1
|
Emmerich PB, Qyli T, Johnson KA, Chaudhuri S, Clark KM, Verhagen NB, Depke MG, Clipson L, Pasch CA, Papadas A, Burkard ME, Wisinski KB, McGregor SM, Asimakopoulos F, Deming DA. Stromal Versican Accumulation and Proteolysis Regulate the Infiltration of CD8 + T Cells in Breast Cancer. Cancers (Basel) 2025; 17:1435. [PMID: 40361362 PMCID: PMC12070914 DOI: 10.3390/cancers17091435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/28/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Background/Objectives: Recent clinical trials in breast cancer have demonstrated that some patients benefit from immune checkpoint blockade, though better predictive markers are needed. The accumulation of the immunomodulatory matrix proteoglycan versican (VCAN) can predict the exclusion of CD8+ tumor-infiltrating lymphocytes (TILs) in some settings and, thus, is evaluated in breast cancer here. Methods: A total of 230 breast cancers were analyzed for VCAN accumulation, VCAN proteolysis, and CD8+ TILs. CD8+ TILs were categorized based on their localization in the tumor epithelial or stromal compartments. Results: VCAN accumulation was detected in 90% of breast cancers, more commonly in ER+ tumors (93% vs. 77%; p < 0.001). MCF7 cells treated with estrogen upregulate VCAN without an enhanced expression of ADAMTS-proteases. VCAN-undetectable tumors demonstrate greater CD8+ TILs compared to VCAN-detectable tumors (p = 0.012). CD8+ T cells within TNBC tumors with high VCAN proteolysis infiltrated the epithelial compartment more often than in tumors with low VCAN proteolysis (91% vs. 42% respectively; p = 0.008). In the TCGA cohort, a strong inverse correlation between CD8A and VCAN expression was observed across subtypes. Conclusions: VCAN accumulation correlates with the exclusion of CD8+ TILs across subtypes of breast cancer, warranting further validation of VCAN accumulation and proteolysis as predictive biomarkers for breast cancer immunotherapy.
Collapse
Affiliation(s)
- Philip B. Emmerich
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Cellular and Molecular Pathology Graduate Program, Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tonela Qyli
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Katherine A. Johnson
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Somak Chaudhuri
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kristen M. Clark
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nathaniel B. Verhagen
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mitchell G. Depke
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cheri A. Pasch
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Athanasios Papadas
- Cellular and Molecular Pathology Graduate Program, Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Division of Blood and Marrow Transplantation and Moores Cancer Center, University of California-San Diego, La Jolla, CA 92093, USA
| | - Mark E. Burkard
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kari B. Wisinski
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Stephanie M. McGregor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation and Moores Cancer Center, University of California-San Diego, La Jolla, CA 92093, USA
| | - Dustin A. Deming
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
2
|
Souza MC, Nunes S, Figuerêdo SHS, de Almeida BS, Santos IPC, Cassali GD, Arruda SM, Cardoso TMDS, Estrela-Lima A, Damasceno KA. Versican Proteolysis by ADAMTS: Understanding Versikine Expression in Canine Spontaneous Mammary Carcinomas. Cancers (Basel) 2024; 16:4057. [PMID: 39682243 DOI: 10.3390/cancers16234057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 12/18/2024] Open
Abstract
Background: The present study investigates VKINE, a bioactive proteolytic fragment of the proteoglycan VCAN, as a novel and significant element in the tumor extracellular matrix (ECM). Although VKINE has been recognized for its immunomodulatory potential in certain tumor types, its impact on ECM degradation and prognostic implications remains poorly understood. Objectives: This study aimed to evaluate VCAN proteolysis and its association with ADAMTS enzymes involved in extracellular matrix remodeling in spontaneous canine mammary gland cancer. Methods: The expression levels of VKINE, ADAMTS enzymes, and collagen fibers were comparatively analyzed in situ and in invasive areas of carcinoma in mixed tumor (CMT) and carcinosarcoma (CSS) with different prognoses. Results: VKINE was notably expressed in the stroma adjacent to the invasion areas in CMT, whereas ADAMTS-15 was identified as the enzyme associated with VCAN proteolysis. Inverse correlations were observed between type III collagen and VCAN expression in in situ areas. Conclusions: Our findings suggest that VKINE and ADAMTS-15 play crucial roles in the tumor microenvironment, influencing invasiveness and type III collagen deposition. This study contributes to a better understanding of the dynamics within the ECM, paving the way for potential new tools in diagnosing and treating human and canine mammary tumors.
Collapse
Affiliation(s)
- Maria Carolina Souza
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 121 Rua Waldemar Falcão, Salvador 40296-710, BA, Brazil
| | - Simone Nunes
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 121 Rua Waldemar Falcão, Salvador 40296-710, BA, Brazil
| | - Samantha Hellen Santos Figuerêdo
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 121 Rua Waldemar Falcão, Salvador 40296-710, BA, Brazil
| | - Bruno Sousa de Almeida
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 121 Rua Waldemar Falcão, Salvador 40296-710, BA, Brazil
| | - Isac Patrick Conceição Santos
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 121 Rua Waldemar Falcão, Salvador 40296-710, BA, Brazil
| | - Geovanni Dantas Cassali
- Comparative Pathology Laboratory, Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, 6627 Av. Pres. Antônio Carlos, Belo Horizonte 31270-901, MG, Brazil
| | - Sérgio Marcos Arruda
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 121 Rua Waldemar Falcão, Salvador 40296-710, BA, Brazil
| | - Thiago Marconi de Souza Cardoso
- Clinical Research Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 121 Rua Waldemar Falcão, Salvador 40296-710, BA, Brazil
| | - Alessandra Estrela-Lima
- Research Center on Mammary Oncology NPqOM/HOSPMEV, Federal University of Bahia, Salvador 40170-110, BA, Brazil
| | - Karine Araújo Damasceno
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 121 Rua Waldemar Falcão, Salvador 40296-710, BA, Brazil
| |
Collapse
|
3
|
Melrose J. CNS/PNS proteoglycans functionalize neuronal and astrocyte niche microenvironments optimizing cellular activity by preserving membrane polarization dynamics, ionic microenvironments, ion fluxes, neuronal activation, and network neurotransductive capacity. J Neurosci Res 2024; 102:e25361. [PMID: 39034899 DOI: 10.1002/jnr.25361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/22/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024]
Abstract
Central and peripheral nervous system (CNS/PNS) proteoglycans (PGs) have diverse functional roles, this study examined how these control cellular behavior and tissue function. The CNS/PNS extracellular matrix (ECM) is a dynamic, responsive, highly interactive, space-filling, cell supportive, stabilizing structure maintaining tissue compartments, ionic microenvironments, and microgradients that regulate neuronal activity and maintain the neuron in an optimal ionic microenvironment. The CNS/PNS contains a high glycosaminoglycan content (60% hyaluronan, HA) and a diverse range of stabilizing PGs. Immobilization of HA in brain tissues by HA interactive hyalectan PGs preserves tissue hydration and neuronal activity, a paucity of HA in brain tissues results in a pro-convulsant epileptic phenotype. Diverse CS, KS, and HSPGs stabilize the blood-brain barrier and neurovascular unit, provide smart gel neurotransmitter neuron vesicle storage and delivery, organize the neuromuscular junction basement membrane, and provide motor neuron synaptic plasticity, and photoreceptor and neuron synaptic functions. PG-HA networks maintain ionic fluxes and microgradients and tissue compartments that contribute to membrane polarization dynamics essential to neuronal activation and neurotransduction. Hyalectans form neuroprotective perineuronal nets contributing to synaptic plasticity, memory, and cognitive learning. Sialoglycoprotein associated with cones and rods (SPACRCAN), an HA binding CSPG, stabilizes the inter-photoreceptor ECM. HSPGs pikachurin and eyes shut stabilize the photoreceptor synapse aiding in phototransduction and neurotransduction with retinal bipolar neurons crucial to visual acuity. This is achieved through Laminin G motifs in pikachurin, eyes shut, and neurexins that interact with the dystroglycan-cytoskeleton-ECM-stabilizing synaptic interconnections, neuronal interactive specificity, and co-ordination of regulatory action potentials in neural networks.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney Faculty of Medicine and Health, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
4
|
Melrose J. Hyaluronan hydrates and compartmentalises the CNS/PNS extracellular matrix and provides niche environments conducive to the optimisation of neuronal activity. J Neurochem 2023; 166:637-653. [PMID: 37492973 DOI: 10.1111/jnc.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The central nervous system/peripheral nervous system (CNS/PNS) extracellular matrix is a dynamic and highly interactive space-filling, cell-supportive, matrix-stabilising, hydrating entity that creates and maintains tissue compartments to facilitate regional ionic micro-environments and micro-gradients that promote optimal neural cellular activity. The CNS/PNS does not contain large supportive collagenous and elastic fibrillar networks but is dominated by a high glycosaminoglycan content, predominantly hyaluronan (HA) and collagen is restricted to the brain microvasculature, blood-brain barrier, neuromuscular junction and meninges dura, arachnoid and pia mater. Chondroitin sulphate-rich proteoglycans (lecticans) interactive with HA have stabilising roles in perineuronal nets and contribute to neural plasticity, memory and cognitive processes. Hyaluronan also interacts with sialoproteoglycan associated with cones and rods (SPACRCAN) to stabilise the interphotoreceptor matrix and has protective properties that ensure photoreceptor viability and function is maintained. HA also regulates myelination/re-myelination in neural networks. HA fragmentation has been observed in white matter injury, multiple sclerosis, and traumatic brain injury. HA fragments (2 × 105 Da) regulate oligodendrocyte precursor cell maturation, myelination/remyelination, and interact with TLR4 to initiate signalling cascades that mediate myelin basic protein transcription. HA and its fragments have regulatory roles over myelination which ensure high axonal neurotransduction rates are maintained in neural networks. Glioma is a particularly invasive brain tumour with extremely high mortality rates. HA, CD44 and RHAMM (receptor for HA-mediated motility) HA receptors are highly expressed in this tumour. Conventional anti-glioma drug treatments have been largely ineffective and surgical removal is normally not an option. CD44 and RHAMM glioma HA receptors can potentially be used to target gliomas with PEP-1, a cell-penetrating HA-binding peptide. PEP-1 can be conjugated to a therapeutic drug; such drug conjugates have successfully treated dense non-operative tumours in other tissues, therefore similar applications warrant exploration as potential anti-glioma treatments.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
5
|
Papadas A, Deb G, Cicala A, Officer A, Hope C, Pagenkopf A, Flietner E, Morrow ZT, Emmerich P, Wiesner J, Arauz G, Bansal V, Esbona K, Capitini CM, Matkowskyj KA, Deming DA, Politi K, Abrams SI, Harismendy O, Asimakopoulos F. Stromal remodeling regulates dendritic cell abundance and activity in the tumor microenvironment. Cell Rep 2022; 40:111201. [PMID: 35977482 PMCID: PMC9402878 DOI: 10.1016/j.celrep.2022.111201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/10/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Stimulatory type 1 conventional dendritic cells (cDC1s) engage in productive interactions with CD8+ effectors along tumor-stroma boundaries. The paradoxical accumulation of “poised” cDC1s within stromal sheets is unlikely to simply reflect passive exclusion from tumor cores. Drawing parallels with embryonic morphogenesis, we hypothesized that invasive margin stromal remodeling generates developmentally conserved cell fate cues that regulate cDC1 behavior. We find that, in human T cell-inflamed tumors, CD8+ T cells penetrate tumor nests, whereas cDC1s are confined within adjacent stroma that recurrently displays site-specific proteolysis of the matrix proteoglycan versican (VCAN), an essential organ-sculpting modification in development. VCAN is necessary, and its proteolytic fragment (matrikine) versikine is sufficient for cDC1 accumulation. Versikine does not influence tumor-seeding pre-DC differentiation; rather, it orchestrates a distinctive cDC1 activation program conferring exquisite sensitivity to DNA sensing, supported by atypical innate lymphoid cells. Thus, peritumoral stroma mimicking embryonic provisional matrix remodeling regulates cDC1 abundance and activity to elicit T cell-inflamed tumor microenvironments. T cell-inflamed tumor microenvironments are a prerequisite for immunotherapy efficacy; however, why some tumors are inflamed and others not remains poorly understood. Papadas et al. link stromal reaction dynamics with T cell-induced inflammation. Peritumoral stroma emulating embryonic provisional matrix remodeling regulates cDC1-NK-CD8+ crosstalk to promote T cell repriming and penetration into tumor nests.
Collapse
Affiliation(s)
- Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Gauri Deb
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Adam Officer
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA; Division of Biomedical Informatics, Department of Medicine, University of California, San Diego (UCSD), Moores Cancer Center, La Jolla, CA, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Chelsea Hope
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA; Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam Pagenkopf
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Evan Flietner
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA; Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary T Morrow
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Philip Emmerich
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua Wiesner
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Garrett Arauz
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Varun Bansal
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Karla Esbona
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Christian M Capitini
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Division of Hematology and Oncology, Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Kristina A Matkowskyj
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Dustin A Deming
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Katerina Politi
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA; Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Olivier Harismendy
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA; Division of Biomedical Informatics, Department of Medicine, University of California, San Diego (UCSD), Moores Cancer Center, La Jolla, CA, USA
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
6
|
Yao Q, Hou W, Chen J, Bai Y, Long M, Huang X, Zhao C, Zhou L, Niu D. Comparative proteomic and clinicopathological analysis of breast adenoid cystic carcinoma and basal-like triple-negative breast cancer. Front Med (Lausanne) 2022; 9:943887. [PMID: 35966872 PMCID: PMC9366086 DOI: 10.3389/fmed.2022.943887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/24/2022] [Indexed: 11/15/2022] Open
Abstract
Background Adenoid cystic carcinoma (ACC) is a rare type of triple-negative breast cancer that has an indolent clinical behavior. Given the substantial overlapping morphological, immunohistochemical, and molecular features with other basal-like triple-negative breast cancer (BL-TNBC), accurate diagnosis of ACC is crucial for effective clinical treatment. The integrative analysis of the proteome and clinicopathological characteristics may help to distinguish these two neoplasms and provide a deep understanding on biological behaviors and potential target therapy of ACC. Methods We applied mass spectrometry-based quantitative proteomics to analyze the protein expression in paired tumor and adjacent normal breast tissue of five ACC and five BL-TNBC. Bioinformatic analyses and the clinicopathological characteristics, including histological features, immunohistochemistry, and FISH results, were also collected to get comprehensive information. Results A total of 307 differentially expressed proteins (DEPs) were identified between ACC and BL-TNBC. Clustering analysis of DEPs clearly separated ACC from BL-TNBC. GSEA found downregulation of the immune response of ACC compared with BL-TNBC, which is consistent with the negative PD-L1 expression of ACC. Vesicle-mediated transport was also inhibited, while ECM organization was enriched in ACC. The top upregulated proteins in DEPs were ITGB4, VCAN, and DPT. Moreover, in comparison with normal breast tissue, ACC showed elevated ribosome biogenesis and RNA splicing activity. Conclusion This study provides evidence that ACC presents a substantially different proteomic profile compared with BL-TNBC and promotes our understanding on the molecular mechanisms and biological processes of ACC, which might be useful for differential diagnosis and anticancer strategy.
Collapse
Affiliation(s)
- Qian Yao
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Wei Hou
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Junbing Chen
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanhua Bai
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Mengping Long
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaozheng Huang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Chen Zhao
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Lixin Zhou
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Dongfeng Niu
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
- *Correspondence: Dongfeng Niu
| |
Collapse
|
7
|
Nagyová E, Němcová L, Camaioni A. Cumulus Extracellular Matrix Is an Important Part of Oocyte Microenvironment in Ovarian Follicles: Its Remodeling and Proteolytic Degradation. Int J Mol Sci 2021; 23:54. [PMID: 35008478 PMCID: PMC8744823 DOI: 10.3390/ijms23010054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) is an essential structure with biological activities. It has been shown that the ECM influences gene expression via cytoskeletal components and the gene expression is dependent upon cell interactions with molecules and hormones. The development of ovarian follicles is a hormone dependent process. The surge in the luteinizing hormone triggers ovulatory changes in oocyte microenvironment. In this review, we discuss how proteolytic cleavage affects formation of cumulus ECM following hormonal stimulation; in particular, how the specific proteasome inhibitor MG132 affects gonadotropin-induced cytoskeletal structure, the organization of cumulus ECM, steroidogenesis, and nuclear maturation. We found that after the inhibition of proteolytic cleavage, gonadotropin-stimulated oocyte-cumulus complexes (OCCs) were without any signs of cumulus expansion; they remained compact with preserved cytoskeletal F-actin-rich transzonal projections through the oocyte investments. Concomitantly, a significant decrease was detected in progesterone secretion and in the expression of gonadotropin-stimulated cumulus expansion-related transcripts, such as HAS2 and TNFAIP6. In agreement, the covalent binding between hyaluronan and the heavy chains of serum-derived the inter-alpha-trypsin inhibitor, essential for the organization of cumulus ECM, was missing.
Collapse
Affiliation(s)
- Eva Nagyová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Libechov, Czech Republic;
| | - Lucie Němcová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Libechov, Czech Republic;
| | - Antonella Camaioni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpelier 1, 00133 Rome, Italy;
| |
Collapse
|
8
|
Hirani P, Gauthier V, Allen CE, Wight TN, Pearce OMT. Targeting Versican as a Potential Immunotherapeutic Strategy in the Treatment of Cancer. Front Oncol 2021; 11:712807. [PMID: 34527586 PMCID: PMC8435723 DOI: 10.3389/fonc.2021.712807] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022] Open
Abstract
A growing body of literature links events associated with the progression and severity of immunity and inflammatory disease with the composition of the tissue extracellular matrix as defined by the matrisome. One protein in the matrisome that is common to many inflammatory diseases is the large proteoglycan versican, whose varied function is achieved through multiple isoforms and post-translational modifications of glycosaminoglycan structures. In cancer, increased levels of versican are associated with immune cell phenotype, disease prognosis and failure to respond to treatment. Whether these associations between versican expression and tumour immunity are the result of a direct role in the pathogenesis of tumours is not clear. In this review, we have focused on the role of versican in the immune response as it relates to tumour progression, with the aim of determining whether our current understanding of the immunobiology of versican warrants further study as a cancer immunotherapy target.
Collapse
Affiliation(s)
- Priyanka Hirani
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Valentine Gauthier
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Carys E Allen
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Oliver M T Pearce
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
9
|
Balic Z, Misra S, Willard B, Reinhardt DP, Apte SS, Hubmacher D. Alternative splicing of the metalloprotease ADAMTS17 spacer regulates secretion and modulates autoproteolytic activity. FASEB J 2021; 35:e21310. [PMID: 33484187 DOI: 10.1096/fj.202001120rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022]
Abstract
ADAMTS proteases mediate biosynthesis and breakdown of secreted extracellular matrix (ECM) molecules in numerous physiological and disease processes. In addition to their catalytic domains, ADAMTS proteases contain ancillary domains, which mediate substrate recognition and ECM binding and confer distinctive properties and roles to individual ADAMTS proteases. Although alternative splicing can greatly expand the structural and functional diversity of ADAMTS proteases, it has been infrequently reported and functional consequences have been rarely investigated. Here, we characterize the structural and functional impact of alternative splicing of ADAMTS17, mutations in which cause Weill-Marchesani syndrome 4. Two novel ADAMTS17 splice variants, ADAMTS17A and ADAMTS17B, were investigated by structural modeling, mass spectrometry, and biochemical approaches. Our results identify a novel disulfide-bridged insertion in the ADAMTS17A spacer that originates from inclusion of a novel exon. This insertion results in differential autoproteolysis of ADAMTS17, and thus, predicts altered proteolytic activity against other substrates. The second variant, ADAMTS17B, results from an in-frame exon deletion and prevents ADAMTS17B secretion. Thus, alternative splicing of the ADAMTS spacer significantly regulates the physiologically relevant proteolytic activity of ADAMTS17, either by altering proteolytic specificity (ADAMTS17A) or by altering cellular localization (ADAMTS17B).
Collapse
Affiliation(s)
- Zerina Balic
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Belinda Willard
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | | | - Suneel S Apte
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Dirk Hubmacher
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Han CY, Kang I, Harten IA, Gebe JA, Chan CK, Omer M, Alonge KM, den Hartigh LJ, Gomes Kjerulf D, Goodspeed L, Subramanian S, Wang S, Kim F, Birk DE, Wight TN, Chait A. Adipocyte-Derived Versican and Macrophage-Derived Biglycan Control Adipose Tissue Inflammation in Obesity. Cell Rep 2021; 31:107818. [PMID: 32610121 DOI: 10.1016/j.celrep.2020.107818] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/20/2020] [Accepted: 06/04/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity is characterized by adipose tissue inflammation. Because proteoglycans regulate inflammation, here we investigate their role in adipose tissue inflammation in obesity. We find that adipose tissue versican and biglycan increase in obesity. Versican is produced mainly by adipocytes and biglycan by adipose tissue macrophages. Both proteoglycans are also present in adipose tissue from obese human subjects undergoing gastric bypass surgery. Deletion of adipocyte-specific versican or macrophage-specific biglycan in mice reduces macrophage accumulation and chemokine and cytokine expression, although only adipocyte-specific versican deletion leads to sustained improvement in glucose tolerance. Macrophage-derived biglycan activates inflammatory genes in adipocytes. Versican expression increases in cultured adipocytes exposed to excess glucose, and adipocyte-conditioned medium stimulates inflammation in resident peritoneal macrophages, in part because of a versican breakdown product, versikine. These findings provide insights into the role of adipocyte- and macrophage-derived proteoglycans in adipose tissue inflammation in obesity.
Collapse
Affiliation(s)
- Chang Yeop Han
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Ingrid A Harten
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - John A Gebe
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Christina K Chan
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Mohamed Omer
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Kimberly M Alonge
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Laura J den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Diego Gomes Kjerulf
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Leela Goodspeed
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Savitha Subramanian
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Shari Wang
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Francis Kim
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - David E Birk
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL, USA
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Alan Chait
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Versican G1 Fragment Establishes a Strongly Stabilized Interaction with Hyaluronan-Rich Expanding Matrix during Oocyte Maturation. Int J Mol Sci 2020; 21:ijms21072267. [PMID: 32218212 PMCID: PMC7177942 DOI: 10.3390/ijms21072267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 12/29/2022] Open
Abstract
In the mammalian ovary, the hyaluronan (HA)-rich cumulus extracellular matrix (ECM) organized during the gonadotropin-induced process of oocyte maturation is essential for ovulation of the oocyte-cumulus complex (OCC) and fertilization. Versican is an HA-binding proteoglycan that regulates cell function and ECM assembly. Versican cleavage and function remain to be determined in ovarian follicle. We investigated versican expression in porcine ovarian follicles by real-time (RT)-PCR and western blotting. The aims of the present work were to determine whether 1) versican was produced and cleaved by porcine OCCs during gonadotropin stimulation; 2) these processes were autonomous or required the participation of mural granulosa cells (MGCs); and 3) versican cleavage was involved in the formation or degradation of expanded cumulus ECM. We demonstrate two cleavage products of G1 domain of versican (V1) accumulated in the HA-rich cumulus ECM. One of them, a G1-DPEAAE N-terminal fragment (VG1) of ~70 kDa, was generated from V1 during organization of HA in in vivo and in vitro expanded porcine OCCs. Second, the V1-cleaved DPEAAE-positive form of ~65 kDa was the only species detected in MGCs. No versican cleavage products were detected in OCCs cultured without follicular fluid. In summary, porcine OCCs are autonomous in producing and cleaving V1; the cleaved fragment of ~70 kDa VG1 is specific for formation of the expanded cumulus HA-rich ECM.
Collapse
|
12
|
Han R, Hu S, Qin W, Shi J, Hou Q, Wang X, Xu X, Zhang M, Zeng C, Liu Z, Bao H. C3a and suPAR drive versican V1 expression in tubular cells of focal segmental glomerulosclerosis. JCI Insight 2019; 4:122912. [PMID: 30944246 DOI: 10.1172/jci.insight.122912] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic tubulointerstitial injury impacts the prognosis of focal segmental glomerulosclerosis (FSGS). We found that the level of versican V1 was increased in tubular cells of FSGS patients. Tubular cell-derived versican V1 induced proliferation and collagen synthesis by activating the CD44/Smad3 pathway in fibroblasts. Both urine C3a and suPAR were increased and bound to the tubular cells in FSGS patients. C3a promoted the transcription of versican by activating the AKT/β-catenin pathway. C3aR knockout decreased the expression of versican in Adriamycin-treated (ADR-treated) mice. On the other hand, suPAR bound to integrin β6 and activated Rac1, which bound to SRp40 at the 5' end of exon 7 in versican pre-mRNA. This binding inhibited the 3'-end splicing of intron 6 and the base-pair interactions between intron 6 and intron 8, leading to the formation of versican V1. Cotreatment with ADR and suPAR specifically increased the level of versican V1 in tubulointerstitial tissues and caused more obvious interstitial fibrosis in mice than treatment with only ADR. Altogether, our results show that C3a and suPAR drive versican V1 expression in tubular cells by promoting transcription and splicing, respectively, and the increases in tubular cell-derived versican V1 induce interstitial fibrosis by activating fibroblasts in FSGS.
Collapse
Affiliation(s)
- Runhong Han
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,National Clinical Research Center of Kidney Diseases, Jinling Hospital, Southeast University School of Medicine, Nanjing, China
| | - Shuai Hu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Weisong Qin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jinsong Shi
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qin Hou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xia Wang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaodong Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Minchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,National Clinical Research Center of Kidney Diseases, Jinling Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hao Bao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
13
|
Zhang Y, Zou X, Qian W, Weng X, Zhang L, Zhang L, Wang S, Cao X, Ma L, Wei G, Wu Y, Hou Z. Enhanced PAPSS2/VCAN sulfation axis is essential for Snail-mediated breast cancer cell migration and metastasis. Cell Death Differ 2018; 26:565-579. [PMID: 29955124 DOI: 10.1038/s41418-018-0147-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 05/10/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022] Open
Abstract
The zinc finger protein Snail is a master regulator of epithelial-mesenchymal transition (EMT) and a strong inducer of tumor metastasis, yet the signal cascades triggered by Snail have not been completely revealed. Here, we report the discovery of the sulfation program that can be induced by Snail in breast cancer cells, and which plays an essential role in cell migration and metastasis. Specifically, Snail induces the expression of PAPSS2, a gene that encodes a rate-limiting enzyme in sulfation pathway, and VCAN, a gene that encodes the chondroitin sulfate proteoglycan Versican in multiple breast cancer cells. Depletion of PAPSS2 in MCF7 and MDA-MB-231 cells results in reduced cell migration, while overexpression of PAPSS2 promotes cell migration. Moreover, MDA-MB-231-shPAPSS2 cells display a significantly lower rate of lung metastasis and lower number of micrometastatic nodules in nude mice, and conversely, MDA-MB-231-PAPSS2 cells increase lung metastasis. Similarly, depletion of VCAN dampens the cell migration activity induced by Snail or PAPSS2 in MCF 10A cells. Moreover, PAPSS inhibitor sodium chlorate effectively decreases cell migration induced by Snail and PAPSS2. More importantly, the expression of Snail, PAPSS2, and VCAN is positively correlated in breast cancer tissues. Together, these findings are important for understanding the genetic programs that control tumor metastasis and may identify previously undetected therapeutic targets to treat metastatic disease.
Collapse
Affiliation(s)
- Yihong Zhang
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiuqun Zou
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenli Qian
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoling Weng
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuang Wang
- Institute of Genome Engineered Animal Models for Human Disease, National Center of Genetically Engineered Animal Models, College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xuan Cao
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute of Computational Biology, Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Li Ma
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute of Computational Biology, Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Gang Wei
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute of Computational Biology, Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai, China.
| | - Yingjie Wu
- Institute of Genome Engineered Animal Models for Human Disease, National Center of Genetically Engineered Animal Models, College of Integrative Medicine, Dalian Medical University, Dalian, China.
| | - Zhaoyuan Hou
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Bhattacharyya S, Feferman L, Han X, Ouyang Y, Zhang F, Linhardt RJ, Tobacman JK. Decline in arylsulfatase B expression increases EGFR expression by inhibiting the protein-tyrosine phosphatase SHP2 and activating JNK in prostate cells. J Biol Chem 2018; 293:11076-11087. [PMID: 29794138 DOI: 10.1074/jbc.ra117.001244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 05/14/2018] [Indexed: 12/24/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) has a crucial role in cell differentiation and proliferation and cancer, and its expression appears to be up-regulated when arylsulfatase B (ARSB or GalNAc-4-sulfatase) is reduced. ARSB removes 4-sulfate groups from the nonreducing end of dermatan sulfate and chondroitin 4-sulfate (C4S), and its decreased expression has previously been reported to inhibit the activity of the ubiquitous protein-tyrosine phosphatase, nonreceptor type 11 (SHP2 or PTPN11). However, the mechanism by which decline in ARSB leads to decline in SHP2 activity is unclear. Here, we show that SHP2 binds preferentially C4S, rather than chondroitin 6-sulfate, and confirm that SHP2 activity declines when ARSB is silenced. The reduction in ARSB activity, and the resultant increase in C4S, increased the expression of EGFR (Her1/ErbB1) in human prostate stem and epithelial cells. The increased expression of EGFR occurred after 1) the decline in SHP2 activity, 2) enhanced c-Jun N-terminal kinase (JNK) activity, 3) increased nuclear DNA binding by c-Jun and c-Fos, and 4) EGFR promoter activation. In response to exogenous EGF, there was increased bromodeoxyuridine incorporation, consistent with enhanced cell proliferation. These findings indicated that ARSB and chondroitin 4-sulfation affect the activation of an important dual phosphorylation threonine-tyrosine kinase and the mRNA expression of a critical tyrosine kinase receptor in prostate cells. Restoration of ARSB activity with the associated reduction in C4S may provide a new therapeutic approach for managing malignancies in which EGFR-mediated tyrosine kinase signaling pathways are active.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- From the Department of Medicine, University of Illinois and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612 and
| | - Leo Feferman
- From the Department of Medicine, University of Illinois and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612 and
| | - Xiaorui Han
- the Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biology and Biomedical Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Yilan Ouyang
- the Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biology and Biomedical Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Fuming Zhang
- the Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biology and Biomedical Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Robert J Linhardt
- the Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biology and Biomedical Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Joanne K Tobacman
- From the Department of Medicine, University of Illinois and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612 and
| |
Collapse
|
15
|
Hauser-Kawaguchi A, Luyt LG, Turley E. Design of peptide mimetics to block pro-inflammatory functions of HA fragments. Matrix Biol 2018; 78-79:346-356. [PMID: 29408009 DOI: 10.1016/j.matbio.2018.01.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/22/2018] [Accepted: 01/28/2018] [Indexed: 12/26/2022]
Abstract
Hyaluronan is a simple extracellular matrix polysaccharide that actively regulates inflammation in tissue repair and disease processes. The native HA polymer, which is large (>500 kDa), contributes to the maintenance of homeostasis. In remodeling and diseased tissues, polymer size is strikingly polydisperse, ranging from <10 kDa to >500 kDa. In a diseased or stressed tissue context, both smaller HA fragments and high molecular weight HA polymers can acquire pro-inflammatory functions, which result in the activation of multiple receptors, triggering pro-inflammatory signaling to diverse stimuli. Peptide mimics that bind and scavenge HA fragments have been developed, which show efficacy in animal models of inflammation. These studies indicate both that HA fragments are key to driving inflammation and that scavenging these is a viable therapeutic approach to blunting inflammation in disease processes. This mini-review summarizes the peptide-based methods that have been reported to date for blocking HA signaling events as an anti-inflammatory therapeutic approach.
Collapse
Affiliation(s)
| | - Leonard G Luyt
- Department of Chemistry, Western University, London, ON, Canada; Department of Oncology, Schulich School of Medicine, Western University, London, ON, Canada; Department of Medical Imaging, Schulich School of Medicine, Western University, London, ON, Canada; Cancer Research Laboratories, London Regional Cancer Center, Victoria Hospital, London, ON N6A 4L6, Canada
| | - Eva Turley
- Department of Oncology, Schulich School of Medicine, Western University, London, ON, Canada; Cancer Research Laboratories, London Regional Cancer Center, Victoria Hospital, London, ON N6A 4L6, Canada; Department of Biochemistry, Schulich School of Medicine, Western University, London, ON, Canada; Department of Surgery, Schulich School of Medicine, Western University, London, ON, Canada.
| |
Collapse
|
16
|
Abstract
Versican is a chondroitin sulfate proteoglycan found in the extracellular matrix that is important for changes in cell phenotype associated with development and disease. Versican has been shown to be involved in cardiovascular disorders, as well as lung disease and fibrosis, inflammatory bowel disease, cancer, and several other diseases that have an inflammatory component. Versican was first identified as a fibroblast proteoglycan and forms large multimolecular complexes with hyaluronan and other components of the provisional matrix during wound healing and inflammation. The biology of versican has been well studied. Versican plays a major role in embryogenesis, particularly heart formation, where versican deletion proves lethal. The ability to purify versican to characterize and to use in experimental systems is vital to defining its role in development and disease. Protein expression systems have proven challenging to obtain milligram quantities of full-length versican. Here, we describe proteoglycan biochemical purification techniques that have been developed by others, but which we have adapted to use with our source tissues and cells. We also include methods for immunohistochemical localization and quantitation of versican in tissue sections.
Collapse
|
17
|
Hope C, Emmerich PB, Papadas A, Pagenkopf A, Matkowskyj KA, Van De Hey DR, Payne SN, Clipson L, Callander NS, Hematti P, Miyamoto S, Johnson MG, Deming DA, Asimakopoulos F. Versican-Derived Matrikines Regulate Batf3-Dendritic Cell Differentiation and Promote T Cell Infiltration in Colorectal Cancer. THE JOURNAL OF IMMUNOLOGY 2017; 199:1933-1941. [PMID: 28754680 DOI: 10.4049/jimmunol.1700529] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Colorectal cancer originates within immunologically complex microenvironments. To date, the benefits of immunotherapy have been modest, except in neoantigen-laden mismatch repair-deficient tumors. Approaches to enhance tumor-infiltrating lymphocytes in the tumor bed may substantially augment clinical immunotherapy responses. In this article, we report that proteolysis of the tolerogenic matrix proteoglycan versican (VCAN) strongly correlated with CD8+ T cell infiltration in colorectal cancer, regardless of mismatch repair status. Tumors displaying active VCAN proteolysis and low total VCAN were associated with robust (10-fold) CD8+ T cell infiltration. Tumor-intrinsic WNT pathway activation was associated with CD8+ T cell exclusion and VCAN accumulation. In addition to regulating VCAN levels at the tumor site, VCAN proteolysis results in the generation of bioactive fragments with novel functions (VCAN-derived matrikines). Versikine, a VCAN-derived matrikine, enhanced the generation of CD103+CD11chiMHCIIhi conventional dendritic cells (cDCs) from Flt3L-mobilized primary bone marrow-derived progenitors, suggesting that VCAN proteolysis may promote differentiation of tumor-seeding DC precursors toward IRF8- and BATF3-expressing cDCs. Intratumoral BATF3-dependent DCs are critical determinants for T cell antitumor immunity, effector T cell trafficking to the tumor site, and response to immunotherapies. Our findings provide a rationale for testing VCAN proteolysis as a predictive and/or prognostic immune biomarker and VCAN-derived matrikines as novel immunotherapy agents.
Collapse
Affiliation(s)
- Chelsea Hope
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| | - Philip B Emmerich
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| | - Athanasios Papadas
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| | - Adam Pagenkopf
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| | - Kristina A Matkowskyj
- University of Wisconsin Carbone Cancer Center, Madison, WI 53792.,Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,William S. Middleton Memorial Veterans Hospital, Madison, WI 53705; and
| | - Dana R Van De Hey
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Susan N Payne
- University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Natalie S Callander
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792.,William S. Middleton Memorial Veterans Hospital, Madison, WI 53705; and
| | - Peiman Hematti
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| | - Shigeki Miyamoto
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Michael G Johnson
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| | - Dustin A Deming
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705; .,University of Wisconsin Carbone Cancer Center, Madison, WI 53792.,William S. Middleton Memorial Veterans Hospital, Madison, WI 53705; and.,McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Fotis Asimakopoulos
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705; .,University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| |
Collapse
|
18
|
Immunoregulatory roles of versican proteolysis in the myeloma microenvironment. Blood 2016; 128:680-5. [PMID: 27259980 DOI: 10.1182/blood-2016-03-705780] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/30/2016] [Indexed: 01/14/2023] Open
Abstract
Myeloma immunosurveillance remains incompletely understood. We have demonstrated proteolytic processing of the matrix proteoglycan, versican (VCAN), in myeloma tumors. Whereas intact VCAN exerts tolerogenic activities through Toll-like receptor 2 (TLR2) binding, the immunoregulatory consequences of VCAN proteolysis remain unknown. Here we show that human myeloma tumors displaying CD8(+) infiltration/aggregates underwent VCAN proteolysis at a site predicted to generate a glycosaminoglycan-bereft N-terminal fragment, versikine Myeloma-associated macrophages (MAMs), rather than tumor cells, chiefly produced V1-VCAN, the precursor to versikine, whereas stromal cell-derived ADAMTS1 was the most robustly expressed VCAN-degrading protease. Purified versikine induced early expression of inflammatory cytokines interleukin 1β (IL-1β) and IL-6 by human myeloma marrow-derived MAMs. We show that versikine signals through pathways both dependent and independent of Tpl2 kinase, a key regulator of nuclear factor κB1-mediated MAPK activation in macrophages. Unlike intact VCAN, versikine-induced Il-6 production was partially independent of Tlr2. In a model of macrophage-myeloma cell crosstalk, versikine induced components of "T-cell inflammation," including IRF8-dependent type I interferon transcriptional signatures and T-cell chemoattractant CCL2. Thus the interplay between stromal cells and myeloid cells in the myeloma microenvironment generates versikine, a novel bioactive damage-associated molecular pattern that may facilitate immune sensing of myeloma tumors and modulate the tolerogenic consequences of intact VCAN accumulation. Therapeutic versikine administration may potentiate T-cell-activating immunotherapies.
Collapse
|