN London, UK; MiNA Therapeutics Ltd, W12 0BZ London, UK.
| |
Collapse
|
2
|
Kwon RY, Youn SM, Choi SJ. Oral Excretion Kinetics of Food-Additive Silicon Dioxides and Their Effect on In Vivo Macrophage Activation. Int J Mol Sci 2024; 25:1614. [PMID: 38338896 PMCID: PMC10855107 DOI: 10.3390/ijms25031614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
A food additive, silicon dioxide (SiO2) is commonly used in the food industry as an anti-caking agent. The presence of nanoparticles (NPs) in commercial food-grade SiO2 has raised concerns regarding their potential toxicity related to nano size. While recent studies have demonstrated the oral absorption and tissue distribution of food-additive SiO2 particles, limited information is available about their excretion behaviors and potential impact on macrophage activation. In this study, the excretion kinetics of two differently manufactured (fumed and precipitated) SiO2 particles were evaluated following repeated oral administration to rats for 28 d. The excretion fate of their intact particles, decomposed forms, or ionic forms was investigated in feces and urine, respectively. Monocyte uptake, Kupffer cell activation, and cytokine release were assessed after the oral administration of SiO2 particles. Additionally, their intracellular fates were determined in Raw 264.7 cells. The results revealed that the majority of SiO2 particles were not absorbed but directly excreted via feces in intact particle forms. Only a small portion of SiO2 was eliminated via urine, predominantly in the form of bioconverted silicic acid and slightly decomposed ionic forms. SiO2 particles were mainly present in particle forms inside cells, followed by ionic and silicic acid forms, indicating their slow conversion into silicic acid after cellular uptake. No effects of the manufacturing method were observed on excretion and fates. Moreover, no in vivo monocyte uptake, Kupffer cell polarization, or cytokine release were induced by orally administered SiO2 particles. These finding contribute to understanding the oral toxicokinetics of food-additive SiO2 and provide valuable insights into its potential toxicity.
Collapse
Affiliation(s)
| | | | - Soo-Jin Choi
- Division of Applied Food System, Major of Food Science & Technology, Seoul Women’s University, Seoul 01797, Republic of Korea; (R.-Y.K.); (S.-M.Y.)
| |
Collapse
|
3
|
Mongirdienė A, Liobikas J. Phenotypic and Functional Heterogeneity of Monocyte Subsets in Chronic Heart Failure Patients. BIOLOGY 2022; 11:195. [PMID: 35205062 PMCID: PMC8869357 DOI: 10.3390/biology11020195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
Chronic heart failure (CHF) results when the heart cannot consistently supply the body's tissues with oxygen and required nutrients. CHF can be categorized as heart failure (HF) with preserved ejection fraction (HFpEF) or HF with reduced ejection fraction (HFrEF). There are different causes and mechanisms underlying HF pathogenesis; however, inflammation can be regarded as one of the factors that promotes both HFrEF and HFpEF. Monocytes, a subgroup of leukocytes, are known to be cellular mediators in response to cardiovascular injury and are closely related to inflammatory reactions. These cells are a vital component of the immune system and are the source of macrophages, which participate in cardiac tissue repair after injury. However, these monocytes are not as homogenous as thought and can present different functions under different cardiovascular disease conditions. In addition, there is still an open question regarding whether the functions of monocytes and macrophages should be regarded as causes or consequences in CHF development. Therefore, the aim of this work was to summarize current studies on the functions of various monocyte subsets in CHF with a focus on the role of a certain monocyte subset in HFpEF and HFrEF patients, as well as the subsets' relationship to inflammatory markers.
Collapse
Affiliation(s)
- Aušra Mongirdienė
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, LT50161 Kaunas, Lithuania
| | - Julius Liobikas
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, LT50162 Kaunas, Lithuania
| |
Collapse
|
4
|
Levy M, Deghmane AE, Aouiti-Trabelsi M, Dauger S, Faye A, Mariani-Kurkdjian P, Taha MK. Analysis of the impact of corticosteroids adjuvant treatment during experimental invasive meningococcal infection in mice. Steroids 2018; 136:32-39. [PMID: 29753775 DOI: 10.1016/j.steroids.2018.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 10/16/2022]
Abstract
Invasive meningococcal disease (IMD) is usually associated with intense inflammatory response that is correlated with severe infection. Corticosteroids may regulate this inflammatory response through an early but transient induction of IL-10 that is suggested to improve the outcome of IMD. We explored the mechanism of action of corticosteroids as an adjuvant treatment to antibiotics. Transgenic mice expressing the human transferrin were infected by a hyperinvasive meningococcal strain and transcriptomic analysis were then performed in the blood for all conditions of infection and treatment. Infected untreated mice, infected antibiotic-treated mice and infected amoxicillin and dexamethasone-treated mice were compared. Treatment using both corticosteroids and antibiotics was associated with differential gene expression in the blood especially in Monocytes-Macrophages pathways. Depletion of these cells in infected mice was associated with a more severe bacterial infection and uncontrolled production of both pro-inflammatory and anti-inflammatory cytokines. Accordingly, children suffering from severe IMD had low counts of monocytes at admission. Our data are in favor of a role of corticosteroids in enhancing a polarization from pro-inflammatory to anti-inflammatory phenotypes of Monocytes-Macrophages axis that may help controlling meningococcal invasive infections.
Collapse
Affiliation(s)
- Michaël Levy
- Invasive Bacterial Infection Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France; Pediatric Intensive Care Unit, Robert-Debré University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Ala-Eddine Deghmane
- Invasive Bacterial Infection Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Myriam Aouiti-Trabelsi
- Invasive Bacterial Infection Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Stéphane Dauger
- Pediatric Intensive Care Unit, Robert-Debré University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Albert Faye
- Pediatric Infectious Disease Unit, Robert-Debré University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Patricia Mariani-Kurkdjian
- Microbiology Unit, Robert-Debré University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Muhamed-Kheir Taha
- Invasive Bacterial Infection Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France.
| |
Collapse
|