1
|
Kapucu GK, Trimbuch T, Rosenmund C, Weber-Boyvat M. Bimolecular Fluorescence Complementation (BiFC) Technique for Exocytic Proteins in Murine Hippocampal Neurons. Methods Mol Biol 2025; 2887:281-294. [PMID: 39806162 DOI: 10.1007/978-1-0716-4314-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The bimolecular fluorescence complementation (BiFC) technique is a powerful tool for visualizing protein-protein interactions in vivo. It involves genetically fused nonfluorescent fragments of green fluorescent protein (GFP) or its variants to the target proteins of interest. When these proteins interact, the GFP fragments come together, resulting in the reconstitution of a functional fluorescent protein complex that can be observed using fluorescence microscopy. In this chapter, we provide a detailed overview of the BiFC method and its application in studying protein-protein interactions in mouse hippocampal neurons. We discuss experimental procedures, including virus construct design, neuronal transduction, and imaging optimization. Additionally, we explore complementary assays for result validation and address potential challenges associated with BiFC experiments in the neuronal system. Overall, the BiFC offers researchers a valuable approach for investigating the spatial and temporal dynamics of protein interactions in living neuronal cells.
Collapse
Affiliation(s)
- Gözdem Karapinar Kapucu
- Institute of Neurophysiology and NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Thorsten Trimbuch
- Institute of Neurophysiology and NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Rosenmund
- Institute of Neurophysiology and NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marion Weber-Boyvat
- Institute of Neurophysiology and NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Li JN, Wang MY, Ruan JW, Lyu YJ, Weng YH, Brindangnanam P, Coumar MS, Chen PS. A transcription-independent role for HIF-1α in modulating microprocessor assembly. Nucleic Acids Res 2024; 52:11806-11821. [PMID: 39319577 PMCID: PMC11514450 DOI: 10.1093/nar/gkae792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/26/2024] Open
Abstract
Microprocessor is an essential nuclear complex responsible for the initial RNase-mediated cleavage of primary miRNA, which is a tightly controlled maturation process that requires the proper assembly of Drosha and DGCR8. Unlike previously identified mechanisms directly targeting the enzymatic subunit Drosha, current knowledge about the biological ways of controlling miRNA nuclear maturation through DGCR8 is less addressed. In this study, we unveiled that the microprocessor assembly is governed by a master gene regulator HIF-1α irrespective of its canonical transcriptional activity. First, a widespread protein binding of HIF-1α with DGCR8 instead of Drosha was observed in response to biological stimulations. Similar protein interactions between their corresponding orthologues in model organisms were also observed. After dissecting the essential protein domains, we noticed that HIF-1α suppresses microprocessor assembly via binding to DGCR8. Furthermore, our results showed that HIF-1α hijacks monomeric DGCR8 thus reducing its dimer formation prior to microprocessor assembly, and consequently, the suppressed microprocessor formation and nuclear processing of primary miRNA were demonstrated. In conclusion, here we unveiled the mechanism of how microprocessor assembly is regulated by HIF-1α, which not only demonstrates a non-transcriptional function of nuclear HIF-1α but also provides new molecular insights into the regulation of microprocessor assembly through DGCR8.
Collapse
Affiliation(s)
- Jie-Ning Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Breast Medical Center, National Cheng Kung University Hospital, Tainan, Taiwan
- Research Center for Medical Laboratory Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Yang Wang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Jhen-Wei Ruan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Research Center for Medical Laboratory Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Jhen Lyu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Hsiu Weng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Research Center for Medical Laboratory Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Pownraj Brindangnanam
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, India
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, India
| | - Pai-Sheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Breast Medical Center, National Cheng Kung University Hospital, Tainan, Taiwan
- Research Center for Medical Laboratory Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Weber-Boyvat M, Kroll J, Trimbuch T, Olkkonen VM, Rosenmund C. The lipid transporter ORP2 regulates synaptic neurotransmitter release via two distinct mechanisms. Cell Rep 2022; 41:111882. [PMID: 36577376 DOI: 10.1016/j.celrep.2022.111882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/26/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Cholesterol is crucial for neuronal synaptic transmission, assisting in the molecular and structural organization of lipid rafts, ion channels, and exocytic proteins. Although cholesterol absence was shown to result in impaired neurotransmission, how cholesterol locally traffics and its route of action are still under debate. Here, we characterized the lipid transfer protein ORP2 in murine hippocampal neurons. We show that ORP2 preferentially localizes to the presynapse. Loss of ORP2 reduces presynaptic cholesterol levels by 50%, coinciding with a profoundly reduced release probability, enhanced facilitation, and impaired presynaptic calcium influx. In addition, ORP2 plays a cholesterol-transport-independent role in regulating vesicle priming and spontaneous release, likely by competing with Munc18-1 in syntaxin1A binding. To conclude, we identified a dual function of ORP2 as a physiological modulator of the synaptic cholesterol content and a regulator of neuronal exocytosis.
Collapse
Affiliation(s)
- Marion Weber-Boyvat
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany.
| | - Jana Kroll
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Thorsten Trimbuch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Christian Rosenmund
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
4
|
Schmitz F, Glas J, Neutze R, Hedfalk K. A bimolecular fluorescence complementation flow cytometry screen for membrane protein interactions. Sci Rep 2021; 11:19232. [PMID: 34584201 PMCID: PMC8478939 DOI: 10.1038/s41598-021-98810-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022] Open
Abstract
Interactions between membrane proteins within a cellular environment are crucial for all living cells. Robust methods to screen and analyse membrane protein complexes are essential to shed light on the molecular mechanism of membrane protein interactions. Most methods for detecting protein:protein interactions (PPIs) have been developed to target the interactions of soluble proteins. Bimolecular fluorescence complementation (BiFC) assays allow the formation of complexes involving PPI partners to be visualized in vivo, irrespective of whether or not these interactions are between soluble or membrane proteins. In this study, we report the development of a screening approach which utilizes BiFC and applies flow cytometry to characterize membrane protein interaction partners in the host Saccharomyces cerevisiae. These data allow constructive complexes to be discriminated with statistical confidence from random interactions and potentially allows an efficient screen for PPIs in vivo within a high-throughput setup.
Collapse
Affiliation(s)
- Florian Schmitz
- Department of Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30, Göteborg, Sweden
| | - Jessica Glas
- Department of Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30, Göteborg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30, Göteborg, Sweden
| | - Kristina Hedfalk
- Department of Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30, Göteborg, Sweden.
| |
Collapse
|
5
|
ORP/Osh mediate cross-talk between ER-plasma membrane contact site components and plasma membrane SNAREs. Cell Mol Life Sci 2020; 78:1689-1708. [PMID: 32734583 PMCID: PMC7904734 DOI: 10.1007/s00018-020-03604-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
OSBP-homologous proteins (ORPs, Oshp) are lipid binding/transfer proteins. Several ORP/Oshp localize to membrane contacts between the endoplasmic reticulum (ER) and the plasma membrane, where they mediate lipid transfer or regulate lipid-modifying enzymes. A common way in which they target contacts is by binding to the ER proteins, VAP/Scs2p, while the second membrane is targeted by other interactions with lipids or proteins.We have studied the cross-talk of secretory SNARE proteins and their regulators with ORP/Oshp and VAPA/Scs2p at ER-plasma membrane contact sites in yeast and murine primary neurons. We show that Oshp-Scs2p interactions depend on intact secretory SNARE proteins, especially Sec9p. SNAP-25/Sec9p directly interact with ORP/Osh proteins and their disruption destabilized the ORP/Osh proteins, associated with dysfunction of VAPA/Scs2p. Deleting OSH1-3 in yeast or knocking down ORP2 in primary neurons reduced the oligomerization of VAPA/Scs2p and affected their multiple interactions with SNAREs. These observations reveal a novel cross-talk between the machineries of ER-plasma membrane contact sites and those driving exocytosis.
Collapse
|
6
|
Zheng JT, Zhang N, Yu YH, Gong PT, Li XH, Wu N, Wang C, Wang XC, Li X, Li JH, Zhang XC. Identification of a TRBD zinc finger-interacting protein in Giardia duodenalis and its regulation of telomerase. Parasit Vectors 2019; 12:568. [PMID: 31783771 PMCID: PMC6884763 DOI: 10.1186/s13071-019-3821-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/21/2019] [Indexed: 11/10/2022] Open
Abstract
Background Giardia duodenalis causes giardiasis, with diarrhea as the primary symptom. The trophozoite proliferation of this zoonotic parasite is mainly affected by telomerase, although the mechanism of telomerase regulation has not been thoroughly analyzed. Methods This study was performed to identify the telomerase RNA-binding domain (TRBD)-interacting protein in G. duodenalis and its regulation of telomerase. Interaction between TRBD and interacting proteins was verified via pulldown assays and co-immunoprecipitation (co-IP) techniques, and the subcellular localization of the protein interactions was determined in vivo via split SNAP-tag labeling. The hammerhead ribozyme was designed to deplete the mRNA of TRBD-interacting proteins. Results Using TRBD as bait, we identified zinc-finger domain (ZFD)-containing proteins and verified it via pulldown and co-IP experiments. Protein-protein interaction occurred in the nuclei of 293T cells and both nuclei of G. duodenalis. The hammerhead ribozyme depleted ZFD mRNA levels, which reduced the reproduction rate of G. duodenalis, telomerase activity and telomere length. Conclusions Our findings suggest that ZFD may regulate telomere function in G. duodenalis nuclei.
Collapse
Affiliation(s)
- Jing-Tong Zheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.,Department of Pathogenobiology, College of Basic Medicine, Jilin University, Changchun, 130021, Jilin, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.,State and Local Joint Engineering Laboratory for Animal Models of Human Diseases, Academy of Translational Medicine, First Hospital, Jilin University, Changchun, 130021, China
| | - Yan-Hui Yu
- Clinical Laboratory of Second Hospital, Jilin University, Changchun, 130021, China
| | - Peng-Tao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xian-He Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Na Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Can Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xiao-Cen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xin Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Jian-Hua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.
| | - Xi-Chen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.
| |
Collapse
|
7
|
Koponen A, Arora A, Takahashi K, Kentala H, Kivelä AM, Jääskeläinen E, Peränen J, Somerharju P, Ikonen E, Viitala T, Olkkonen VM. ORP2 interacts with phosphoinositides and controls the subcellular distribution of cholesterol. Biochimie 2018; 158:90-101. [PMID: 30590084 DOI: 10.1016/j.biochi.2018.12.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 12/20/2018] [Indexed: 01/06/2023]
Abstract
ORP2 is a sterol-binding protein with documented functions in lipid and glucose metabolism, Akt signaling, steroidogenesis, cell adhesion, migration and proliferation. Here we investigate the interactions of ORP2 with phosphoinositides (PIPs) by surface plasmon resonance (SPR), its affinity for cholesterol with a pull-down assay, and its capacity to transfer sterol in vitro. Moreover, we determine the effects of wild-type (wt) ORP2 and a mutant with attenuated PIP binding, ORP2(mHHK), on the subcellular distribution of cholesterol, and analyze the interaction of ORP2 with the related cholesterol transporter ORP1L. ORP2 showed specific affinity for PI(4,5)P2, PI(3,4,5)P3 and PI(4)P, with suggestive Kd values in the μM range. Also binding of cholesterol by ORP2 was detectable, but a Kd could not be determined. Wt ORP2 was in HeLa cells mainly detected in the cytosol, ER, late endosomes, and occasionally on lipid droplets (LDs), while ORP2(mHHK) displayed an enhanced LD localization. Overexpression of wt ORP2 shifted the D4H cholesterol probe away from endosomes, while ORP2(mHHK) caused endosomal accumulation of the probe. Although ORP2 failed to transfer dehydroergosterol in an in vitro assay where OSBP is active, its knock-down resulted in the accumulation of cholesterol in late endocytic compartments, as detected by both D4H and filipin probes. Interestingly, ORP2 was shown to interact and partially co-localize on late endosomes with ORP1L, a cholesterol transporter/sensor at ER-late endosome junctions. Our data demonstrates that ORP2 binds several phosphoinositides, both PI(4)P and multiply phosphorylated species. ORP2 regulates the subcellular distribution of cholesterol dependent on its PIP-binding capacity. The interaction of ORP2 with ORP1L suggests a concerted action of the two ORPs.
Collapse
Affiliation(s)
- Annika Koponen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland
| | - Amita Arora
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland
| | - Kohta Takahashi
- Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| | - Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland
| | - Annukka M Kivelä
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland
| | - Eeva Jääskeläinen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland
| | - Johan Peränen
- Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| | - Pentti Somerharju
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| | - Tapani Viitala
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, FI-00014, University of Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland.
| |
Collapse
|
8
|
Bimolecular Fluorescence Complementation to Assay the Interactions of Ubiquitylation Enzymes in Living Yeast Cells. Methods Mol Biol 2018; 1449:223-41. [PMID: 27613039 DOI: 10.1007/978-1-4939-3756-1_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Ubiquitylation is a versatile posttranslational protein modification catalyzed through the concerted action of ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s). These enzymes form transient complexes with each other and their modification substrates and determine the nature of the ubiquitin signals attached to their substrates. One challenge in the field of protein ubiquitylation is thus to identify the E2-E3 pairs that function in the cell. In this chapter, we describe the use of bimolecular fluorescence complementation to assay E2-E3 interactions in living cells, using budding yeast as a model organism.
Collapse
|
9
|
Kong J, Shi Y, Wang Z, Pan Y. Interactions among SARS-CoV accessory proteins revealed by bimolecular fluorescence complementation assay. Acta Pharm Sin B 2015; 5:487-92. [PMID: 26579480 PMCID: PMC4629423 DOI: 10.1016/j.apsb.2015.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/13/2015] [Accepted: 04/28/2015] [Indexed: 01/16/2023] Open
Abstract
The accessory proteins (3a, 3b, 6, 7a, 7b, 8a, 8b, 9b and ORF14), predicted unknown proteins (PUPs) encoded by the genes, are considered to be unique to the severe acute respiratory syndrome coronavirus (SARS-CoV) genome. These proteins play important roles in various biological processes mediated by interactions with their partners. However, very little is known about the interactions among these accessory proteins. Here, a EYFP (enhanced yellow fluorescent protein) bimolecular fluorescence complementation (BiFC) assay was used to detect the interactions among accessory proteins. 33 out of 81 interactions were identified by BiFC, much more than that identified by the yeast two-hybrid (Y2H) system. This is the first report describing direct visualization of interactions among accessory proteins of SARS-CoV. These findings attest to the general applicability of the BiFC system for the verification of protein-protein interactions.
Collapse
Key Words
- AD, activation domain
- Accessory proteins
- BD, binding domain
- BiFC, bimolecular fluorescence complementation
- Bimolecular fluorescence complementation assay
- Co-IP, co-immunoprecipitation
- E, envelope
- EYFP, enhanced yellow fluorescent protein
- M, membrane
- N, nucleocapsid
- NLS, nuclear localization signal
- ORFs, open reading frames
- PCR, polymerase chain reaction
- PPIs, protein-protein interactions
- PUPs, predicted unknown proteins
- S, spike
- SARS-CoV
- SARS-CoV, severe acute respiratory syndrome coronavirus
- Y2H
- Y2H, yeast two-hybrid
- aa, amino acids
Collapse
Affiliation(s)
- Jianqiang Kong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Corresponding author. Tel.: +86 10 63165169.
| | - Yanwei Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhifang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yiting Pan
- School of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| |
Collapse
|