1
|
Aragão Tejo Dias V, Moraes Octaviano AL, Públio Rabello J, Correia Barrence FA, Consoni Bernardino T, Leme J, Attie Calil Jorge S, Fernández Núñez EG. Critical parameters on Zika virus-like particles' generation. J Virol Methods 2025; 334:115129. [PMID: 39978420 DOI: 10.1016/j.jviromet.2025.115129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The Zika virus became a global threat in 2015 due to its association with microcephaly. Preventing its spread depends on developing vaccines, with virus-like particles (VLP) being a promising approach, especially because of their safety profile and high immunogenicity. This study focused on the production of Zika VLP using Sf9 cells and the baculovirus expression system, evaluating cell growth kinetics, nutrient consumption, and metabolite production in Sf-900™ III medium. As a methodology, this study includes bioreactor experiments, cell density and viability quantification, nutrient and metabolite analysis, Dot Blot, Western Blot, and transmission electron microscopy. Among the critical conditions tested are culture medium supplementation with 0.028 mM cholesterol/ 6 nM bovine serum albumin, multiplicity of infection (MOI= 0.2 or 2), and dissolved oxygen tension (DOT= 5 or 30 % air saturation). As a result, in the growth phase, Sf9 cells achieved rapid exponential growth, with doubling times ranging from 22.8 to 35.4 hours and standard nutrient consumption and metabolite generation profiles for this cell line. The infection phase recorded cell death rates between 8200 and 12600 cells mL⁻¹ h⁻¹ , with higher VLP production under low MOI (0.2) and low DOT (5 %). These conditions also reduced protein degradation and nutrient consumption. The produced VLP ranged from 32 to 73 nm in size, with smaller sizes observed under low MOI conditions. Finally, controlling the DOT at 5 % air saturation without cholesterol/albumin supplementation increased VLP production without the need to raise the viral load, highlighting the importance of choosing the appropriate combination of critical parameters (MOI, DOT, and medium supplementation) as key factors in optimizing the upstream process. This finding impacts substantially upstream stage efficiency and economy, which could be useful for future scaling up to the commercial manufacturing scale.
Collapse
Affiliation(s)
- Vinícius Aragão Tejo Dias
- Laboratório de Engenharia de Bioprocessos. Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, São Paulo, SP CEP 03828-000, Brazil
| | - Ana Luiza Moraes Octaviano
- Laboratório de Engenharia de Bioprocessos. Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, São Paulo, SP CEP 03828-000, Brazil
| | - Júlia Públio Rabello
- Laboratório de Engenharia de Bioprocessos. Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, São Paulo, SP CEP 03828-000, Brazil
| | - Fernanda Angela Correia Barrence
- Laboratório de Engenharia de Bioprocessos. Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, São Paulo, SP CEP 03828-000, Brazil
| | - Thaissa Consoni Bernardino
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av Vital Brasil 1500, São Paulo, São Paulo, SP CEP 05503-900, Brazil
| | - Jaci Leme
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av Vital Brasil 1500, São Paulo, São Paulo, SP CEP 05503-900, Brazil
| | - Soraia Attie Calil Jorge
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av Vital Brasil 1500, São Paulo, São Paulo, SP CEP 05503-900, Brazil
| | - Eutimio Gustavo Fernández Núñez
- Laboratório de Engenharia de Bioprocessos. Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, São Paulo, SP CEP 03828-000, Brazil.
| |
Collapse
|
2
|
Alizadeh F, Aghajani H, Mahboudi F, Talebkhan Y, Arefian E, Samavat S, Raufi R. Optimization of culture condition for Spodoptera frugiperda by design of experiment approach and evaluation of its effect on the expression of hemagglutinin protein of influenza virus. PLoS One 2024; 19:e0308547. [PMID: 39150957 PMCID: PMC11329130 DOI: 10.1371/journal.pone.0308547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/26/2024] [Indexed: 08/18/2024] Open
Abstract
The baculovirus expression vector system (BEVS) is a powerful tool in pharmaceutical biotechnology to infect insect cells and produce the recombinant proteins of interest. It has been well documented that optimizing the culture condition and its supplementation through designed experiments is critical for maximum protein production. In this study, besides physicochemical parameters including incubation temperature, cell count of infection, multiplicity of infection, and feeding percentage, potential supplementary factors such as cholesterol, polyamine, galactose, pluronic-F68, glucose, L-glutamine, and ZnSO4 were screened for Spodoptera frugiperda (Sf9) cell culture and expression of hemagglutinin (HA) protein of Influenza virus via Placket-Burman design and then optimized through Box-Behnken approach. The optimized conditions were then applied for scale-up culture and the expressed r-HA protein was characterized. Optimization of selected parameters via the Box-Behnken approach indicated that feed percentage, cell count, and multiplicity of infection are the main parameters affecting r-HA expression level and potency compared to the previously established culture condition. This study demonstrated the effectiveness of designing experiments to select and optimize important parameters that potentially affect Sf9 cell culture, r-HA expression, and its potency in the BEVS system.
Collapse
Affiliation(s)
- Fatemeh Alizadeh
- Biotechnology Research Center, Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
- Department of Research & Development, AryoGen Pharmed Inc., Karaj, Iran
| | - Hamideh Aghajani
- Department of Research & Development, AryoGen Pharmed Inc., Karaj, Iran
| | - Fereidoun Mahboudi
- Biotechnology Research Center, Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
- Department of Research & Development, AryoGen Pharmed Inc., Karaj, Iran
| | - Yeganeh Talebkhan
- Biotechnology Research Center, Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Ehsan Arefian
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sepideh Samavat
- Department of Research & Development, AryoGen Pharmed Inc., Karaj, Iran
| | - Rouhollah Raufi
- Department of Research & Development, AryoGen Pharmed Inc., Karaj, Iran
| |
Collapse
|
3
|
Saisud S, Posung M, Tuntigumthon S, Areesirisuk A, Dhepakson P, Teeka J. Development of an animal-derived component-free medium for Spodoptera frugiperda (Sf9) cells using response surface methodology. Biotechnol Lett 2023:10.1007/s10529-023-03389-5. [PMID: 37184749 DOI: 10.1007/s10529-023-03389-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVES To develop an animal-derived component-free medium for Spodoptera frugiperda (Sf9) growth and green fluorescent protein (GFP) expression. RESULTS OSF9-ADCFM contained optimum concentrations of CDLC, YE and ST at 0.5% (v/v), 11.0 g/L, and 3.0 g/L, respectively. A mean viable cell concentration of 1.71 ± 0.14 × 105 cells/mL was obtained from 5 passages (P1-P5). The use of both peptones after 10 kDa ultrafiltration had a significant effect on Sf9 cell growth. Grace's insect medium with 10% FBS gave higher un-infected cell number than SF-900II and OSF9-ADCFM for 4.29 and 5.38 times, respectively. The average cell number of un-infected cells and GFP-fluorescent cells of SF-900II were higher than OSF9-ADCFM 1.25 and 7 times, respectively. CONCLUSION In-house OSF9-ADCFM could support growth and GFP expression in Sf9 less than commercial SF-900II. However, it could lower the production cost at least 50% comparing to commercial SF-900II. The development of in- house OSF9-ADCFM would be continued to increase both cell numbers and protein expression in the next step.
Collapse
Affiliation(s)
- Sureewan Saisud
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Thailand
| | - Manoch Posung
- Innovation and Medical Biotechnology Center (iMBC), Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Suthida Tuntigumthon
- Innovation and Medical Biotechnology Center (iMBC), Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Atsadawut Areesirisuk
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Thailand
- Center of Excellence in Nano-Biotechnology and Digital Innovation, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Thailand
| | - Panadda Dhepakson
- Innovation and Medical Biotechnology Center (iMBC), Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Jantima Teeka
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Thailand.
- Center of Excellence in Nano-Biotechnology and Digital Innovation, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Thailand.
| |
Collapse
|
4
|
Performance Comparison of Recombinant Baculovirus and Rabies Virus-like Particles production Using Two Culture Platforms. Vaccines (Basel) 2022; 11:vaccines11010039. [PMID: 36679884 PMCID: PMC9867115 DOI: 10.3390/vaccines11010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
This work aimed to assess, following upstream optimization in Schott flasks, the scalability from this culture platform to a stirred-tank bioreactor in order to yield rabies-recombinant baculovirus, bearing genes of G (BVG) and M (BVM) proteins, and to obtain rabies virus-like particles (VLP) from them, using Sf9 insect cells as a host. Equivalent assays in Schott flasks and a bioreactor were performed to compare both systems and a multivariate statistical approach was also carried out to maximize VLP production as a function of BVG and BVM's multiplicity of infection (MOI) and harvest time (HT). Viable cell density, cell viability, virus titer, BVG and BVM quantification by dot-blot, and BVG quantification by Enzyme-Linked Immunosorbent Assay (ELISA) were monitored throughout the assays. Furthermore, transmission electron microscopy was used to characterize rabies VLP. The optimal combination for maximum VLP expression was BVG and BVM MOI of 2.3 pfu/cell and 5.1 pfu/cell, respectively, and 108 h of harvest time. The current study confirmed that the utilization of Schott flasks and a benchtop bioreactor under the conditions applied herein are equivalent regarding the cell death kinetics corresponding to the recombinant baculovirus infection process in Sf9 cells. According to the results, the hydrodynamic and chemical differences in both systems seem to greatly affect the virus and VLP integrity after release.
Collapse
|
5
|
Leme J, Guardalini LGO, Bernardino TC, Astray RM, Tonso A, Núñez EGF, Jorge SAC. Sf9 Cells Metabolism and Viability When Coinfected with Two Monocistronic Baculoviruses to Produce Rabies Virus-like Particles. Mol Biotechnol 2022; 65:970-982. [PMCID: PMC9672645 DOI: 10.1007/s12033-022-00586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022]
|
6
|
Ashizawa R, Rubio N, Letcher S, Parkinson A, Dmitruczyk V, Kaplan DL. Entomoculture: A Preliminary Techno-Economic Assessment. Foods 2022; 11:foods11193037. [PMID: 36230118 PMCID: PMC9564176 DOI: 10.3390/foods11193037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Cultured meat, or the practice of growing meat from cell culture, has been experiencing rapid advances in research and technology as the field of biotechnology attempts to answer the call to fight climate change and feed a growing global population. A major hurdle for cell-based meat products entering the market in the near-future is their price. The complex production facilities required to make such products will require advanced bioreactor systems, resources such as energy and water, and a skilled labor force, among other factors. The use of insect cells in this process is hypothesized to address some of these costs due to the characteristics that make them more resilient in cell culture when compared to traditional livestock-derived cells. To address the potential for cost savings by utilizing insect cells in the cultivation of protein-enriched foods, here we utilized a techno-economic assessment model. Three different insect cell lines were used in the model. The results indicate that insect cell lines offer potential to significantly reduce the cost per kilogram of cell cultivated meat, along with further opportunities to optimize production processes through technological advances and scaling.
Collapse
Affiliation(s)
- Reina Ashizawa
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Natalie Rubio
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Sophia Letcher
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Avery Parkinson
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Correspondence:
| |
Collapse
|
7
|
Letcher SM, Rubio NR, Ashizawa RN, Saad MK, Rittenberg ML, McCreary A, Ali A, Calkins OP, Trimmer BA, Kaplan DL. In vitro Insect Fat Cultivation for Cellular Agriculture Applications. ACS Biomater Sci Eng 2022; 8:3785-3796. [PMID: 35977409 DOI: 10.1021/acsbiomaterials.2c00093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cell-cultured fat could provide important elements of flavor, nutrition, and texture to enhance the quality and therefore expand consumer adoption of alternative meat products. In contrast to cells from livestock animals, insect cells have been proposed as a relatively low-cost and scalable platform for tissue engineering and muscle cell-derived cultured meat production. Furthermore, insect fat cells have long been cultured and characterized for basic biology and recombinant protein production but not for food production. To develop a food-relevant approach to insect fat cell cultivation and tissue engineering, Manduca sexta cells were cultured and induced to accumulate lipids in 2D and 3D formats within decellularized mycelium scaffolding. The resultant in vitro fat tissues were characterized and compared to in vivo fat tissue data by imaging, lipidomics, and texture analyses. The cells exhibited robust lipid accumulation when treated with a 0.1 mM soybean oil emulsion and had "healthier" fat profiles, as measured by the ratio of unsaturated to saturated fatty acids. Mycelium scaffolding provided a simple, food-grade approach to support the 3D cell cultures and lipid accumulation. This approach provides a low-cost, scalable, and nutritious method for cultured fat production.
Collapse
Affiliation(s)
- Sophia M Letcher
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Natalie R Rubio
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Reina N Ashizawa
- Department of Biology, Tufts University, Medford, Massachusetts 02155, United States
| | - Michael K Saad
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Miriam L Rittenberg
- Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Aidan McCreary
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Adham Ali
- Department of Biology, Tufts University, Medford, Massachusetts 02155, United States.,Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Olivia P Calkins
- Department of Chemical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Barry A Trimmer
- Department of Biology, Tufts University, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
8
|
The effect of different insect cell culture media on the efficiency of protein production by Spodoptera frugiperda cells. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
9
|
Korn J, Schäckermann D, Kirmann T, Bertoglio F, Steinke S, Heisig J, Ruschig M, Rojas G, Langreder N, Wenzel EV, Roth KDR, Becker M, Meier D, van den Heuvel J, Hust M, Dübel S, Schubert M. Baculovirus-free insect cell expression system for high yield antibody and antigen production. Sci Rep 2020; 10:21393. [PMID: 33288836 PMCID: PMC7721901 DOI: 10.1038/s41598-020-78425-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/20/2020] [Indexed: 11/09/2022] Open
Abstract
Antibodies are essential tools for therapy and diagnostics. Yet, production remains expensive as it is mostly done in mammalian expression systems. As most therapeutic IgG require mammalian glycosylation to interact with the human immune system, other expression systems are rarely used for production. However, for neutralizing antibodies that are not required to activate the human immune system as well as antibodies used in diagnostics, a cheaper production system would be advantageous. In our study, we show cost-efficient, easy and high yield production of antibodies as well as various secreted antigens including Interleukins and SARS-CoV-2 related proteins in a baculovirus-free insect cell expression system. To improve yields, we optimized the expression vector, media and feeding strategies. In addition, we showed the feasibility of lyophilization of the insect cell produced antibodies. Furthermore, stability and activity of the antibodies was compared to antibodies produced by Expi293F cells revealing a lower aggregation of antibodies originating from High Five cell production. Finally, the newly established High Five expression system was compared to the Expi293F mammalian expression system in regard of yield and costs. Most interestingly, all tested proteins were producible in our High Five cell expression system what was not the case in the Expi293F system, hinting that the High Five cell system is especially suited to produce difficult-to-express target proteins.
Collapse
Affiliation(s)
- Janin Korn
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Dorina Schäckermann
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Toni Kirmann
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
- Medical Faculty, Carl Ludwig Institute for Physiology, Universität Leipzig, Liebigstraße 27, 04103, Leipzig, Germany
| | - Federico Bertoglio
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Stephan Steinke
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Janyn Heisig
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
- Department Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Maximilian Ruschig
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Gertrudis Rojas
- Center of Molecular Immunology, PO Box 16040, 11300, Havana, Cuba
| | - Nora Langreder
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Kristian Daniel Ralph Roth
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Marlies Becker
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Doris Meier
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Joop van den Heuvel
- Department Structure and Function of Proteins, Helmholtz-Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Michael Hust
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Stefan Dübel
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Maren Schubert
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany.
| |
Collapse
|
10
|
Bozovičar K, Bratkovič T. Evolving a Peptide: Library Platforms and Diversification Strategies. Int J Mol Sci 2019; 21:E215. [PMID: 31892275 PMCID: PMC6981544 DOI: 10.3390/ijms21010215] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 12/22/2022] Open
Abstract
Peptides are widely used in pharmaceutical industry as active pharmaceutical ingredients, versatile tools in drug discovery, and for drug delivery. They find themselves at the crossroads of small molecules and proteins, possessing favorable tissue penetration and the capability to engage into specific and high-affinity interactions with endogenous receptors. One of the commonly employed approaches in peptide discovery and design is to screen combinatorial libraries, comprising a myriad of peptide variants of either chemical or biological origin. In this review, we focus mainly on recombinant peptide libraries, discussing different platforms for their display or expression, and various diversification strategies for library design. We take a look at well-established technologies as well as new developments and future directions.
Collapse
Affiliation(s)
| | - Tomaž Bratkovič
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
11
|
Rubio NR, Fish KD, Trimmer BA, Kaplan DL. Possibilities for Engineered Insect Tissue as a Food Source. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
12
|
Lee SM, Plieskatt J, Krishnan S, Raina M, Harishchandra R, King CR. Expression and purification optimization of an N-terminal Pfs230 transmission-blocking vaccine candidate. Protein Expr Purif 2019; 160:56-65. [PMID: 30978392 PMCID: PMC6547048 DOI: 10.1016/j.pep.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/26/2019] [Accepted: 04/06/2019] [Indexed: 11/28/2022]
Abstract
In an effort to control and eventually eliminate malaria, the development of transmission-blocking vaccines has long been sought. However, few antigens have been evaluated in clinical trials, often due to limitations in the expression and purification of the antigen in sufficient yield and quality. Pfs230, a surface antigen of gametocytes, has recently advanced to clinical evaluation as a conjugate vaccine using the Pseudomonas aeruginosa exoprotein A carrier protein. Here we continue to build upon prior work of developing a Pfs230 candidate in the baculovirus system, Pfs230C1 (aa 443–731), through systematic process development efforts to improve yield and purity. Various insect cells including High Five, Sf9 and Super Sf9 were first evaluated for quality and quantity of antigen, along with three insect cell media. In the selection of Sf9 cells, an intact Pfs230C1 was expressed and harvested at 48 h for downstream development. A downstream process, utilizing immobilized metal affinity column (IMAC), followed by ion exchange (IEX) membranes (Mustang S) and finally IEX chromatography (DEAE) yielded a pure Pfs230C1 protein. The complete process was repeated three times at the 20 L scale. To support the eventual chemistry manufacturing and controls (CMC) of Pfs230C1, analytical tools, including monoclonal antibodies, were developed to characterize the identity, integrity, and purity of Pfs230C1. These analytical tools, taken in combination with the optimized process, were implemented with Current Good Manufacturing Practices (cGMP) in mind with the ultimate objective of Phase I clinical trials. Super Sf9, Sf9 and High Five baculovirus cells were evaluated to express the Pfs230 construct. Following selection of Sf9 cells to minimize degradation, expression media was optimized. A purification approach was developed to produce a pure recombinant product free of host cell proteins. A variety of biochemical release assays were developed to support the release and stability of Pfs230. A scalable process suitable for cGMP manufacture was developed.
Collapse
Affiliation(s)
- Shwu-Maan Lee
- PATH's Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001-2621, USA.
| | - Jordan Plieskatt
- PATH's Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001-2621, USA
| | - Seetha Krishnan
- Syngene International Ltd, Plot No.2,3,4 &5 Phase IV, Bommasandra Jigani Link Road, Bommasandra Industrial Area, Bangalore, 560099, India
| | - Monika Raina
- Syngene International Ltd, Plot No.2,3,4 &5 Phase IV, Bommasandra Jigani Link Road, Bommasandra Industrial Area, Bangalore, 560099, India
| | - Rakeshkumar Harishchandra
- Syngene International Ltd, Plot No.2,3,4 &5 Phase IV, Bommasandra Jigani Link Road, Bommasandra Industrial Area, Bangalore, 560099, India
| | - C Richter King
- PATH's Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001-2621, USA
| |
Collapse
|