1
|
Yang J, Sun JF, Wang TT, Guo XH, Wei JX, Jia LT, Yang AG. Targeted inhibition of hantavirus replication and intracranial pathogenesis by a chimeric protein-delivered siRNA. Antiviral Res 2017; 147:107-115. [PMID: 29017779 DOI: 10.1016/j.antiviral.2017.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/01/2017] [Accepted: 10/06/2017] [Indexed: 11/25/2022]
Abstract
Hantavirus (HV) infection, which underlies hantavirus hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome, remains to be a severe clinical challenge. Here, we synthesized small interfering RNAs (siRNAs) that target the encoding sequences of HV strain 76-118, and validated their inhibitory role in virus replication in HV-infected monkey kidney Vero E6 cells. A chimeric protein, 3G1-Cκ-tP, consisting of a single-chain antibody fragment (3G1) against the HV surface envelop glycoprotein, the constant region of human immunoglobulin κ chain (Cκ), and truncated protamine (amino acids 8-29, tP), was further generated. The fusion protein showed high affinity to HV antigen on the infected cell membrane, and internalized through clathrin-mediated endocytosis; it bound to siRNAs via the basic nucleic acid-rich protamine fragment, leading to their specific delivery into HV-infected cells and efficient inhibition of virus replication. An encephalitis mouse model was established via intracranial HV administration. Intraperitoneal injection of siRNAs complexed with 3G1-Cκ-tP achieved specific distribution of siRNAs in HV-infected brain cells, significantly reduced HV antigen levels, and effective protection from HV infection-derived animal death. These results provide a compelling rationale for novel therapeutic protocols designed for HV infection and related disorders.
Collapse
Affiliation(s)
- Jie Yang
- Department of Nephrology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Ji-Feng Sun
- Department of Nephrology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Ting-Ting Wang
- Department of Nephrology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xiao-Hong Guo
- Department of Nephrology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jun-Xia Wei
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Lin-Tao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - An-Gang Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
A Bifunctional Approach of Immunostimulation and uPAR Inhibition Shows Potent Antitumor Activity in Melanoma. J Invest Dermatol 2016; 136:2475-2484. [PMID: 27498344 DOI: 10.1016/j.jid.2016.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 12/25/2022]
Abstract
Significant advancements of mutation-based targeted therapy and immune checkpoint blockade have been achieved in melanoma. Nevertheless, acquired resistance and nonresponders to therapy require different strategies. An innovative approach is presented here that is based on the combination of innate immune system activation and simultaneous targeting of the oncogene urokinase-type plasminogen activator receptor (uPAR). We generated two triphosphate-conjugated siRNAs targeting uPAR (ppp-uPAR) by in vitro transcription. Specific uPAR knockdown and simultaneous activation of the retinoic acid-inducible gene 1 (RIG-I) was shown in different human melanoma cells, fibroblasts, and melanocytes. The compounds induced massive apoptosis in melanoma cells, whereas fibroblasts and melanocytes were less sensitive. The effects were less pronounced when the IFN receptor was blocked. Treatment with ppp-uPAR led to accumulation of p53 and induction of RIG-I-dependent proapoptotic signaling. The apoptotic effects induced by ppp-uPAR were maintained in melanoma cell lines that had acquired double resistance to B-RAF and MEK/extracellular signal-regulated kinase inhibition. Systemic intraperitoneal application of ppp-uPAR in nude mice significantly reduced growth of human melanoma xenografts and elicited a systemic innate immune response with increased serum cytokine levels. Our data suggest that ppp-uPAR represents a therapeutically attractive compound that may help overcome the strong therapy resistance of melanoma.
Collapse
|
3
|
Bégin-Lavallée V, Midavaine É, Dansereau MA, Tétreault P, Longpré JM, Jacobi AM, Rose SD, Behlke MA, Beaudet N, Sarret P. Functional inhibition of chemokine receptor CCR2 by dicer-substrate-siRNA prevents pain development. Mol Pain 2016; 12:12/0/1744806916653969. [PMID: 27306408 PMCID: PMC4956154 DOI: 10.1177/1744806916653969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/16/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Accumulating evidence suggests that the C-C chemokine ligand 2 (CCL2, or monocyte chemoattractant protein 1) acts as a neuromodulator in the central nervous system through its binding to the C-C chemokine receptor 2 (CCR2). Notably, it is well established that the CCL2/CCR2 axis plays a key role in neuron-glia communication as well as in spinal nociceptive transmission. Gene silencing through RNA interference has recently emerged as a promising avenue in research and drug development, including therapeutic management of chronic pain. In the present study, we used 27-mer Dicer-substrate small interfering RNA (DsiRNA) targeting CCR2 and assessed their ability to reverse the nociceptive behaviors induced by spinal CCL2 injection or following intraplantar injection of complete Freund's adjuvant. RESULTS To this end, we first developed high-potency DsiRNAs designed to target different sequences distributed across the rat CCR2 (rCCR2) messenger RNA. For optimization, methyl groups were added to the two most potent DsiRNA candidates (Evader and M7 2'-O-methyl modified duplexes) in order to improve in vivo duplex stability and to reduce potential immunostimulatory activity. Our results demonstrated that all modified candidates formulated with the cell-penetrating peptide reagent Transductin showed strong RNAi activity following intrathecal delivery, exhibiting >50% rCCR2 knockdown in lumbar dorsal root ganglia. Accordingly, we found that these DsiRNA duplexes were able to reduce spinal microglia activation and were effective at blocking CCL2-induced mechanical hypersensitivity. Along with similar reductions of rCCR2 messenger RNA, both sequences and methylation patterns were similarly effective in inhibiting the CCL2 nociceptive action for the whole seven days testing period, compared to mismatch DsiRNA. DsiRNAs against CCR2 also reversed the hypernociceptive responses observed in the complete Freund's adjuvant-induced inflammatory chronic pain model. CONCLUSION Altogether, these results validate CCR2 as a an appropriate molecular target for pain control and demonstrate that RNAi-based gene therapy represent an highly specific alternative to classical pharmacological approaches to treat central pathologies such as chronic pain.
Collapse
Affiliation(s)
- Valérie Bégin-Lavallée
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Philippe Sarret, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, Canada.
| | - Élora Midavaine
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marc-André Dansereau
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pascal Tétreault
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Scott D Rose
- Integrated DNA Technologies Inc, Coralville, IA, USA
| | - Mark A Behlke
- Integrated DNA Technologies Inc, Coralville, IA, USA
| | - Nicolas Beaudet
- Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Philippe Sarret
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|