1
|
Miljkovic I, Cvejkus R, An P, Thyagarajan B, Christensen K, Wojczynski M, Schupf N, Zmuda JM. Low Risk for Developing Diabetes Among the Offspring of Individuals With Exceptional Longevity and Their Spouses. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:753986. [PMID: 36992755 PMCID: PMC10012150 DOI: 10.3389/fcdhc.2022.753986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022]
Abstract
Little is known about the risk of type 2 diabetes (T2D) among the offspring of individuals with exceptional longevity. We determined the incidence of and potential risk and protective factors for T2D among the offspring of probands and offspring’s spouses (mean age=60 years, range 32-88 years) in the Long Life Family Study (LLFS), a multicenter cohort study of 583 two-generation families with a clustering of healthy aging and exceptional longevity. Incident T2D was defined as fasting serum glucose ≥126 mg/dl, or HbA1c of ≥6.5%, or self-reported with doctor diagnosis of T2D, or the use of anti-diabetic medication during a mean follow-up 7.9 ± 1.1 years. Among offspring (n=1105) and spouses (n=328) aged 45-64 years without T2D at baseline visit, the annual incident rate of T2D was 3.6 and 3.0 per 1000 person-years, respectively, while among offspring (n=444) and spouses (n=153) aged 65+ years without T2D at baseline, the annual incident rate of T2D was 7.2 and 7.4 per 1000 person-years, respectively. By comparison, the annual incident rate of T2D per 1000 person-years in the U.S. general population was 9.9 among those aged 45-64, and 8.8 among those aged 65+ years (2018 National Health Interview Survey). Baseline BMI, waist circumference, and fasting serum triglycerides were positively associated with incident T2D, whereas fasting serum HDL-C, adiponectin, and sex hormone binding globulin were protective against incident T2D among the offspring (all P<0.05). Similar associations were observed among their spouses (all P<0.05, except sex hormone binding globulin). In addition, we observed that among spouses, but not offspring, fasting serum interleukin 6 and insulin-like growth factor 1 were positively associated with incident T2D (P<0.05 for both). Our study suggests that both offspring of long-living individuals and their spouses, especially middle-aged, share a similar low risk for developing T2D as compared with the general population. Our findings also raise the possibility that distinct biological risk and protective factors may contribute to T2D risk among offspring of long-lived individuals when compared with their spouses. Future studies are needed to identify the mechanisms underlying low T2D risk among the offspring of individuals with exceptional longevity, and also among their spouses.
Collapse
Affiliation(s)
- Iva Miljkovic
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Iva Miljkovic,
| | - Ryan Cvejkus
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ping An
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Kaare Christensen
- Department of Epidemiology, Biostatistics and Biodemography, Danish Aging Research Center, University of Southern Denmark, Odense, Denmark
| | - Mary Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Nicole Schupf
- Taub Institute, Columbia University, New York, NY, United States
| | - Joseph M. Zmuda
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
The Muller’s Ratchet and Aging. Trends Genet 2020; 36:395-402. [DOI: 10.1016/j.tig.2020.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/02/2020] [Accepted: 02/25/2020] [Indexed: 11/21/2022]
|
3
|
Innan H, Veitia R, Govindaraju DR. Genetic and epigenetic Muller's ratchet as a mechanism of frailty and morbidity during aging: a demographic genetic model. Hum Genet 2019; 139:409-420. [PMID: 31713020 DOI: 10.1007/s00439-019-02067-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022]
Abstract
Mutation accumulation has been proposed as a cause of senescence. During this process, age-related genetic and epigenetic mutations steadily accumulate. Cascading deleterious effects of mutations might initiate a steady "accumulation of deficits" in cells, despite the existence of repair mechanisms, leading to cellular senescence and functional decline of tissues and organs, which ultimately manifest as frailty and disease. Here, we investigate several of these aspects in differentiating cell populations through modeling and simulation using the Moran birth-death (demographic) process, under several scenarios of mutation accumulation. Deleterious mutations seem to rapidly accumulate particularly early in the course of life, during which the rate of cell division is high, thereby exerting a greater effect on subsequent cellular senescence. Our results are compatible with the principle of the Muller's ratchet taking place in asexually reproducing organisms. The ratchet speed in a given tissue depends on the size of the cell population, mutation rate and the impact of such mutations on cell phenotypes. It varies substantially among cells in different tissues and organs due to heterogeneity in relation to cell and organ-specific demographic features. Ratchet accelerates particularly after middle age, resulting in a synergistic fitness decay at the level of cell populations. We extend Fisher's average excess concept and rank order scale to interpret differential phenotypic effects of the increase of the mutation load among cell populations within a given tissue. We postulate that classical evolutionary genetic models can explain, at least in part, the origins of frailty, subclinical conditions, morbidity and the health consequences of senescence.
Collapse
Affiliation(s)
- Hideki Innan
- Graduate University for Advanced Studies, Hayama, Kanagawa, 240-0193, Japan.
| | - Reiner Veitia
- Institute Jacques Monod, Paris, France.,Universite Paris Diderot, Paris, France
| | - Diddahally R Govindaraju
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA. .,The Institute of Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10460, USA.
| |
Collapse
|
4
|
Giuliani C, Sazzini M, Pirazzini C, Bacalini MG, Marasco E, Ruscone GAG, Fang F, Sarno S, Gentilini D, Di Blasio AM, Crocco P, Passarino G, Mari D, Monti D, Nacmias B, Sorbi S, Salvarani C, Catanoso M, Pettener D, Luiselli D, Ukraintseva S, Yashin A, Franceschi C, Garagnani P. Impact of demography and population dynamics on the genetic architecture of human longevity. Aging (Albany NY) 2019; 10:1947-1963. [PMID: 30089705 PMCID: PMC6128422 DOI: 10.18632/aging.101515] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023]
Abstract
The study of the genetics of longevity has been mainly addressed by GWASs that considered subjects from different populations to reach higher statistical power. The "price to pay" is that population-specific evolutionary histories and trade-offs were neglected in the investigation of gene-environment interactions. We propose a new “diachronic” approach that considers processes occurred at both evolutionary and lifespan timescales. We focused on a well-characterized population in terms of evolutionary history (i.e. Italians) and we generated genome-wide data for 333 centenarians from the peninsula and 773 geographically-matched healthy individuals. Obtained results showed that: (i) centenarian genomes are enriched for an ancestral component likely shaped by pre-Neolithic migrations; (ii) centenarians born in Northern Italy unexpectedly clustered with controls from Central/Southern Italy suggesting that Neolithic and Bronze Age gene flow did not favor longevity in this population; (iii) local past adaptive events in response to pathogens and targeting arachidonic acid metabolism became favorable for longevity; (iv) lifelong changes in the frequency of several alleles revealed pleiotropy and trade-off mechanisms crucial for longevity. Therefore, we propose that demographic history and ancient/recent population dynamics need to be properly considered to identify genes involved in longevity, which can differ in different temporal/spatial settings.
Collapse
Affiliation(s)
- Cristina Giuliani
- Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Bologna, Italy.,School of Anthropology and Museum Ethnography, University of Oxford, Oxford, UK.,Interdepartmental Center "L. Galvani," (CIG), University of Bologna, Bologna, Italy
| | - Marco Sazzini
- Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Bologna, Italy
| | - Chiara Pirazzini
- IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy
| | | | - Elena Marasco
- Interdepartmental Center "L. Galvani," (CIG), University of Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, Bologna, Italy
| | - Guido Alberto Gnecchi Ruscone
- Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Bologna, Italy
| | - Fang Fang
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27708, USA
| | - Stefania Sarno
- Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Bologna, Italy
| | - Davide Gentilini
- Istituto Auxologico Italiano IRCCS, Cusano Milanino, Milan, Italy
| | | | - Paolina Crocco
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Daniela Mari
- Geriatric Unit, Department of Medical Sciences and Community Health, Milan, Italy.,Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.,IRCCS Don Gnocchi, Florence, Italy
| | - Carlo Salvarani
- Azienda Ospedaliera-IRCCS, Reggio Emilia, Italy.,Department of Surgical, Medical, Dental and Morphological Sciences with Interest Transplant, Oncological and Regenerative Medicine, , Italy
| | | | - Davide Pettener
- Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Bologna, Italy
| | - Donata Luiselli
- Department for the Cultural Heritage (DBC), University of Bologna, Ravenna, Italy
| | - Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27708, USA
| | - Anatoliy Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27708, USA
| | - Claudio Franceschi
- IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy.,Co-senior authors
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, S-141 86 Stockholm, Sweden.,CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy.,Rizzoli Orthopaedic Institute, Laboratory of Cell Biology, Bologna, Italy.,Co-senior authors
| |
Collapse
|
5
|
Cohen ML, Mashanova EV, Rosen NM, Soto W. Adaptation to temperature stress by Vibrio fischeri facilitates this microbe's symbiosis with the Hawaiian bobtail squid (Euprymna scolopes). Evolution 2019; 73:1885-1897. [PMID: 31397886 DOI: 10.1111/evo.13819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 11/29/2022]
Abstract
For microorganisms cycling between free-living and host-associated stages, where reproduction occurs in both of these lifestyles, an interesting inquiry is whether adaptation to stress during the free-living stage can impact microbial fitness in the host. To address this topic, the mutualism between the Hawaiian bobtail squid (Euprymna scolopes) and the marine bioluminescent bacterium Vibrio fischeri was utilized. Using microbial experimental evolution, V. fischeri was selected to low (8°C), high (34°C), and fluctuating temperature stress (8°C/34°C) for 2000 generations. The temperatures 8°C and 34°C were the lower and upper growth limits, respectively. V. fischeri was also selected to benign temperatures (21°C and 28°C) for 2000 generations, which served as controls. V. fischeri demonstrated significant adaptation to low, high, and fluctuating temperature stress. V. fischeri did not display significant adaptation to the benign temperatures. Adaptation to stressful temperatures facilitated V. fischeri's ability to colonize the squid host relative to the ancestral lines. Bioluminescence levels also increased. Evolution to benign temperatures did not manifest these results. In summary, microbial adaptation to stress during the free-living stage can promote coevolution between hosts and microorganisms.
Collapse
Affiliation(s)
- Meagan Leah Cohen
- Department of Biology, College of William & Mary, Williamsburg, Virginia, 23185
| | | | | | - William Soto
- Department of Biology, College of William & Mary, Williamsburg, Virginia, 23185
| |
Collapse
|
6
|
Soto W, Travisano M, Tolleson AR, Nishiguchi MK. Symbiont evolution during the free-living phase can improve host colonization. MICROBIOLOGY-SGM 2019; 165:174-187. [PMID: 30648935 PMCID: PMC7003651 DOI: 10.1099/mic.0.000756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For micro-organisms cycling between free-living and host-associated stages, where reproduction occurs in both of these lifestyles, an interesting inquiry is whether evolution during the free-living stage can be positively pleiotropic to microbial fitness in a host environment. To address this topic, the squid host Euprymna tasmanica and the marine bioluminescent bacterium Vibrio fischeri were utilized. Microbial ecological diversification in static liquid microcosms was used to simulate symbiont evolution during the free-living stage. Thirteen genetically distinct V. fischeri strains from a broad diversity of ecological sources (e.g. squid light organs, fish light organs and seawater) were examined to see if the results were reproducible in many different genetic settings. Genetic backgrounds that are closely related can be predisposed to considerable differences in how they respond to similar selection pressures. For all strains examined, new mutations with striking and facilitating effects on host colonization arose quickly during microbial evolution in the free-living stage, regardless of the ecological context under consideration for a strain’s genetic background. Microbial evolution outside a host environment promoted host range expansion, improved host colonization for a micro-organism, and diminished the negative correlation between biofilm formation and motility.
Collapse
Affiliation(s)
- William Soto
- 1College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr Williamsburg, VA 23185, USA
| | - Michael Travisano
- 2Department of Ecology, Evolution, and Behavior, University of Minnesota-Twin Cities, 100 Ecology Building, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA.,3BioTechnology Institute, University of Minnesota-Twin Cities, 140 Gortner Labs, 1479 Gortner Avenue, St Paul, MN 55108, USA
| | - Alexandra Rose Tolleson
- 1College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr Williamsburg, VA 23185, USA
| | | |
Collapse
|
7
|
Ferri E, Gussago C, Casati M, Mari D, Rossi PD, Ciccone S, Cesari M, Arosio B. Apolipoprotein E gene in physiological and pathological aging. Mech Ageing Dev 2019; 178:41-45. [PMID: 30658061 DOI: 10.1016/j.mad.2019.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/02/2019] [Accepted: 01/15/2019] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The genetic background plays a role on longevity. The distribution of the apolipoprotein E gene (APOE) variants (ε2, ε3, ε4) may differ across age groups, especially in the oldest old and despite geographical and ethnic specificities. Since the ε4 variant is associated with Alzheimer's disease (AD), it might represent an opportunity for exploring the relationship of APOE with physiological and pathological aging. AIM To explore the role played by APOE genotype/alleles on physiological and pathological brain aging. MATERIALS AND METHODS The study was conducted in a cohort of centenarians (n = 106), and two cohorts of octogenarians (without cognitive decline, n = 351 controls; and with AD, n = 294). RESULTS No significant differences in genotype/allele distributions were observed comparing controls to centenarians. The prevalence of ε2/ε3, ε3/ε3, ε3/ε4 and ε4/ε4 genotypes were significantly different in centenarians compared to AD. The prevalence of ε2 and ε3 alleles were significantly higher in centenarians, whereas the ε4 was less frequent. The ε4 allele was positively associated with AD, whereas a negative association was found for ε2 and ε3 alleles. CONCLUSIONS Our study indicates that ε4 allele is strongly associated with AD. APOE significantly affects AD risk, but apparently not longevity.
Collapse
Affiliation(s)
- E Ferri
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy.
| | - C Gussago
- Department of Clinical Sciences and Community Health, University of Milan, Via Pace 9, 20122 Milan, Italy.
| | - M Casati
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy.
| | - D Mari
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Via Pace 9, 20122 Milan, Italy.
| | - P D Rossi
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy.
| | - S Ciccone
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy.
| | - M Cesari
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Via Pace 9, 20122 Milan, Italy.
| | - B Arosio
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Via Pace 9, 20122 Milan, Italy.
| |
Collapse
|
8
|
Hook M, Roy S, Williams EG, Bou Sleiman M, Mozhui K, Nelson JF, Lu L, Auwerx J, Williams RW. Genetic cartography of longevity in humans and mice: Current landscape and horizons. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2718-2732. [PMID: 29410319 PMCID: PMC6066442 DOI: 10.1016/j.bbadis.2018.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 12/14/2022]
Abstract
Aging is a complex and highly variable process. Heritability of longevity among humans and other species is low, and this finding has given rise to the idea that it may be futile to search for DNA variants that modulate aging. We argue that the problem in mapping longevity genes is mainly one of low power and the genetic and environmental complexity of aging. In this review we highlight progress made in mapping genes and molecular networks associated with longevity, paying special attention to work in mice and humans. We summarize 40 years of linkage studies using murine cohorts and 15 years of studies in human populations that have exploited candidate gene and genome-wide association methods. A small but growing number of gene variants contribute to known longevity mechanisms, but a much larger set have unknown functions. We outline these and other challenges and suggest some possible solutions, including more intense collaboration between research communities that use model organisms and human cohorts. Once hundreds of gene variants have been linked to differences in longevity in mammals, it will become feasible to systematically explore gene-by-environmental interactions, dissect mechanisms with more assurance, and evaluate the roles of epistasis and epigenetics in aging. A deeper understanding of complex networks-genetic, cellular, physiological, and social-should position us well to improve healthspan.
Collapse
Affiliation(s)
- Michael Hook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Evan G Williams
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland
| | - Maroun Bou Sleiman
- Interfaculty Institute of Bioengineering, Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - James F Nelson
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johan Auwerx
- Interfaculty Institute of Bioengineering, Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
9
|
Sebastiani P, Gurinovich A, Bae H, Andersen SL, Perls TT. Assortative Mating by Ethnicity in Longevous Families. Front Genet 2017; 8:186. [PMID: 29209360 PMCID: PMC5702482 DOI: 10.3389/fgene.2017.00186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/07/2017] [Indexed: 12/01/2022] Open
Abstract
Recent work shows strong evidence of ancestry-based assortative mating in spouse pairs of the older generation of the Framingham Heart Study. Here, we extend this analysis to two studies of human longevity: the Long Life Family Study (LLFS), and the New England Centenarian Study (NECS). In the LLFS, we identified 890 spouse pairs spanning two generations, while in the NECS we used data from 102 spouse pairs including offspring of centenarians. We used principal components of genome-wide genotype data to demonstrate strong evidence of ancestry-based assortative mating in spouse pairs of the older generation and also confirm the decreasing trend of endogamy in more recent generations. These findings in studies of human longevity suggest that spouses marrying into longevous families may not be powerful controls for genetic association studies, and that there may be important ethnicity-specific, genetic influences and/or gene–environment interactions that influence extreme survival in old generations. In addition, the decreasing trend of genetic similarity of more recent generations might have ramifications for the incidence of homozygous rare variants necessary for survival to the most extreme ages.
Collapse
Affiliation(s)
- Paola Sebastiani
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | | | - Harold Bae
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| | - Stacy L Andersen
- Geriatrics Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Thomas T Perls
- Geriatrics Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| |
Collapse
|
10
|
Govindaraju DR, Annaswamy AM. Application of Smart Infrastructure Systems approach to precision medicine. Appl Transl Genom 2015; 7:40-4. [PMID: 27054084 PMCID: PMC4803774 DOI: 10.1016/j.atg.2015.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 11/17/2022]
Abstract
All biological variation is hierarchically organized dynamic network system of genomic components, organelles, cells, tissues, organs, individuals, families, populations and metapopulations. Individuals are axial in this hierarchy, as they represent antecedent, attendant and anticipated aspects of health, disease, evolution and medical care. Humans show individual specific genetic and clinical features such as complexity, cooperation, resilience, robustness, vulnerability, self-organization, latent and emergent behavior during their development, growth and senescence. Accurate collection, measurement, organization and analyses of individual specific data, embedded at all stratified levels of biological, demographic and cultural diversity - the big data - is necessary to make informed decisions on health, disease and longevity; which is a central theme of precision medicine initiative (PMI). This initiative also calls for the development of novel analytical approaches to handle complex multidimensional data. Here we suggest the application of Smart Infrastructure Systems (SIS) approach to accomplish some of the goals set forth by the PMI on the premise that biological systems and the SIS share many common features. The latter has been successfully employed in managing complex networks of non-linear adaptive controls, commonly encountered in smart engineering systems. We highlight their concordance and discuss the utility of the SIS approach in precision medicine programs.
Collapse
Affiliation(s)
- Diddahally R. Govindaraju
- The Institute for Aging Research, The Glenn Center for the Biology of Human Aging, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Anuradha M. Annaswamy
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|