1
|
Ionescu LI, Blydt-Hansen T, Foster BJ, Allen U, Birk PE, Hamiwka L, Phan V, Min S, Ivison S, Levings M, West LJ, Mital S, Urschel S. Immune phenotyping in a pediatric multicenter transplant study: Suitability of a preformulated dry-antibody panel system. Hum Immunol 2024; 85:110837. [PMID: 39013208 DOI: 10.1016/j.humimm.2024.110837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024]
Abstract
Flow-cytometric immune phenotyping is influenced by cryopreservation and inter-laboratory variability limiting comparability in multicenter studies. We assessed a system of optimized, pre-mixed dry-antibody panel tubes requiring small amounts of whole blood for validity, reliability and challenges in a Canadian multicenter study (POSITIVE) with long-distance sample shipping, using standardized protocols. Thirty-seven children awaiting solid-organ transplant were enrolled for parallel immune-phenotyping with both validated, optimized in-house panels and the dry-antibody system. Samples were collected before, 3 and 12 months post-transplant. Quality-assurance measures and congruence of phenotypes were compared using Bland-Altman comparisons, linear regression and group comparisons. Samples showed excellent lymphocyte viability (mean 94.8 %) and recovery when processed within 30 h. Comparing staining methods, significant correlations (Spearman correlation coefficient >0.6, p < 0.05), mean difference <5 % and variation 2SD <25 % were found for natural-killer, T and B cells, including many immunologically important cell subsets (CD8+, naïve, memory CD4+ T; switched-memory, transitional B). Some subgroups (plasmablasts, CD1d+CD5hi B cells) showed weak correlations, limiting interpretation reliability. The dry-antibody system provides a reliable method for standardized analysis of many immune phenotypes after long-distance shipping when processed within 30 h, rendering the system attractive for pediatric studies due to small blood amounts required and highly standardized processing and analysis.
Collapse
Affiliation(s)
- Lavinia I Ionescu
- Division of Pediatric Cardiology, University of Alberta, Edmonton, Alberta, Canada; Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada
| | - Tom Blydt-Hansen
- Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada; Division of Pediatric Nephrology, University of British Columbia, Vancouver, Canada
| | - Bethany J Foster
- Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada; Division of Nephrology, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Upton Allen
- Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada; Division of Infectious Diseases, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Patricia E Birk
- Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada; Department of Pediatrics and Child Health, Health Sciences Centre Winnipeg, Winnipeg, Manitoba, Canada
| | - Lorraine Hamiwka
- Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada; Division of Nephrology, Alberta Children's Hospital, University of Calgary, Calgary, Canada
| | - Veronique Phan
- Division of Nephrology, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Sandar Min
- Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada; Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | - Lori J West
- Division of Pediatric Cardiology, University of Alberta, Edmonton, Alberta, Canada; Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada
| | - Seema Mital
- Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada; Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Cardiology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Simon Urschel
- Division of Pediatric Cardiology, University of Alberta, Edmonton, Alberta, Canada; Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Glehr G, Riquelme P, Kronenberg K, Lohmayer R, López-Madrona VJ, Kapinsky M, Schlitt HJ, Geissler EK, Spang R, Haferkamp S, Hutchinson JA. Restricting datasets to classifiable samples augments discovery of immune disease biomarkers. Nat Commun 2024; 15:5417. [PMID: 38926389 PMCID: PMC11208602 DOI: 10.1038/s41467-024-49094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Immunological diseases are typically heterogeneous in clinical presentation, severity and response to therapy. Biomarkers of immune diseases often reflect this variability, especially compared to their regulated behaviour in health. This leads to a common difficulty that frustrates biomarker discovery and interpretation - namely, unequal dispersion of immune disease biomarker expression between patient classes necessarily limits a biomarker's informative range. To solve this problem, we introduce dataset restriction, a procedure that splits datasets into classifiable and unclassifiable samples. Applied to synthetic flow cytometry data, restriction identifies biomarkers that are otherwise disregarded. In advanced melanoma, restriction finds biomarkers of immune-related adverse event risk after immunotherapy and enables us to build multivariate models that accurately predict immunotherapy-related hepatitis. Hence, dataset restriction augments discovery of immune disease biomarkers, increases predictive certainty for classifiable samples and improves multivariate models incorporating biomarkers with a limited informative range. This principle can be directly extended to any classification task.
Collapse
Affiliation(s)
- Gunther Glehr
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Paloma Riquelme
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | | | - Robert Lohmayer
- Algorithmic Bioinformatics Research Group, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | | | | | - Hans J Schlitt
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Edward K Geissler
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Rainer Spang
- Department of Statistical Bioinformatics, University of Regensburg, Regensburg, Germany
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - James A Hutchinson
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
3
|
Multicentre Harmonisation of a Six-Colour Flow Cytometry Panel for Naïve/Memory T Cell Immunomonitoring. J Immunol Res 2020; 2020:1938704. [PMID: 32322591 PMCID: PMC7153001 DOI: 10.1155/2020/1938704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 01/17/2023] Open
Abstract
Background Personalised medicine in oncology needs standardised immunological assays. Flow cytometry (FCM) methods represent an essential tool for immunomonitoring, and their harmonisation is crucial to obtain comparable data in multicentre clinical trials. The objective of this study was to design a harmonisation workflow able to address the most effective issues contributing to intra- and interoperator variabilities in a multicentre project. Methods The Italian National Institute of Health (Istituto Superiore di Sanità, ISS) managed a multiparametric flow cytometric panel harmonisation among thirteen operators belonging to five clinical and research centres of Lazio region (Italy). The panel was based on a backbone mixture of dried antibodies (anti-CD3, anti-CD4, anti-CD8, anti-CD45RA, and anti-CCR7) to detect naïve/memory T cells, recognised as potential prognostic/predictive immunological biomarkers in cancer immunotherapies. The coordinating centre distributed frozen peripheral blood mononuclear cells (PBMCs) and fresh whole blood (WB) samples from healthy donors, reagents, and Standard Operating Procedures (SOPs) to participants who performed experiments by their own equipment, in order to mimic a real-life scenario. Operators returned raw and locally analysed data to ISS for central analysis and statistical elaboration. Results Harmonised and reproducible results were obtained by sharing experimental set-up and procedures along with centralising data analysis, leading to a reduction of cross-centre variability for naïve/memory subset frequencies particularly in the whole blood setting. Conclusion Our experimental and analytical working process proved to be suitable for the harmonisation of FCM assays in a multicentre setting, where high-quality data are required to evaluate potential immunological markers, which may contribute to select better therapeutic options.
Collapse
|
4
|
Kalina T. Reproducibility of Flow Cytometry Through Standardization: Opportunities and Challenges. Cytometry A 2019; 97:137-147. [DOI: 10.1002/cyto.a.23901] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tomas Kalina
- CLIP‐Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology2nd Medical School, Charles University and University Hospital Motol Prague Czech Republic
| |
Collapse
|
5
|
Ten Brinke A, Martinez-Llordella M, Cools N, Hilkens CMU, van Ham SM, Sawitzki B, Geissler EK, Lombardi G, Trzonkowski P, Martinez-Caceres E. Ways Forward for Tolerance-Inducing Cellular Therapies- an AFACTT Perspective. Front Immunol 2019; 10:181. [PMID: 30853957 PMCID: PMC6395407 DOI: 10.3389/fimmu.2019.00181] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Clinical studies with cellular therapies using tolerance-inducing cells, such as tolerogenic antigen-presenting cells (tolAPC) and regulatory T cells (Treg) for the prevention of transplant rejection and the treatment of autoimmune diseases have been expanding the last decade. In this perspective, we will summarize the current perspectives of the clinical application of both tolAPC and Treg, and will address future directions and the importance of immunomonitoring in clinical studies that will result in progress in the field.
Collapse
Affiliation(s)
- Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marc Martinez-Llordella
- Department of Inflammation Biology, MRC Centre for Transplantation, School of Immunology and Microbial Sciences, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Catharien M U Hilkens
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Birgit Sawitzki
- Charité-Universitaetsmedizin Berlin, Berlin Institute of Health, Institute for Medical Immunology, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Edward K Geissler
- Section of Experimental Surgery, Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Giovanna Lombardi
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom
| | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Eva Martinez-Caceres
- Division of Immunology, Germans Trias i Pujol University Hospital, LCMN, IGTP, Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
6
|
Ivison S, Malek M, Garcia RV, Broady R, Halpin A, Richaud M, Brant RF, Wang SI, Goupil M, Guan Q, Ashton P, Warren J, Rajab A, Urschel S, Kumar D, Streitz M, Sawitzki B, Schlickeiser S, Bijl JJ, Wall DA, Delisle JS, West LJ, Brinkman RR, Levings MK. A standardized immune phenotyping and automated data analysis platform for multicenter biomarker studies. JCI Insight 2018; 3:121867. [PMID: 30518691 DOI: 10.1172/jci.insight.121867] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/29/2018] [Indexed: 11/17/2022] Open
Abstract
The analysis and validation of flow cytometry-based biomarkers in clinical studies are limited by the lack of standardized protocols that are reproducible across multiple centers and suitable for use with either unfractionated blood or cryopreserved PBMCs. Here we report the development of a platform that standardizes a set of flow cytometry panels across multiple centers, with high reproducibility in blood or PBMCs from either healthy subjects or patients 100 days after hematopoietic stem cell transplantation. Inter-center comparisons of replicate samples showed low variation, with interindividual variation exceeding inter-center variation for most populations (coefficients of variability <20% and interclass correlation coefficients >0.75). Exceptions included low-abundance populations defined by markers with indistinct expression boundaries (e.g., plasmablasts, monocyte subsets) or populations defined by markers sensitive to cryopreservation, such as CD62L and CD45RA. Automated gating pipelines were developed and validated on an independent data set, revealing high Spearman's correlations (rs >0.9) with manual analyses. This workflow, which includes pre-formatted antibody cocktails, standardized protocols for acquisition, and validated automated analysis pipelines, can be readily implemented in multicenter clinical trials. This approach facilitates the collection of robust immune phenotyping data and comparison of data from independent studies.
Collapse
Affiliation(s)
- Sabine Ivison
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Mehrnoush Malek
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada
| | - Rosa V Garcia
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Raewyn Broady
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anne Halpin
- Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Manon Richaud
- Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
| | - Rollin F Brant
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Szu-I Wang
- Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mathieu Goupil
- Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
| | - Qingdong Guan
- Department of Pediatrics and Child Health/Internal Medicine, University of Manitoba/Cancer Care Manitoba, Winnipeg, Manitoba, Canada
| | - Peter Ashton
- Toronto General Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Jason Warren
- Health Sciences Centre, Diagnostic Services Manitoba, Winnipeg, Manitoba, Canada
| | - Amr Rajab
- Department of Laboratory Medicine, Toronto General Hospital, Toronto, Ontario, Canada
| | - Simon Urschel
- Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Deepali Kumar
- Toronto General Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Mathias Streitz
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan Schlickeiser
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Janetta J Bijl
- Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
| | - Donna A Wall
- Department of Pediatrics and Child Health/Internal Medicine, University of Manitoba/Cancer Care Manitoba, Winnipeg, Manitoba, Canada
| | | | - Lori J West
- Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ryan R Brinkman
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Malmegrim KCR, Lima-Júnior JR, Arruda LCM, de Azevedo JTC, de Oliveira GLV, Oliveira MC. Autologous Hematopoietic Stem Cell Transplantation for Autoimmune Diseases: From Mechanistic Insights to Biomarkers. Front Immunol 2018; 9:2602. [PMID: 30505303 PMCID: PMC6250746 DOI: 10.3389/fimmu.2018.02602] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
Phase I/II clinical trials of autologous hematopoietic stem cell transplantation (AHSCT) have led to increased safety and efficacy of this therapy for severe and refractory autoimmune diseases (AD). Recent phase III randomized studies have demonstrated that AHSCT induces long-term disease remission in most patients without any further immunosuppression, with superior efficacy when compared to conventional treatments. Immune monitoring studies have revealed the regeneration of a self-tolerant T and B cell repertoire, enhancement of immune regulatory mechanisms, and changes toward an anti-inflammatory milieu in patients that are responsive to AHSCT. However, some patients reactivate the disease after transplantation due to reasons not yet completely understood. This scenario emphasizes that additional specific immunological interventions are still required to improve or sustain therapeutic efficacy of AHSCT in patients with AD. Here, we critically review the current knowledge about the operating immune mechanisms or established mechanistic biomarkers of AHSCT for AD. In addition, we suggest recommendations for future immune monitoring studies and biobanking to allow discovery and development of biomarkers. In our view, AHSCT for AD has entered a new era and researchers of this field should work to identify robust predictive, prognostic, treatment-response biomarkers and to establish new guidelines for immune monitoring studies and combined therapeutic interventions to further improve the AHSCT protocols and their therapeutic efficacy.
Collapse
Affiliation(s)
- Kelen Cristina Ribeiro Malmegrim
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-based Therapy, Regional Hemotherapy Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Rodrigues Lima-Júnior
- Center for Cell-based Therapy, Regional Hemotherapy Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Biosciences Applied to Pharmacy Program, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Lucas Coelho Marlière Arruda
- Division of Rheumatology, Allergy, Immunology and Immunotherapy, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Júlia Teixeira Cottas de Azevedo
- Division of Rheumatology, Allergy, Immunology and Immunotherapy, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Basic and Applied Immunology Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gislane Lelis Vilela de Oliveira
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Jose do Rio Preto, São Paulo, Brazil
| | - Maria Carolina Oliveira
- Center for Cell-based Therapy, Regional Hemotherapy Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Division of Rheumatology, Allergy, Immunology and Immunotherapy, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
8
|
Villarrubia N, Rodríguez-Martín E, Alari-Pahissa E, Aragón L, Castillo-Triviño T, Eixarch H, Ferrer JM, Martínez-Rodríguez JE, Massot M, Pinto-Medel MJ, Prada Á, Rodríguez-Acevedo B, Urbaneja P, Gascón-Gimenez F, Herrera G, Hernández-Clares R, Salgado MG, Oterino A, San Segundo D, Cuello JP, Gil-Herrera J, Cámara C, Gómez-Gutiérrez M, Martínez-Hernández E, Meca-Lallana V, Moga E, Muñoz-Calleja C, Querol L, Presas-Rodríguez S, Teniente-Serra A, Vlagea A, Muriel A, Roldán E, Villar LM. Multi-centre validation of a flow cytometry method to identify optimal responders to interferon-beta in multiple sclerosis. Clin Chim Acta 2018; 488:135-142. [PMID: 30408481 DOI: 10.1016/j.cca.2018.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/23/2018] [Accepted: 11/03/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVES Percentages of blood CD19+CD5+ B cells and CD8+perforin+ T lymphocytes can predict response to Interferon (IFN)-beta treatment in relapsing-remitting multiple sclerosis (RRMS) patients. We aimed to standardize their detection in a multicenter study, prior to their implementation in clinical practice. METHODS Fourteen hospitals participated in the study. A reference centre was established for comparison studies. Peripheral blood cells of 105 untreated RRMS patients were studied. Every sample was analyzed in duplicate in the participating centre and in the reference one by flow cytometry. When needed, participating centres corrected fluorescence compensations and negative cut-off position following reference centre suggestions. Concordance between results obtained by participating centres and by reference one was evaluated by intraclass correlation coefficients (ICC) and Spearman correlation test. Centre performance was measured by using z-scores values. RESULTS After results review and corrective actions implementation, overall ICC was 0.86 (CI: 0.81-0.91) for CD19+CD5+ B cell and 0.89 (CI: 0.85-0.93) for CD8+ perforin+ T cell quantification; Spearman r was 0.92 (0.89-0.95; p <0.0001) and 0.92 (0.88-0.95; p <0.0001) respectively. All centres obtained z-scores≤0.5 for both biomarkers. CONCLUSION Homogenous percentages of CD19+CD5+ B cells and CD8 perforin+ T lymphocytes can be obtained if suitable compensation values and negative cut-off are pre-established.
Collapse
Affiliation(s)
- Noelia Villarrubia
- Immunology Dpt. and Biostatistic Unit, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. de Colmenar Viejo km 9.100, 28034 Madrid, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Eulalia Rodríguez-Martín
- Immunology Dpt. and Biostatistic Unit, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. de Colmenar Viejo km 9.100, 28034 Madrid, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Elisenda Alari-Pahissa
- Immunology and Neurology Dpt., Universitat Pompeu Fabra, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Larraitz Aragón
- Immunology and Neurology Dpt., Hospital Universitario de Donostia, Biodonostia, P° Dr. Beguiristain 107-111, 20014 San Sebastián, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Tamara Castillo-Triviño
- Immunology and Neurology Dpt., Hospital Universitario de Donostia, Biodonostia, P° Dr. Beguiristain 107-111, 20014 San Sebastián, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Herena Eixarch
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Cemcat, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain. Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Joana María Ferrer
- Immunology and Neurology Dpt., Hospital Universitari Son Espases, Instituto de Investigación Sanitaria Illes Balears, IdISBa, Ctra. Valldemossa 79, Palma 07010, Spain
| | - José Enrique Martínez-Rodríguez
- Immunology and Neurology Dpt., Universitat Pompeu Fabra, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Margarita Massot
- Immunology and Neurology Dpt., Hospital Universitari Son Espases, Instituto de Investigación Sanitaria Illes Balears, IdISBa, Ctra. Valldemossa 79, Palma 07010, Spain.
| | - María Jesús Pinto-Medel
- Clinical Management Unit of Neurosciences, Instituto de Biomedicina de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Plaza del Hospital Civil s/n., Málaga, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Álvaro Prada
- Immunology and Neurology Dpt., Hospital Universitario de Donostia, Biodonostia, P° Dr. Beguiristain 107-111, 20014 San Sebastián, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Breogán Rodríguez-Acevedo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Cemcat, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain. Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Patricia Urbaneja
- Clinical Management Unit of Neurosciences, Instituto de Biomedicina de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Plaza del Hospital Civil s/n., Málaga, Spain; Red Española de Esclerosis Múltiple (REEM), Spain
| | - Francisco Gascón-Gimenez
- Neuroimmunology Unit, Hospital Clínic Universitari de València, Av. de Blasco Ibáñez 17, 46010 València, Spain; Red Española de Esclerosis Múltiple (REEM), Spain
| | - Guadalupe Herrera
- Flow Cytometry Unit, UCIM, INCLIVA-Universidad de Valencia, Avda Blasco Ibañez 13, 46010 València, Spain
| | - Rocío Hernández-Clares
- Immunology and Neurology Dpt., Hospital Universitario Virgen de la Arrixaca, Ctra. Madrid-Cartagena, s/n, 30120 El Palmar, Murcia, Spain
| | - María Gema Salgado
- Immunology and Neurology Dpt., Hospital Universitario Virgen de la Arrixaca, Ctra. Madrid-Cartagena, s/n, 30120 El Palmar, Murcia, Spain
| | - Agustín Oterino
- Immunology and Neurology Dpt., IDIVAL, Hospital Universitario Marqués de Valdecilla, Avda. Valdecilla 25, 39008 Santander, Spain; Red Española de Esclerosis Múltiple (REEM), Spain
| | - David San Segundo
- Immunology and Neurology Dpt., IDIVAL, Hospital Universitario Marqués de Valdecilla, Avda. Valdecilla 25, 39008 Santander, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Juan Pablo Cuello
- Immunology and Neurology Dpt., Hospital General Universitario and Instituto de Investigación Sanitaria "Gregorio Marañón", C/ Dr Esquerdo 46, 28007 Madrid, Spain.
| | - Juana Gil-Herrera
- Immunology and Neurology Dpt., Hospital General Universitario and Instituto de Investigación Sanitaria "Gregorio Marañón", C/ Dr Esquerdo 46, 28007 Madrid, Spain.
| | - Carmen Cámara
- Immunology and Neurology Dpt., Hospital San Pedro de Alcántara, Avda. Pablo Naranjo s/n, 10003 Cáceres, Spain.
| | - Montserrat Gómez-Gutiérrez
- Immunology and Neurology Dpt., Hospital San Pedro de Alcántara, Avda. Pablo Naranjo s/n, 10003 Cáceres, Spain
| | - Eugenia Martínez-Hernández
- Immunology and Neurology Dpt., Hospital Clínic de Barcelona, Carrer de Villarroel, 170, 08036 Barcelona, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Virginia Meca-Lallana
- Immunology and Neurology Dpt., Instituto de Investigación Sanitaria La Princesa, IIS-IP, Demyelinating Diseases Unit, Hospital Universitario de La Princesa, C/ Diego de León 62, 28006 Madrid, Spain
| | - Esther Moga
- Immunology and Neurology Dpt., Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, C/ Sant Antoni Maria Claret 167, 08025 Barcelona, Ciberer, Madrid, Spain.
| | - Cecilia Muñoz-Calleja
- Immunology and Neurology Dpt., Instituto de Investigación Sanitaria La Princesa, IIS-IP, Demyelinating Diseases Unit, Hospital Universitario de La Princesa, C/ Diego de León 62, 28006 Madrid, Spain.
| | - Luis Querol
- Immunology and Neurology Dpt., Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, C/ Sant Antoni Maria Claret 167, 08025 Barcelona, Ciberer, Madrid, Spain.
| | - Silvia Presas-Rodríguez
- Immunology and Neurology Dpt., Multiple Sclerosis Unit, Hospital Universitario e Instituto de Investigación Germans Trias i Pujol, Campus Can Ruti, 08916 Badalona, Barcelona, Spain; Red Española de Esclerosis Múltiple (REEM), Spain
| | - Aina Teniente-Serra
- Immunology and Neurology Dpt., Multiple Sclerosis Unit, Hospital Universitario e Instituto de Investigación Germans Trias i Pujol, Campus Can Ruti, 08916 Badalona, Barcelona, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Alexandru Vlagea
- Immunology and Neurology Dpt., Hospital Clínic de Barcelona, Carrer de Villarroel, 170, 08036 Barcelona, Spain.
| | - Alfonso Muriel
- Immunology Dpt. and Biostatistic Unit, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. de Colmenar Viejo km 9.100, 28034 Madrid, Spain.
| | - Ernesto Roldán
- Immunology Dpt. and Biostatistic Unit, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. de Colmenar Viejo km 9.100, 28034 Madrid, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Luisa María Villar
- Immunology Dpt. and Biostatistic Unit, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. de Colmenar Viejo km 9.100, 28034 Madrid, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| |
Collapse
|
9
|
Zaal A, Dieker M, Oudenampsen M, Turksma AW, Lissenberg-Thunnissen SN, Wouters D, van Ham SM, Ten Brinke A. Anaphylatoxin C5a Regulates 6-Sulfo-LacNAc Dendritic Cell Function in Human through Crosstalk with Toll-Like Receptor-Induced CREB Signaling. Front Immunol 2017; 8:818. [PMID: 28769928 PMCID: PMC5509794 DOI: 10.3389/fimmu.2017.00818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/27/2017] [Indexed: 01/05/2023] Open
Abstract
Activation of antigen-presenting dendritic cells (DCs) and the complement system are essential early events in the immune defense against invading pathogens. Recently, we and others demonstrated immunological crosstalk between signaling from receptors recognizing complement activation products and PAMPs on DCs. This affects DC effector function, as demonstrated by the finding that C5a prevents induction of pro-inflammatory cytokines by toll-like receptor (TLR) ligands in human monocyte-derived DCs (moDCs). Here, we demonstrate that this regulatory crosstalk is specifically important in 6-sulfo LacNAc dendritic cells (slanDCs), the most pro-inflammatory DC subset found in human. C5aR and TLR signaling show profound interference in the ERK/p38/CREB1 signaling pathways. C5aR signaling accelerates TLR-induced CREB1 phosphorylation both in moDC and slanDC. This is key in the regulatory effect of C5a on pro-inflammatory DC maturation by mediating induction of IL-10, which subsequently inhibits pro-inflammatory cytokine production via negative feedback signaling. Importantly, the regulatory effect of C5a affects T-cell immunity by decreasing Th1 and cytotoxic CD8 T-cell responses. The finding that the pro-inflammatory effector function of slanDC can be down modulated by activation products of the complement system highlights the existence of intricate regulatory interactions between various arms of the immune system. Intensive immune monitoring of patients suffering from complement-mediated diseases or patients receiving complement modulating compounds can give more inside in the contribution of complement receptor and TLR crosstalk in APCs in disease.
Collapse
Affiliation(s)
- Anouk Zaal
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Miranda Dieker
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Manon Oudenampsen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Annelies W Turksma
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Suzanne N Lissenberg-Thunnissen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
Danger R, Sawitzki B, Brouard S. Immune monitoring in renal transplantation: The search for biomarkers. Eur J Immunol 2017; 46:2695-2704. [PMID: 27861809 DOI: 10.1002/eji.201545963] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 11/11/2022]
Abstract
It is now widely accepted that in order to improve long-term graft function and survival, a more personalized immunosuppressive treatment of transplant patients according to the individual anti-donor immune response status is needed. This applies to the identification of potentially "high-risk" patients likely to develop acute rejection episodes or display an accelerated decline of graft function, patients who might need immunosuppression intensification, and operationally tolerant patients suitable for immunosuppression minimization or weaning off. Such a patient stratification would benefit from biomarkers, which enable categorization into low and high risk or, ideally, identification of operational tolerant patients. Here, we report on recent developments regarding identification and performance analysis of noninvasive biomarkers such as mRNA and miRNA expression profiles, chemokines, or changes in immune cell subsets in either blood or urine of renal transplant patients. We will also discuss which future steps are needed to accelerate their clinical implementation.
Collapse
Affiliation(s)
- Richard Danger
- Inserm, , Center for Research in Transplantation and Immunology (CRTI) U1064, Nantes, France.,Université de Nantes, , UMR1064, Nantes, France.,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité University Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Berlin, Germany
| | - Sophie Brouard
- Inserm, , Center for Research in Transplantation and Immunology (CRTI) U1064, Nantes, France.,Université de Nantes, , UMR1064, Nantes, France.,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France.,CIC Biotherapy, CHU Nantes, , 30 bd Jean-Monnet, Nantes, France
| |
Collapse
|
11
|
Saeys Y, Van Gassen S, Lambrecht BN. Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat Rev Immunol 2016; 16:449-62. [PMID: 27320317 DOI: 10.1038/nri.2016.56] [Citation(s) in RCA: 326] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in flow cytometry allow scientists to measure an increasing number of parameters per cell, generating huge and high-dimensional datasets. To analyse, visualize and interpret these data, newly available computational techniques should be adopted, evaluated and improved upon by the immunological community. Computational flow cytometry is emerging as an important new field at the intersection of immunology and computational biology; it allows new biological knowledge to be extracted from high-throughput single-cell data. This Review provides non-experts with a broad and practical overview of the many recent developments in computational flow cytometry.
Collapse
Affiliation(s)
- Yvan Saeys
- VIB Inflammation Research Center, Technologiepark 927, Ghent B-9052, Belgium.,Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent B-9000, Belgium
| | - Sofie Van Gassen
- VIB Inflammation Research Center, Technologiepark 927, Ghent B-9052, Belgium.,Department of Information Technology, Technologiepark 15, Ghent B-9052, Belgium
| | - Bart N Lambrecht
- VIB Inflammation Research Center, Technologiepark 927, Ghent B-9052, Belgium.,Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent B-9000, Belgium.,Department of Pulmonary Medicine, Erasmus MC Rotterdam, Dr Molewaterplein 50, Rotterdam 3015 GE, The Netherlands
| |
Collapse
|