1
|
López‐Haber C, Netting DJ, Hutchins Z, Ma X, Hamilton KE, Mantegazza AR. The phagosomal solute transporter SLC15A4 promotes inflammasome activity via mTORC1 signaling and autophagy restraint in dendritic cells. EMBO J 2022; 41:e111161. [PMID: 36031853 PMCID: PMC9574736 DOI: 10.15252/embj.2022111161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 01/18/2023] Open
Abstract
Phagocytosis is the necessary first step to sense foreign microbes or particles and enables activation of innate immune pathways such as inflammasomes. However, the molecular mechanisms underlying how phagosomes modulate inflammasome activity are not fully understood. We show that in murine dendritic cells (DCs), the lysosomal histidine/peptide solute carrier transporter SLC15A4, associated with human inflammatory disorders, is recruited to phagosomes and is required for optimal inflammasome activity after infectious or sterile stimuli. Dextran sodium sulfate-treated SLC15A4-deficient mice exhibit decreased colon inflammation, reduced IL-1β production by intestinal DCs, and increased autophagy. Similarly, SLC15A4-deficient DCs infected with Salmonella typhimurium show reduced caspase-1 cleavage and IL-1β production. This correlates with peripheral NLRC4 inflammasome assembly and increased autophagy. Overexpression of constitutively active mTORC1 rescues decreased IL-1β levels and caspase1 cleavage, and restores perinuclear inflammasome positioning. Our findings support that SLC15A4 couples phagocytosis with inflammasome perinuclear assembly and inhibition of autophagy through phagosomal content sensing. Our data also reveal the previously unappreciated importance of mTORC1 signaling pathways to promote and sustain inflammasome activity.
Collapse
Affiliation(s)
- Cynthia López‐Haber
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Present address:
Department of Microbiology and Immunology, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Daniel J Netting
- Department of Microbiology and Immunology, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Zachary Hutchins
- Department of Microbiology and Immunology, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Xianghui Ma
- Division of Gastroenterology, Hepatology, and Nutrition, Department of PediatricsChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Kathryn E Hamilton
- Division of Gastroenterology, Hepatology, and Nutrition, Department of PediatricsChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Adriana R Mantegazza
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Present address:
Department of Microbiology and Immunology, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
2
|
López-Haber C, Levin-Konigsberg R, Zhu Y, Bi-Karchin J, Balla T, Grinstein S, Marks MS, Mantegazza AR. Phosphatidylinositol-4-kinase IIα licenses phagosomes for TLR4 signaling and MHC-II presentation in dendritic cells. Proc Natl Acad Sci U S A 2020; 117:28251-28262. [PMID: 33109721 PMCID: PMC7668187 DOI: 10.1073/pnas.2001948117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptor (TLR) recruitment to phagosomes in dendritic cells (DCs) and downstream TLR signaling are essential to initiate antimicrobial immune responses. However, the mechanisms underlying TLR localization to phagosomes are poorly characterized. We show herein that phosphatidylinositol-4-kinase IIα (PI4KIIα) plays a key role in initiating phagosomal TLR4 responses in murine DCs by generating a phosphatidylinositol-4-phosphate (PtdIns4P) platform conducive to the binding of the TLR sorting adaptor Toll-IL1 receptor (TIR) domain-containing adaptor protein (TIRAP). PI4KIIα is recruited to maturing lipopolysaccharide (LPS)-containing phagosomes in an adaptor protein-3 (AP-3)-dependent manner, and both PI4KIIα and PtdIns4P are detected on phagosomal membrane tubules. Knockdown of PI4KIIα-but not the related PI4KIIβ-impairs TIRAP and TLR4 localization to phagosomes, reduces proinflammatory cytokine secretion, abolishes phagosomal tubule formation, and impairs major histocompatibility complex II (MHC-II) presentation. Phagosomal TLR responses in PI4KIIα-deficient DCs are restored by reexpression of wild-type PI4KIIα, but not of variants lacking kinase activity or AP-3 binding. Our data indicate that PI4KIIα is an essential regulator of phagosomal TLR signaling in DCs by ensuring optimal TIRAP recruitment to phagosomes.
Collapse
Affiliation(s)
- Cynthia López-Haber
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Roni Levin-Konigsberg
- Division of Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yueyao Zhu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jing Bi-Karchin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Adriana R Mantegazza
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104;
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
3
|
Levin-Konigsberg R, Mantegazza AR. A guide to measuring phagosomal dynamics. FEBS J 2020; 288:1412-1433. [PMID: 32757358 PMCID: PMC7984381 DOI: 10.1111/febs.15506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Phagocytosis is an essential mechanism for immunity and homeostasis, performed by a subset of cells known as phagocytes. Upon target engulfment, de novo formation of specialized compartments termed phagosomes takes place. Phagosomes then undergo a series of fusion and fission events as they interact with the endolysosomal system and other organelles, in a dynamic process known as phagosome maturation. Because phagocytes play a key role in tissue patrolling and immune surveillance, phagosome maturation is associated with signaling pathways that link phagocytosis to antigen presentation and the development of adaptive immune responses. In addition, and depending on the nature of the cargo, phagosome integrity may be compromised, triggering additional cellular mechanisms including inflammation and autophagy. Upon completion of maturation, phagosomes enter a recently described phase: phagosome resolution, where catabolites from degraded cargo are metabolized, phagosomes are resorbed, and vesicles of phagosomal origin are recycled. Finally, phagocytes return to homeostasis and become ready for a new round of phagocytosis. Altogether, phagosome maturation and resolution encompass a series of dynamic events and organelle crosstalk that can be measured by biochemical, imaging, photoluminescence, cytometric, and immune‐based assays that will be described in this guide.
Collapse
Affiliation(s)
| | - Adriana R Mantegazza
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Mantegazza AR, Wynosky-Dolfi MA, Casson CN, Lefkovith AJ, Shin S, Brodsky IE, Marks MS. Increased autophagic sequestration in adaptor protein-3 deficient dendritic cells limits inflammasome activity and impairs antibacterial immunity. PLoS Pathog 2017; 13:e1006785. [PMID: 29253868 PMCID: PMC5749898 DOI: 10.1371/journal.ppat.1006785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/02/2018] [Accepted: 12/01/2017] [Indexed: 12/17/2022] Open
Abstract
Bacterial pathogens that compromise phagosomal membranes stimulate inflammasome assembly in the cytosol, but the molecular mechanisms by which membrane dynamics regulate inflammasome activity are poorly characterized. We show that in murine dendritic cells (DCs), the endosomal adaptor protein AP-3 –which optimizes toll-like receptor signaling from phagosomes–sustains inflammasome activation by particulate stimuli. AP-3 independently regulates inflammasome positioning and autophagy induction, together resulting in delayed inflammasome inactivation by autophagy in response to Salmonella Typhimurium (STm) and other particulate stimuli specifically in DCs. AP-3-deficient DCs, but not macrophages, hyposecrete IL-1β and IL-18 in response to particulate stimuli in vitro, but caspase-1 and IL-1β levels are restored by silencing autophagy. Concomitantly, AP-3-deficient mice exhibit higher mortality and produce less IL-1β, IL-18, and IL-17 than controls upon oral STm infection. Our data identify a novel link between phagocytosis, inflammasome activity and autophagy in DCs, potentially explaining impaired antibacterial immunity in AP-3-deficient patients. Bacterial uptake by phagocytic cells such as dendritic cells (DCs) stimulates signaling from membrane-bound toll-like receptors (TLRs) to shape adaptive immune responses. Pathogenic bacteria that damage phagocytic membranes additionally stimulate the cytoplasmic inflammasome, producing the highly inflammatory cytokines IL-1β and IL-18. Host molecular mechanisms that link phagosomal signaling to inflammasome regulation are poorly characterized. We show that in DCs, the endosomal adaptor protein-3 (AP-3) complex optimizes phagocytosis-induced inflammasome activity by two mechanisms: AP-3 promotes TLR signaling-dependent transcription of inflammasome components and antagonizes autophagy-dependent inflammasome silencing. Consequently, AP-3 deficient DCs hyposecrete IL-1β and IL-18 in response to phagocytosed stimuli, and AP-3 deficient mice succumb to infection by a bacterial pathogen. AP-3 thus links phagosome signaling, inflammasome activity and autophagy in DCs.
Collapse
Affiliation(s)
- Adriana R. Mantegazza
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail: (ARM); (MSM)
| | - Meghan A. Wynosky-Dolfi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Cierra N. Casson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Ariel J. Lefkovith
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Sunny Shin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Igor E. Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Michael S. Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail: (ARM); (MSM)
| |
Collapse
|