1
|
Chen Q, Wang S, Zhang J, Xie M, Lu B, He J, Zhen Z, Li J, Zhu J, Li R, Li P, Wang H, Vakoc C, Roeder RG, Chen M. JMJD1C forms condensates to facilitate a RUNX1-dependent gene expression program shared by multiple types of AML cells. Protein Cell 2024:pwae059. [PMID: 39450904 DOI: 10.1093/procel/pwae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Indexed: 10/26/2024] Open
Abstract
JMJD1C, a member of the lysine demethylase 3 (KDM3) family, is universally required for the survival of several types of acute myeloid leukemia (AML) cells with different genetic mutations, representing a therapeutic opportunity with broad application. Yet how JMJD1C regulates the leukemic programs of various AML cells is largely unexplored. Here we show that JMJD1C interacts with the master hematopoietic transcription factor RUNX1, which thereby recruits JMJD1C to the genome to facilitate a RUNX1-driven transcriptional program that supports leukemic cell survival. The underlying mechanism hinges on the long N-terminal disordered region of JMJD1C, which harbors two inseparable abilities: condensate formation and direct interaction with RUNX1. This dual capability of JMJD1C may influence enhancer-promoter contacts crucial for the expression of key leukemic genes regulated by RUNX1. Our findings demonstrate a previously unappreciated role for the non-catalytic function of JMJD1C in transcriptional regulation, underlying a mechanism shared by different types of leukemias.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Saisai Wang
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Juqing Zhang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Min Xie
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Bin Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jie He
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of People Liberation Army (PLA), Second Military Medical University (Naval Medical University), Shanghai 200052, China
| | - Zhuoran Zhen
- State Key Laboratory of Molecular Oncology, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Li
- Department of Precision Medicine, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Jiajun Zhu
- State Key Laboratory of Molecular Oncology, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Rong Li
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of People Liberation Army (PLA), Second Military Medical University (Naval Medical University), Shanghai 200052, China
| | - Pilong Li
- State Key Laboratory of Membrane Biology, Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haifeng Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | | | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Mo Chen
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan 030607, China
| |
Collapse
|
2
|
Kim YR, Joo J, Lee HJ, Kim C, Park JC, Yu YS, Kim CR, Lee DH, Cha J, Kwon H, Hanssen KM, Grünewald TGP, Choi M, Han I, Bae S, Jung I, Shin Y, Baek SH. Prion-like domain mediated phase separation of ARID1A promotes oncogenic potential of Ewing's sarcoma. Nat Commun 2024; 15:6569. [PMID: 39095374 PMCID: PMC11297139 DOI: 10.1038/s41467-024-51050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) facilitates the formation of membraneless organelles within cells, with implications in various biological processes and disease states. AT-rich interactive domain-containing protein 1A (ARID1A) is a chromatin remodeling factor frequently associated with cancer mutations, yet its functional mechanism remains largely unknown. Here, we find that ARID1A harbors a prion-like domain (PrLD), which facilitates the formation of liquid condensates through PrLD-mediated LLPS. The nuclear condensates formed by ARID1A LLPS are significantly elevated in Ewing's sarcoma patient specimen. Disruption of ARID1A LLPS results in diminished proliferative and invasive abilities in Ewing's sarcoma cells. Through genome-wide chromatin structure and transcription profiling, we identify that the ARID1A condensate localizes to EWS/FLI1 target enhancers and induces long-range chromatin architectural changes by forming functional chromatin remodeling hubs at oncogenic target genes. Collectively, our findings demonstrate that ARID1A promotes oncogenic potential through PrLD-mediated LLPS, offering a potential therapeutic approach for treating Ewing's sarcoma.
Collapse
Affiliation(s)
- Yong Ryoul Kim
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jaegeon Joo
- Department of Biological Sciences, Korea Advanced Institute of Science & Technology, Daejeon, South Korea
| | - Hee Jung Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Chaelim Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Ju-Chan Park
- Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Suk Yu
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Chang Rok Kim
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Do Hui Lee
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Joowon Cha
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Hyemin Kwon
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kimberley M Hanssen
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, (A Partnership) Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas G P Grünewald
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, (A Partnership) Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Ilkyu Han
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Sangsu Bae
- Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science & Technology, Daejeon, South Korea.
| | - Yongdae Shin
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea.
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
3
|
Norton J, Seah N, Santiago F, Sindi SS, Serio TR. Multiple aspects of amyloid dynamics in vivo integrate to establish prion variant dominance in yeast. Front Mol Neurosci 2024; 17:1439442. [PMID: 39139213 PMCID: PMC11319303 DOI: 10.3389/fnmol.2024.1439442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Prion variants are self-perpetuating conformers of a single protein that assemble into amyloid fibers and confer unique phenotypic states. Multiple prion variants can arise, particularly in response to changing environments, and interact within an organism. These interactions are often competitive, with one variant establishing phenotypic dominance over the others. This dominance has been linked to the competition for non-prion state protein, which must be converted to the prion state via a nucleated polymerization mechanism. However, the intrinsic rates of conversion, determined by the conformation of the variant, cannot explain prion variant dominance, suggesting a more complex interaction. Using the yeast prion system [PSI+ ], we have determined the mechanism of dominance of the [PSI+ ]Strong variant over the [PSI+ ]Weak variant in vivo. When mixed by mating, phenotypic dominance is established in zygotes, but the two variants persist and co-exist in the lineage descended from this cell. [PSI+ ]Strong propagons, the heritable unit, are amplified at the expense of [PSI+ ]Weak propagons, through the efficient conversion of soluble Sup35 protein, as revealed by fluorescence photobleaching experiments employing variant-specific mutants of Sup35. This competition, however, is highly sensitive to the fragmentation of [PSI+ ]Strong amyloid fibers, with even transient inhibition of the fragmentation catalyst Hsp104 promoting amplification of [PSI+ ]Weak propagons. Reducing the number of [PSI+ ]Strong propagons prior to mating, similarly promotes [PSI+ ]Weak amplification and conversion of soluble Sup35, indicating that template number and conversion efficiency combine to determine dominance. Thus, prion variant dominance is not an absolute hierarchy but rather an outcome arising from the dynamic interplay between unique protein conformations and their interactions with distinct cellular proteostatic niches.
Collapse
Affiliation(s)
- Jennifer Norton
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ, United States
| | - Nicole Seah
- Department of Biochemistry, The University of Washington, Seattle, WA, United States
| | - Fabian Santiago
- Department of Applied Mathematics, The University of California, Merced, Merced, CA, United States
| | - Suzanne S. Sindi
- Department of Applied Mathematics, The University of California, Merced, Merced, CA, United States
| | - Tricia R. Serio
- Department of Biochemistry, The University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Liu X, Xin DE, Zhong X, Zhao C, Li Z, Zhang L, Dourson AJ, Lee L, Mishra S, Bayat AE, Nicholson E, Seibel WL, Yan B, Mason J, Turner BJ, Gonsalvez DG, Ong W, Chew SY, Ghosh B, Yoon SO, Xin M, He Z, Tchieu J, Wegner M, Nave KA, Franklin RJM, Dutta R, Trapp BD, Hu M, Smith MA, Jankowski MP, Barton SK, He X, Lu QR. Small-molecule-induced epigenetic rejuvenation promotes SREBP condensation and overcomes barriers to CNS myelin regeneration. Cell 2024; 187:2465-2484.e22. [PMID: 38701782 PMCID: PMC11812128 DOI: 10.1016/j.cell.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/01/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024]
Abstract
Remyelination failure in diseases like multiple sclerosis (MS) was thought to involve suppressed maturation of oligodendrocyte precursors; however, oligodendrocytes are present in MS lesions yet lack myelin production. We found that oligodendrocytes in the lesions are epigenetically silenced. Developing a transgenic reporter labeling differentiated oligodendrocytes for phenotypic screening, we identified a small-molecule epigenetic-silencing-inhibitor (ESI1) that enhances myelin production and ensheathment. ESI1 promotes remyelination in animal models of demyelination and enables de novo myelinogenesis on regenerated CNS axons. ESI1 treatment lengthened myelin sheaths in human iPSC-derived organoids and augmented (re)myelination in aged mice while reversing age-related cognitive decline. Multi-omics revealed that ESI1 induces an active chromatin landscape that activates myelinogenic pathways and reprograms metabolism. Notably, ESI1 triggered nuclear condensate formation of master lipid-metabolic regulators SREBP1/2, concentrating transcriptional co-activators to drive lipid/cholesterol biosynthesis. Our study highlights the potential of targeting epigenetic silencing to enable CNS myelin regeneration in demyelinating diseases and aging.
Collapse
Affiliation(s)
- Xuezhao Liu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dazhuan Eric Xin
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaowen Zhong
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, 45229, USA
| | - Chuntao Zhao
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zhidan Li
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Liguo Zhang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adam J Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lindsay Lee
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Shreya Mishra
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Arman E Bayat
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eva Nicholson
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - William L Seibel
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, 45229, USA
| | - Joel Mason
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne 3052, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne 3052, Australia
| | - David G Gonsalvez
- Department of Anatomy and Developmental Biology, Monash University, Melbourne 3168, Australia
| | - William Ong
- School of Chemistry, Chemical Engineering, and Biotechnology Nanyang Technological University, Singapore 637459, Singapore
| | - Sing Yian Chew
- School of Chemistry, Chemical Engineering, and Biotechnology Nanyang Technological University, Singapore 637459, Singapore; Lee Kong Chian School of Medicine, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India, 500078
| | - Sung Ok Yoon
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio
| | - Mei Xin
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jason Tchieu
- Department of Pediatrics, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael Wegner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Robin J M Franklin
- Altos Labs, Cambridge Institute of Science, Granta Park, Cambridge CB21 6GP, UK
| | - Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Case Western Reserve University School of Medicine, Cleveland, OH 44195, USA
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Case Western Reserve University School of Medicine, Cleveland, OH 44195, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Matthew A Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA; Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, OH, USA
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Pediatric Pain Research Center, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Samantha K Barton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne 3052, Australia
| | - Xuelian He
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Septin Defects Favour Symmetric Inheritance of the Budding Yeast Deceptive Courtship Memory. Int J Mol Sci 2023; 24:ijms24033003. [PMID: 36769325 PMCID: PMC9917509 DOI: 10.3390/ijms24033003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Mnemons are prion-like elements that encode cellular memories of past cellular adaptations and do not spread to progenies during cell divisions. During the deceptive courtship in budding yeast, the Whi3 mnemon (Whi3mnem) condenses into a super-assembly to encode a mating pheromone refractory state established in the mother cell. Whi3mnem is confined to the mother cell such that their daughter cells have the ability to respond to the mating pheromone. Confinement of Whi3mnem involves its association with the endoplasmic reticulum membranes and the compartmentalization of these membranes by the lateral membrane diffusion barrier at the bud neck, the limit between the mother cell and the bud. However, during the first cell division after the establishment of the pheromone refractory state, this adaptation is more likely to be inherited by the daughter cell than in subsequent cell divisions. Here, we show that the first cell division is associated with larger daughter cells and cytokinesis defects, traits that are not observed in subsequent cell divisions. The cytoskeletal septin protein shows aberrant localisation in these divisions and the septin-dependent endoplasmic reticulum membrane diffusion barrier is weakened. Overall, these data suggest that cytokinesis defects associated with prolonged cell division can alter the confinement and inheritance pattern of a cellular memory.
Collapse
|
6
|
Nuclear condensates of YAP fusion proteins alter transcription to drive ependymoma tumourigenesis. Nat Cell Biol 2023; 25:323-336. [PMID: 36732631 DOI: 10.1038/s41556-022-01069-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/01/2022] [Indexed: 02/04/2023]
Abstract
Nuclear localization of HIPPO-YAP fusion proteins has been implicated in supratentorial ependymoma development. Here, unexpectedly, we find that liquid-liquid phase separation, rather than nuclear localization, of recurrent patient-derived YAP fusions, YAP-MAMLD1 and C11ORF95-YAP, underlies ependymoma tumourigenesis from neural progenitor cells. Mutagenesis and chimaera assays demonstrate that an intrinsically disordered region promotes oligomerization of the YAP fusions into nuclear, puncta-like, membrane-less condensates. Oligomerization and nuclear condensates induced by YAP fusion with a coiled-coil domain of transcriptional activator GCN4 also promote ependymoma formation. YAP-MAMLD1 concentrates transcription factors and co-activators, including BRD4, MED1 and TEAD, in condensates while excluding transcriptional repressive PRC2, and induces long-range enhancer-promoter interactions that promote transcription and oncogenic programmes. Blocking condensate-mediated transcriptional co-activator activity inhibits tumourigenesis, indicating a critical role of liquid phase separation for YAP fusion oncogenic activity in ependymoma. YAP fusions containing the intrinsically disordered region features are common in human tumours, suggesting that nuclear condensates could be targeted to treat YAP-fusion-induced cancers.
Collapse
|
7
|
Prasad R, Sliwa-Gonzalez A, Barral Y. Mapping bilayer thickness in the ER membrane. SCIENCE ADVANCES 2020; 6:6/46/eaba5130. [PMID: 33177076 PMCID: PMC7673731 DOI: 10.1126/sciadv.aba5130] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/23/2020] [Indexed: 05/20/2023]
Abstract
In the plasma membrane and in synthetic membranes, resident lipids may laterally unmix to form domains of distinct biophysical properties. Whether lipids also drive the lateral organization of intracellular membranes is largely unknown. Here, we describe genetically encoded fluorescent reporters visualizing local variations in bilayer thickness. Using them, we demonstrate that long-chained ceramides promote the formation of discrete domains of increased bilayer thickness in the yeast ER, particularly in the future plane of cleavage and at ER-trans-Golgi contact sites. Thickening of the ER membrane in the cleavage plane contributed to the formation of lateral diffusion barriers, which restricted the passage of short, but not long, protein transmembrane domains between the mother and bud ER compartments. Together, our data establish that the ER membrane is laterally organized and that ceramides drive this process, and provide insights into the physical nature and biophysical mechanisms of the lateral diffusion barriers that compartmentalize the ER.
Collapse
Affiliation(s)
- Rupali Prasad
- Institute of Biochemistry, Department of Biology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Andrzej Sliwa-Gonzalez
- Institute of Biochemistry, Department of Biology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Yves Barral
- Institute of Biochemistry, Department of Biology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| |
Collapse
|
8
|
Megyeri M, Prasad R, Volpert G, Sliwa-Gonzalez A, Haribowo AG, Aguilera-Romero A, Riezman H, Barral Y, Futerman AH, Schuldiner M. Yeast ceramide synthases, Lag1 and Lac1, have distinct substrate specificity. J Cell Sci 2019; 132:jcs.228411. [PMID: 31164445 PMCID: PMC6602303 DOI: 10.1242/jcs.228411] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/20/2019] [Indexed: 12/30/2022] Open
Abstract
LAG1 was the first longevity assurance gene discovered in Saccharomyces cerevisiae. The Lag1 protein is a ceramide synthase and its homolog, Lac1, has a similar enzymatic function but no role in aging. Lag1 and Lac1 lie in an enzymatic branch point of the sphingolipid pathway that is interconnected by the activity of the C4 hydroxylase, Sur2. By uncoupling the enzymatic branch point and using lipidomic mass spectrometry, metabolic labeling and in vitro assays we show that Lag1 preferentially synthesizes phyto-sphingolipids. Using photo-bleaching experiments we show that Lag1 is uniquely required for the establishment of a lateral diffusion barrier in the nuclear envelope, which depends on phytoceramide. Given the role of this diffusion barrier in the retention of aging factors in the mother cell, we suggest that the different specificities of the two ceramide synthases, and the specific effect of Lag1 on asymmetrical inheritance, may explain why Δlag1 cells have an increased lifespan while Δlac1 cells do not. Highlighted Article: Distinct substrate specificities of Lag1 and Lac1, the two yeast ceramide synthases, are revealed, shedding light on their physiological roles.
Collapse
Affiliation(s)
- Márton Megyeri
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rupali Prasad
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich 8093, Switzerland
| | - Giora Volpert
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - A Galih Haribowo
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| | | | - Howard Riezman
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| | - Yves Barral
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich 8093, Switzerland
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
9
|
Nobis M, Warren SC, Lucas MC, Murphy KJ, Herrmann D, Timpson P. Molecular mobility and activity in an intravital imaging setting - implications for cancer progression and targeting. J Cell Sci 2018; 131:131/5/jcs206995. [PMID: 29511095 DOI: 10.1242/jcs.206995] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Molecular mobility, localisation and spatiotemporal activity are at the core of cell biological processes and deregulation of these dynamic events can underpin disease development and progression. Recent advances in intravital imaging techniques in mice are providing new avenues to study real-time molecular behaviour in intact tissues within a live organism and to gain exciting insights into the intricate regulation of live cell biology at the microscale level. The monitoring of fluorescently labelled proteins and agents can be combined with autofluorescent properties of the microenvironment to provide a comprehensive snapshot of in vivo cell biology. In this Review, we summarise recent intravital microscopy approaches in mice, in processes ranging from normal development and homeostasis to disease progression and treatment in cancer, where we emphasise the utility of intravital imaging to observe dynamic and transient events in vivo We also highlight the recent integration of advanced subcellular imaging techniques into the intravital imaging pipeline, which can provide in-depth biological information beyond the single-cell level. We conclude with an outlook of ongoing developments in intravital microscopy towards imaging in humans, as well as provide an overview of the challenges the intravital imaging community currently faces and outline potential ways for overcoming these hurdles.
Collapse
Affiliation(s)
- Max Nobis
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Sean C Warren
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Morghan C Lucas
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - David Herrmann
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Paul Timpson
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| |
Collapse
|
10
|
Kassem MS, Fok SY, Smith KL, Kuligowski M, Balleine BW. A novel, modernized Golgi-Cox stain optimized for CLARITY cleared tissue. J Neurosci Methods 2018; 294:102-110. [DOI: 10.1016/j.jneumeth.2017.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
|
11
|
Baldi S, Bolognesi A, Meinema AC, Barral Y. Heat stress promotes longevity in budding yeast by relaxing the confinement of age-promoting factors in the mother cell. eLife 2017; 6:28329. [PMID: 29283340 PMCID: PMC5771669 DOI: 10.7554/elife.28329] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 12/27/2017] [Indexed: 12/16/2022] Open
Abstract
Although individuals of many species inexorably age, a number of observations established that the rate of aging is modulated in response to a variety of mild stresses. Here, we investigated how heat stress promotes longevity in yeast. We show that upon growth at higher temperature, yeast cells relax the retention of DNA circles, which act as aging factors in the mother cell. The enhanced frequency at which circles redistribute to daughter cells was not due to changes of anaphase duration or nuclear shape but solely to the downregulation of the diffusion barrier in the nuclear envelope. This effect depended on the PKA and Tor1 pathways, downstream of stress-response kinase Pkc1. Inhibition of these responses restored barrier function and circle retention and abrogated the effect of heat stress on longevity. Our data indicate that redistribution of aging factors from aged cells to their progeny can be a mechanism for modulating longevity.
Collapse
Affiliation(s)
- Sandro Baldi
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Alessio Bolognesi
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | - Yves Barral
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
12
|
Kraft LM, Lackner LL. Mitochondria-driven assembly of a cortical anchor for mitochondria and dynein. J Cell Biol 2017; 216:3061-3071. [PMID: 28835466 PMCID: PMC5626545 DOI: 10.1083/jcb.201702022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/01/2017] [Accepted: 07/17/2017] [Indexed: 12/21/2022] Open
Abstract
Kraft and Lackner demonstrate that mitochondria drive the assembly of a tether, which serves to stably anchor the organelle itself as well as dynein to the plasma membrane. Thus, mitochondria–plasma membrane tethering influences when and where dynein is anchored, adding to the growing list of interorganelle contact site functions. Interorganelle contacts facilitate communication between organelles and impact fundamental cellular functions. In this study, we examine the assembly of the MECA (mitochondria–endoplasmic reticulum [ER]–cortex anchor), which tethers mitochondria to the ER and plasma membrane. We find that the assembly of Num1, the core component of MECA, requires mitochondria. Once assembled, Num1 clusters persistently anchor mitochondria to the cell cortex. Num1 clusters also function to anchor dynein to the plasma membrane, where dynein captures and walks along astral microtubules to help orient the mitotic spindle. We find that dynein is anchored by Num1 clusters that have been assembled by mitochondria. When mitochondrial inheritance is inhibited, Num1 clusters are not assembled in the bud, and defects in dynein-mediated spindle positioning are observed. The mitochondria-dependent assembly of a dual-function cortical anchor provides a mechanism to integrate the positioning and inheritance of the two essential organelles and expands the function of organelle contact sites.
Collapse
Affiliation(s)
- Lauren M Kraft
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Laura L Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| |
Collapse
|
13
|
Saarikangas J, Caudron F, Prasad R, Moreno DF, Bolognesi A, Aldea M, Barral Y. Compartmentalization of ER-Bound Chaperone Confines Protein Deposit Formation to the Aging Yeast Cell. Curr Biol 2017; 27:773-783. [PMID: 28262489 DOI: 10.1016/j.cub.2017.01.069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 12/21/2016] [Accepted: 01/31/2017] [Indexed: 11/19/2022]
Abstract
In order to produce rejuvenated daughters, dividing budding yeast cells confine aging factors, including protein aggregates, to the aging mother cell. The asymmetric inheritance of these protein deposits is mediated by organelle and cytoskeletal attachment and by cell geometry. Yet it remains unclear how deposit formation is restricted to the aging lineage. Here, we show that selective membrane anchoring and the compartmentalization of the endoplasmic reticulum (ER) membrane confine protein deposit formation to aging cells during division. Supporting the idea that the age-dependent deposit forms through coalescence of smaller aggregates, two deposits rapidly merged when placed in the same cell by cell-cell fusion. The deposits localized to the ER membrane, primarily to the nuclear envelope (NE). Strikingly, weakening the diffusion barriers that separate the ER membrane into mother and bud compartments caused premature formation of deposits in the daughter cells. Detachment of the Hsp40 protein Ydj1 from the ER membrane elicited a similar phenotype, suggesting that the diffusion barriers and farnesylated Ydj1 functioned together to confine protein deposit formation to mother cells during division. Accordingly, fluorescence correlation spectroscopy measurements in dividing cells indicated that a slow-diffusing, possibly client-bound Ydj1 fraction was asymmetrically enriched in the mother compartment. This asymmetric distribution depended on Ydj1 farnesylation and intact diffusion barriers. Taking these findings together, we propose that ER-anchored Ydj1 binds deposit precursors and prevents them from spreading into daughter cells during division by subjecting them to the ER diffusion barriers. This ensures that the coalescence of precursors into a single deposit is restricted to the aging lineage.
Collapse
Affiliation(s)
- Juha Saarikangas
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland; Wissenschaftskolleg zu Berlin, Institute for Advanced Study, Wallotstrasse 19, 14193 Berlin, Germany
| | - Fabrice Caudron
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland; Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Rupali Prasad
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - David F Moreno
- Molecular Biology Institute of Barcelona, CSIC, Baldiri i Reixac 15, 08028 Barcelona, Spain
| | - Alessio Bolognesi
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Martí Aldea
- Molecular Biology Institute of Barcelona, CSIC, Baldiri i Reixac 15, 08028 Barcelona, Spain
| | - Yves Barral
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland.
| |
Collapse
|