1
|
Svendsen JE, Ford MR, Asnes CL, Oh SC, Dorogin J, Fear KM, O'Hara-Smith JR, Chisholm LO, Phillips SR, Harms MJ, Hosseinzadeh P, Hettiaratchi MH. Applying Computational Protein Design to Engineer Affibodies for Affinity-controlled Delivery of Vascular Endothelial Growth Factor and Platelet-Derived Growth Factor. Biomacromolecules 2025. [PMID: 40343812 DOI: 10.1021/acs.biomac.5c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) play coordinated roles in angiogenesis. However, current biomaterial delivery vehicles for these proteins have a limited ability to precisely control the kinetics of protein release, preventing systematic exploration of their temporal effects. Here, we combined yeast surface display and computational protein design to engineer eight VEGF-specific and PDGF-specific protein binders called affibodies with a broad range of affinities for controlled protein release. Soluble affibodies modulated protein bioactivity as evidenced by changes in VEGF-induced endothelial cell proliferation and luminescent output of a PDGF-responsive cell line. Affibody-conjugated hydrogels enabled tunable protein release over 7 days. VEGF and PDGF released from affibody-conjugated hydrogels exhibited higher bioactivity than proteins released from hydrogels without affibodies, suggesting that these engineered affinity interactions could prolong protein bioactivity. This work underscores the power of computational protein design to enhance biomaterial functionality, creating a platform for tunable protein delivery.
Collapse
Affiliation(s)
- Justin E Svendsen
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Madeleine R Ford
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
- Department of Human Physiology, University of Oregon, Eugene, Oregon 97403, United States
| | - Chandler L Asnes
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Simon C Oh
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
- Department of Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Jonathan Dorogin
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Karly M Fear
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Johnathan R O'Hara-Smith
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
- Department of Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Lauren O Chisholm
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Sophia R Phillips
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Michael J Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Parisa Hosseinzadeh
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Marian H Hettiaratchi
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
2
|
Marchand A, Buckley S, Schneuing A, Pacesa M, Elia M, Gainza P, Elizarova E, Neeser RM, Lee PW, Reymond L, Miao Y, Scheller L, Georgeon S, Schmidt J, Schwaller P, Maerkl SJ, Bronstein M, Correia BE. Targeting protein-ligand neosurfaces with a generalizable deep learning tool. Nature 2025; 639:522-531. [PMID: 39814890 PMCID: PMC11903328 DOI: 10.1038/s41586-024-08435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/20/2024] [Indexed: 01/18/2025]
Abstract
Molecular recognition events between proteins drive biological processes in living systems1. However, higher levels of mechanistic regulation have emerged, in which protein-protein interactions are conditioned to small molecules2-5. Despite recent advances, computational tools for the design of new chemically induced protein interactions have remained a challenging task for the field6,7. Here we present a computational strategy for the design of proteins that target neosurfaces, that is, surfaces arising from protein-ligand complexes. To develop this strategy, we leveraged a geometric deep learning approach based on learned molecular surface representations8,9 and experimentally validated binders against three drug-bound protein complexes: Bcl2-venetoclax, DB3-progesterone and PDF1-actinonin. All binders demonstrated high affinities and accurate specificities, as assessed by mutational and structural characterization. Remarkably, surface fingerprints previously trained only on proteins could be applied to neosurfaces induced by interactions with small molecules, providing a powerful demonstration of generalizability that is uncommon in other deep learning approaches. We anticipate that such designed chemically induced protein interactions will have the potential to expand the sensing repertoire and the assembly of new synthetic pathways in engineered cells for innovative drug-controlled cell-based therapies10.
Collapse
Affiliation(s)
- Anthony Marchand
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Stephen Buckley
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Arne Schneuing
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Maddalena Elia
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Pablo Gainza
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland
- Monte Rosa Therapeutics, Boston, MA, USA
| | - Evgenia Elizarova
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Rebecca M Neeser
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland
- Laboratory of Chemical Artificial Intelligence, Institute of Chemical Sciences and Engineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Pao-Wan Lee
- Laboratory of Biological Network Characterization, Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Luc Reymond
- Biomolecular Screening Core Facility, School of Life Sciences, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Yangyang Miao
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Leo Scheller
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Sandrine Georgeon
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Joseph Schmidt
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Philippe Schwaller
- Laboratory of Chemical Artificial Intelligence, Institute of Chemical Sciences and Engineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Sebastian J Maerkl
- Laboratory of Biological Network Characterization, Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Michael Bronstein
- Department of Computer Science, University of Oxford, Oxford, UK
- Aithyra Research Institute for Biomedical Artificial Intelligence, Austrian Academy of Sciences, Vienna, Austria
| | - Bruno E Correia
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
3
|
Chaves EJF, Coêlho DF, Cruz CHB, Moreira EG, Simões JCM, Nascimento‐Filho MJ, Lins RD. Structure-based computational design of antibody mimetics: challenges and perspectives. FEBS Open Bio 2025; 15:223-235. [PMID: 38925955 PMCID: PMC11788748 DOI: 10.1002/2211-5463.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/17/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
The design of antibody mimetics holds great promise for revolutionizing therapeutic interventions by offering alternatives to conventional antibody therapies. Structure-based computational approaches have emerged as indispensable tools in the rational design of those molecules, enabling the precise manipulation of their structural and functional properties. This review covers the main classes of designed antigen-binding motifs, as well as alternative strategies to develop tailored ones. We discuss the intricacies of different computational protein-protein interaction design strategies, showcased by selected successful cases in the literature. Subsequently, we explore the latest advancements in the computational techniques including the integration of machine and deep learning methodologies into the design framework, which has led to an augmented design pipeline. Finally, we verse onto the current challenges that stand in the way between high-throughput computer design of antibody mimetics and experimental realization, offering a forward-looking perspective into the field and the promises it holds to biotechnology.
Collapse
Affiliation(s)
| | - Danilo F. Coêlho
- Department of Fundamental ChemistryFederal University of PernambucoRecifeBrazil
| | - Carlos H. B. Cruz
- Institute of Structural and Molecular BiologyUniversity College LondonUK
| | | | - Júlio C. M. Simões
- Aggeu Magalhães InstituteOswaldo Cruz FoundationRecifeBrazil
- Department of Fundamental ChemistryFederal University of PernambucoRecifeBrazil
| | - Manassés J. Nascimento‐Filho
- Aggeu Magalhães InstituteOswaldo Cruz FoundationRecifeBrazil
- Department of Fundamental ChemistryFederal University of PernambucoRecifeBrazil
| | - Roberto D. Lins
- Aggeu Magalhães InstituteOswaldo Cruz FoundationRecifeBrazil
- Department of Fundamental ChemistryFederal University of PernambucoRecifeBrazil
- Fiocruz Genomics NetworkBrazil
| |
Collapse
|
4
|
Adams CS, Kim H, Burtner AE, Lee DS, Dobbins C, Criswell C, Coventry B, Tran-Pearson A, Kim HM, King NP. De novo design of protein minibinder agonists of TLR3. Nat Commun 2025; 16:1234. [PMID: 39890776 PMCID: PMC11785957 DOI: 10.1038/s41467-025-56369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025] Open
Abstract
Toll-like Receptor 3 (TLR3) is a pattern recognition receptor that initiates antiviral immune responses upon binding double-stranded RNA (dsRNA). Several nucleic acid-based TLR3 agonists have been explored clinically as vaccine adjuvants in cancer and infectious disease, but present substantial manufacturing and formulation challenges. Here, we use computational protein design to create novel miniproteins that bind to human TLR3 with nanomolar affinities. Cryo-EM structures of two minibinders in complex with TLR3 reveal that they bind the target as designed, although one partially unfolds due to steric competition with a nearby N-linked glycan. Multivalent forms of both minibinders induce NF-κB signaling in TLR3-expressing cell lines, demonstrating that they may have therapeutically relevant biological activity. Our work provides a foundation for the development of specific, stable, and easy-to-formulate protein-based agonists of TLRs and other pattern recognition receptors.
Collapse
Affiliation(s)
- Chloe S Adams
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Hyojin Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, South Korea
| | - Abigail E Burtner
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Dong Sun Lee
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, South Korea
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Cameron Criswell
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Brian Coventry
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Adri Tran-Pearson
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ho Min Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, South Korea.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
5
|
Nagarathinam K, Scheck A, Labuhn M, Ströh LJ, Herold E, Veselkova B, Tune S, Cramer JT, Rosset S, Vollers SS, Bankwitz D, Ballmaier M, Böning H, Roth E, Khera T, Ahsendorf-Abidi HP, Dittrich-Breiholz O, Obleser J, Nassal M, Jäck HM, Pietschmann T, Correia BE, Krey T. Epitope-focused immunogens targeting the hepatitis C virus glycoproteins induce broadly neutralizing antibodies. SCIENCE ADVANCES 2024; 10:eado2600. [PMID: 39642219 PMCID: PMC11623273 DOI: 10.1126/sciadv.ado2600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 11/04/2024] [Indexed: 12/08/2024]
Abstract
Hepatitis C virus (HCV) infection causes ~290,000 annual human deaths despite the highly effective antiviral treatment available. Several viral immune evasion mechanisms have hampered the development of an effective vaccine against HCV, among them the remarkable conformational flexibility within neutralization epitopes in the HCV antigens. Here, we report the design of epitope-focused immunogens displaying two distinct HCV cross-neutralization epitopes. We show that these immunogens induce a pronounced, broadly neutralizing antibody response in laboratory and transgenic human antibody mice. Monoclonal human antibodies isolated from immunized human antibody mice specifically recognized the grafted epitopes and neutralized four diverse HCV strains. Our results highlight a promising strategy for developing HCV immunogens and provide an encouraging paradigm for targeting structurally flexible epitopes to improve the induction of neutralizing antibodies.
Collapse
Affiliation(s)
- Kumar Nagarathinam
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Andreas Scheck
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Maurice Labuhn
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Luisa J. Ströh
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Elisabeth Herold
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Barbora Veselkova
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Sarah Tune
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | | | - Stéphane Rosset
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Sabrina S. Vollers
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Dorothea Bankwitz
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Matthias Ballmaier
- Central Research Facility Cell Sorting, Hannover Medical School, 30625 Hannover, Germany
| | - Heike Böning
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Edith Roth
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tanvi Khera
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | | | | | - Jonas Obleser
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Michael Nassal
- Department of Internal Medicine 2/Molecular Biology, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 30625 Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, 30625 Hannover, Germany
| | - Bruno E. Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Thomas Krey
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 38124 Braunschweig, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
| |
Collapse
|
6
|
Sun K, Li S, Zheng B, Zhu Y, Wang T, Liang M, Yao Y, Zhang K, Zhang J, Li H, Han D, Zheng J, Coventry B, Cao L, Baker D, Liu L, Lu P. Accurate de novo design of heterochiral protein-protein interactions. Cell Res 2024; 34:846-858. [PMID: 39143121 PMCID: PMC11614891 DOI: 10.1038/s41422-024-01014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024] Open
Abstract
Abiotic D-proteins that selectively bind to natural L-proteins have gained significant biotechnological interest. However, the underlying structural principles governing such heterochiral protein-protein interactions remain largely unknown. In this study, we present the de novo design of D-proteins consisting of 50-65 residues, aiming to target specific surface regions of L-proteins or L-peptides. Our designer D-protein binders exhibit nanomolar affinity toward an artificial L-peptide, as well as two naturally occurring proteins of therapeutic significance: the D5 domain of human tropomyosin receptor kinase A (TrkA) and human interleukin-6 (IL-6). Notably, these D-protein binders demonstrate high enantiomeric specificity and target specificity. In cell-based experiments, designer D-protein binders effectively inhibited the downstream signaling of TrkA and IL-6 with high potency. Moreover, these binders exhibited remarkable thermal stability and resistance to protease degradation. Crystal structure of the designed heterochiral D-protein-L-peptide complex, obtained at a resolution of 2.0 Å, closely resembled the design model, indicating that the computational method employed is highly accurate. Furthermore, the crystal structure provides valuable information regarding the interactions between helical L-peptides and D-proteins, particularly elucidating a novel mode of heterochiral helix-helix interactions. Leveraging the design of D-proteins specifically targeting L-peptides or L-proteins opens up avenues for systematic exploration of the mirror-image protein universe, paving the way for a diverse range of applications.
Collapse
Affiliation(s)
- Ke Sun
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Sicong Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Bowen Zheng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yanlei Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Tongyue Wang
- Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Mingfu Liang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yue Yao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Kairan Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jizhong Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Hongyong Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Dongyang Han
- Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jishen Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Brian Coventry
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Longxing Cao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lei Liu
- Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Peilong Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Lv X, Zhang Y, Sun K, Yang Q, Luo J, Tao L, Lu P. De novo design of mini-protein binders broadly neutralizing Clostridioides difficile toxin B variants. Nat Commun 2024; 15:8521. [PMID: 39358329 PMCID: PMC11447207 DOI: 10.1038/s41467-024-52582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
Clostridioides difficile toxin B (TcdB) is the key virulence factor accounting for C. difficile infection-associated symptoms. Effectively neutralizing different TcdB variants with a universal solution poses a significant challenge. Here we present the de novo design and characterization of pan-specific mini-protein binders against major TcdB subtypes. Our design successfully binds to the first receptor binding interface (RBI-1) of the varied TcdB subtypes, exhibiting affinities ranging from 20 pM to 10 nM. The cryo-electron microscopy (cryo-EM) structures of the mini protein binder in complex with TcdB1 and TcdB4 are consistent with the computational design models. The engineered and evolved variants of the mini-protein binder and chondroitin sulfate proteoglycan 4 (CSPG4), another natural receptor that binds to the second RBI (RBI-2) of TcdB, better neutralize major TcdB variants both in cells and in vivo, as demonstrated by the colon-loop assay using female mice. Our findings provide valuable starting points for the development of therapeutics targeting C. difficile infections (CDI).
Collapse
Affiliation(s)
- Xinchen Lv
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yuanyuan Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Hangzhou Medical College Affiliated People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Ke Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Qi Yang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Jianhua Luo
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Liang Tao
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310024, China.
| | - Peilong Lu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
8
|
Adams CS, Kim H, Burtner AE, Lee DS, Dobbins C, Criswell C, Coventry B, Kim HM, King NP. De novo design of protein minibinder agonists of TLR3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589973. [PMID: 38659926 PMCID: PMC11042314 DOI: 10.1101/2024.04.17.589973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Toll-like Receptor 3 (TLR3) is a pattern recognition receptor that initiates antiviral immune responses upon binding double-stranded RNA (dsRNA). Several nucleic acid-based TLR3 agonists have been explored clinically as vaccine adjuvants in cancer and infectious disease, but present substantial manufacturing and formulation challenges. Here, we use computational protein design to create novel miniproteins that bind to human TLR3 with nanomolar affinities. Cryo-EM structures of two minibinders in complex with TLR3 reveal that they bind the target as designed, although one partially unfolds due to steric competition with a nearby N-linked glycan. Multimeric forms of both minibinders induce NF-κB signaling in TLR3-expressing cell lines, demonstrating that they may have therapeutically relevant biological activity. Our work provides a foundation for the development of specific, stable, and easy-to-formulate protein-based agonists of TLRs and other pattern recognition receptors.
Collapse
Affiliation(s)
- Chloe S. Adams
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Hyojin Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
| | - Abigail E. Burtner
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Dong Sun Lee
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Cameron Criswell
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Brian Coventry
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ho Min Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| |
Collapse
|
9
|
Keri D, Walker M, Singh I, Nishikawa K, Garces F. Next generation of multispecific antibody engineering. Antib Ther 2024; 7:37-52. [PMID: 38235376 PMCID: PMC10791046 DOI: 10.1093/abt/tbad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
Multispecific antibodies recognize two or more epitopes located on the same or distinct targets. This added capability through protein design allows these man-made molecules to address unmet medical needs that are no longer possible with single targeting such as with monoclonal antibodies or cytokines alone. However, the approach to the development of these multispecific molecules has been met with numerous road bumps, which suggests that a new workflow for multispecific molecules is required. The investigation of the molecular basis that mediates the successful assembly of the building blocks into non-native quaternary structures will lead to the writing of a playbook for multispecifics. This is a must do if we are to design workflows that we can control and in turn predict success. Here, we reflect on the current state-of-the-art of therapeutic biologics and look at the building blocks, in terms of proteins, and tools that can be used to build the foundations of such a next-generation workflow.
Collapse
Affiliation(s)
- Daniel Keri
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Matt Walker
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Isha Singh
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Kyle Nishikawa
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Fernando Garces
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| |
Collapse
|
10
|
Xu B, Chen Y, Xue W. Computational Protein Design - Where it goes? Curr Med Chem 2024; 31:2841-2854. [PMID: 37272467 DOI: 10.2174/0929867330666230602143700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/18/2023] [Accepted: 03/15/2023] [Indexed: 06/06/2023]
Abstract
Proteins have been playing a critical role in the regulation of diverse biological processes related to human life. With the increasing demand, functional proteins are sparse in this immense sequence space. Therefore, protein design has become an important task in various fields, including medicine, food, energy, materials, etc. Directed evolution has recently led to significant achievements. Molecular modification of proteins through directed evolution technology has significantly advanced the fields of enzyme engineering, metabolic engineering, medicine, and beyond. However, it is impossible to identify desirable sequences from a large number of synthetic sequences alone. As a result, computational methods, including data-driven machine learning and physics-based molecular modeling, have been introduced to protein engineering to produce more functional proteins. This review focuses on recent advances in computational protein design, highlighting the applicability of different approaches as well as their limitations.
Collapse
Affiliation(s)
- Binbin Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yingjun Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
11
|
Gainza P, Wehrle S, Van Hall-Beauvais A, Marchand A, Scheck A, Harteveld Z, Buckley S, Ni D, Tan S, Sverrisson F, Goverde C, Turelli P, Raclot C, Teslenko A, Pacesa M, Rosset S, Georgeon S, Marsden J, Petruzzella A, Liu K, Xu Z, Chai Y, Han P, Gao GF, Oricchio E, Fierz B, Trono D, Stahlberg H, Bronstein M, Correia BE. De novo design of protein interactions with learned surface fingerprints. Nature 2023; 617:176-184. [PMID: 37100904 PMCID: PMC10131520 DOI: 10.1038/s41586-023-05993-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 03/21/2023] [Indexed: 04/28/2023]
Abstract
Physical interactions between proteins are essential for most biological processes governing life1. However, the molecular determinants of such interactions have been challenging to understand, even as genomic, proteomic and structural data increase. This knowledge gap has been a major obstacle for the comprehensive understanding of cellular protein-protein interaction networks and for the de novo design of protein binders that are crucial for synthetic biology and translational applications2-9. Here we use a geometric deep-learning framework operating on protein surfaces that generates fingerprints to describe geometric and chemical features that are critical to drive protein-protein interactions10. We hypothesized that these fingerprints capture the key aspects of molecular recognition that represent a new paradigm in the computational design of novel protein interactions. As a proof of principle, we computationally designed several de novo protein binders to engage four protein targets: SARS-CoV-2 spike, PD-1, PD-L1 and CTLA-4. Several designs were experimentally optimized, whereas others were generated purely in silico, reaching nanomolar affinity with structural and mutational characterization showing highly accurate predictions. Overall, our surface-centric approach captures the physical and chemical determinants of molecular recognition, enabling an approach for the de novo design of protein interactions and, more broadly, of artificial proteins with function.
Collapse
Affiliation(s)
- Pablo Gainza
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Monte Rosa Therapeutics, Basel, Switzerland
| | - Sarah Wehrle
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Alexandra Van Hall-Beauvais
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Anthony Marchand
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Andreas Scheck
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Zander Harteveld
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stephen Buckley
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Dongchun Ni
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Science, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Shuguang Tan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Freyr Sverrisson
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Casper Goverde
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Priscilla Turelli
- Laboratory of Virology and Genetics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Charlène Raclot
- Laboratory of Virology and Genetics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexandra Teslenko
- Laboratory of Biophysical Chemistry of Macromolecules, School of Basic Sciences, Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stéphane Rosset
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sandrine Georgeon
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jane Marsden
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Aaron Petruzzella
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zepeng Xu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pu Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Elisa Oricchio
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules, School of Basic Sciences, Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Didier Trono
- Laboratory of Virology and Genetics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Science, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Bruno E Correia
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
12
|
Wang L, Li FL, Ma XY, Cang Y, Bai F. PPI-Miner: A Structure and Sequence Motif Co-Driven Protein-Protein Interaction Mining and Modeling Computational Method. J Chem Inf Model 2022; 62:6160-6171. [PMID: 36448715 DOI: 10.1021/acs.jcim.2c01033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Protein-protein interactions (PPIs) play important roles in biological processes of life, and predicting PPIs becomes a critical scientific issue of concern. Most PPIs occur through small domains or motifs (fragments), which are challenging and laborious to map by standard biochemical approaches because they generally require the cloning of several truncation mutants. Here, we present a computational method, named as PPI-Miner, to fish potential protein interacting partners utilizing protein motifs as queries. In brief, this work first developed a motif-matching algorithm designed to identify the proteins that contain sequential or structural similar motifs with the given query motif. Being aligned to the query motif, the binding mode of the discovered motif and its receptor protein will be initially determined to be used to build PPI complexes accordingly. Eventually, a PPI complex structure could be built and optimized with a designed automatic protocol. Besides discovering PPIs, PPI-Miner can also be applied to other areas, i.e., the rational design of molecular glues and protein vaccines. In this work, PPI-Miner was employed to mine the potential cereblon (CRBN) substrates from human proteome. As a result, 1,739 candidates were predicted, and 16 of them have been experimentally validated in previous studies. The source code of PPI-Miner can be obtained from the GitHub repository (https://github.com/Wang-Lin-boop/PPI-Miner), the webserver is freely available for users (https://bailab.siais.shanghaitech.edu.cn/services/ppi-miner), and the database of predicted CRBN substrates is accessible at https://bailab.siais.shanghaitech.edu.cn/services/crbn-subslib.
Collapse
Affiliation(s)
| | | | | | | | - Fang Bai
- Shanghai Clinical Research and Trial Center, Shanghai201210, China
| |
Collapse
|
13
|
Abstract
Neurodegenerative diseases are characterized by the pathologic accumulation of aggregated proteins. Known as amyloid, these fibrillar aggregates include proteins such as tau and amyloid-β (Aβ) in Alzheimer's disease (AD) and alpha-synuclein (αSyn) in Parkinson's disease (PD). The development and spread of amyloid fibrils within the brain correlates with disease onset and progression, and inhibiting amyloid formation is a possible route toward therapeutic development. Recent advances have enabled the determination of amyloid fibril structures to atomic-level resolution, improving the possibility of structure-based inhibitor design. In this work, we use these amyloid structures to design inhibitors that bind to the ends of fibrils, "capping" them so as to prevent further growth. Using de novo protein design, we develop a library of miniprotein inhibitors of 35 to 48 residues that target the amyloid structures of tau, Aβ, and αSyn. Biophysical characterization of top in silico designed inhibitors shows they form stable folds, have no sequence similarity to naturally occurring proteins, and specifically prevent the aggregation of their targeted amyloid-prone proteins in vitro. The inhibitors also prevent the seeded aggregation and toxicity of fibrils in cells. In vivo evaluation reveals their ability to reduce aggregation and rescue motor deficits in Caenorhabditis elegans models of PD and AD.
Collapse
|
14
|
Wang J, Lisanza S, Juergens D, Tischer D, Watson JL, Castro KM, Ragotte R, Saragovi A, Milles LF, Baek M, Anishchenko I, Yang W, Hicks DR, Expòsit M, Schlichthaerle T, Chun JH, Dauparas J, Bennett N, Wicky BIM, Muenks A, DiMaio F, Correia B, Ovchinnikov S, Baker D. Scaffolding protein functional sites using deep learning. Science 2022; 377:387-394. [PMID: 35862514 PMCID: PMC9621694 DOI: 10.1126/science.abn2100] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The binding and catalytic functions of proteins are generally mediated by a small number of functional residues held in place by the overall protein structure. Here, we describe deep learning approaches for scaffolding such functional sites without needing to prespecify the fold or secondary structure of the scaffold. The first approach, "constrained hallucination," optimizes sequences such that their predicted structures contain the desired functional site. The second approach, "inpainting," starts from the functional site and fills in additional sequence and structure to create a viable protein scaffold in a single forward pass through a specifically trained RoseTTAFold network. We use these two methods to design candidate immunogens, receptor traps, metalloproteins, enzymes, and protein-binding proteins and validate the designs using a combination of in silico and experimental tests.
Collapse
Affiliation(s)
- Jue Wang
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Sidney Lisanza
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
- Graduate program in Biological Physics, Structure and
Design, University of Washington, Seattle, WA 98105, USA
| | - David Juergens
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
- Molecular Engineering Graduate Program, University of
Washington, Seattle, WA 98105, USA
| | - Doug Tischer
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Joseph L. Watson
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Karla M. Castro
- Institute of Bioengineering, École Polytechnique
Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Robert Ragotte
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Amijai Saragovi
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Lukas F. Milles
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Minkyung Baek
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Ivan Anishchenko
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Wei Yang
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Derrick R. Hicks
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Marc Expòsit
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
- Molecular Engineering Graduate Program, University of
Washington, Seattle, WA 98105, USA
| | - Thomas Schlichthaerle
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Jung-Ho Chun
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
- Graduate program in Biological Physics, Structure and
Design, University of Washington, Seattle, WA 98105, USA
| | - Justas Dauparas
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Nathaniel Bennett
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
- Molecular Engineering Graduate Program, University of
Washington, Seattle, WA 98105, USA
| | - Basile I. M. Wicky
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Andrew Muenks
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Bruno Correia
- Institute of Bioengineering, École Polytechnique
Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Sergey Ovchinnikov
- FAS Division of Science, Harvard University, Cambridge, MA
02138, USA
- John Harvard Distinguished Science Fellowship Program,
Harvard University, Cambridge, MA 02138, USA
| | - David Baker
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
- Howard Hughes Medical Institute, University of Washington,
Seattle, WA 98105, USA
| |
Collapse
|
15
|
Kretschmer S, Kortemme T. Advances in the Computational Design of Small-Molecule-Controlled Protein-Based Circuits for Synthetic Biology. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2022; 110:659-674. [PMID: 36531560 PMCID: PMC9754107 DOI: 10.1109/jproc.2022.3157898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Synthetic biology approaches living systems with an engineering perspective and promises to deliver solutions to global challenges in healthcare and sustainability. A critical component is the design of biomolecular circuits with programmable input-output behaviors. Such circuits typically rely on a sensor module that recognizes molecular inputs, which is coupled to a functional output via protein-level circuits or regulating the expression of a target gene. While gene expression outputs can be customized relatively easily by exchanging the target genes, sensing new inputs is a major limitation. There is a limited repertoire of sensors found in nature, and there are often difficulties with interfacing them with engineered circuits. Computational protein design could be a key enabling technology to address these challenges, as it allows for the engineering of modular and tunable sensors that can be tailored to the circuit's application. In this article, we review recent computational approaches to design protein-based sensors for small-molecule inputs with particular focus on those based on the widely used Rosetta software suite. Furthermore, we review mechanisms that have been harnessed to couple ligand inputs to functional outputs. Based on recent literature, we illustrate how the combination of protein design and synthetic biology enables new sensors for diverse applications ranging from biomedicine to metabolic engineering. We conclude with a perspective on how strategies to address frontiers in protein design and cellular circuit design may enable the next generation of sense-response networks, which may increasingly be assembled from de novo components to display diverse and engineerable input-output behaviors.
Collapse
Affiliation(s)
- Simon Kretschmer
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA 94158 USA, and affiliated with the California Quantitative Biosciences Institute (QBI) at UCSF, San Francisco, CA 94158 USA
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA 94158 USA, and affiliated with the California Quantitative Biosciences Institute (QBI) at UCSF, San Francisco, CA 94158 USA
| |
Collapse
|
16
|
Schoeder CT, Gilchuk P, Sangha AK, Ledwitch KV, Malherbe DC, Zhang X, Binshtein E, Williamson LE, Martina CE, Dong J, Armstrong E, Sutton R, Nargi R, Rodriguez J, Kuzmina N, Fiala B, King NP, Bukreyev A, Crowe JE, Meiler J. Epitope-focused immunogen design based on the ebolavirus glycoprotein HR2-MPER region. PLoS Pathog 2022; 18:e1010518. [PMID: 35584193 PMCID: PMC9170092 DOI: 10.1371/journal.ppat.1010518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/06/2022] [Accepted: 04/12/2022] [Indexed: 01/09/2023] Open
Abstract
The three human pathogenic ebolaviruses: Zaire (EBOV), Bundibugyo (BDBV), and Sudan (SUDV) virus, cause severe disease with high fatality rates. Epitopes of ebolavirus glycoprotein (GP) recognized by antibodies with binding breadth for all three ebolaviruses are of major interest for rational vaccine design. In particular, the heptad repeat 2 -membrane-proximal external region (HR2-MPER) epitope is relatively conserved between EBOV, BDBV, and SUDV GP and targeted by human broadly-neutralizing antibodies. To study whether this epitope can serve as an immunogen for the elicitation of broadly-reactive antibody responses, protein design in Rosetta was employed to transplant the HR2-MPER epitope identified from a co-crystal structure with the known broadly-reactive monoclonal antibody (mAb) BDBV223 onto smaller scaffold proteins. From computational analysis, selected immunogen designs were produced as recombinant proteins and functionally validated, leading to the identification of a sterile alpha motif (SAM) domain displaying the BDBV-HR2-MPER epitope near its C terminus as a promising candidate. The immunogen was fused to one component of a self-assembling, two-component nanoparticle and tested for immunogenicity in rabbits. Robust titers of cross-reactive serum antibodies to BDBV and EBOV GPs and moderate titers to SUDV GP were induced following immunization. To confirm the structural composition of the immunogens, solution NMR studies were conducted and revealed structural flexibility in the C-terminal residues of the epitope. Overall, our study represents the first report on an epitope-focused immunogen design based on the structurally challenging BDBV-HR2-MPER epitope.
Collapse
Affiliation(s)
- Clara T. Schoeder
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Drug Discovery, University Leipzig Medical School, Leipzig, Germany
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Amandeep K. Sangha
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kaitlyn V. Ledwitch
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Delphine C. Malherbe
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
| | - Xuan Zhang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Lauren E. Williamson
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Cristina E. Martina
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jinhui Dong
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Erica Armstrong
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Rachel Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Rachel Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Jessica Rodriguez
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Natalia Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, Unites States, United States of America
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Departments of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Drug Discovery, University Leipzig Medical School, Leipzig, Germany
| |
Collapse
|
17
|
Cao L, Coventry B, Goreshnik I, Huang B, Sheffler W, Park JS, Jude KM, Marković I, Kadam RU, Verschueren KHG, Verstraete K, Walsh STR, Bennett N, Phal A, Yang A, Kozodoy L, DeWitt M, Picton L, Miller L, Strauch EM, DeBouver ND, Pires A, Bera AK, Halabiya S, Hammerson B, Yang W, Bernard S, Stewart L, Wilson IA, Ruohola-Baker H, Schlessinger J, Lee S, Savvides SN, Garcia KC, Baker D. Design of protein-binding proteins from the target structure alone. Nature 2022; 605:551-560. [PMID: 35332283 PMCID: PMC9117152 DOI: 10.1038/s41586-022-04654-9] [Citation(s) in RCA: 240] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/15/2022] [Indexed: 12/03/2022]
Abstract
The design of proteins that bind to a specific site on the surface of a target protein using no information other than the three-dimensional structure of the target remains a challenge1-5. Here we describe a general solution to this problem that starts with a broad exploration of the vast space of possible binding modes to a selected region of a protein surface, and then intensifies the search in the vicinity of the most promising binding modes. We demonstrate the broad applicability of this approach through the de novo design of binding proteins to 12 diverse protein targets with different shapes and surface properties. Biophysical characterization shows that the binders, which are all smaller than 65 amino acids, are hyperstable and, following experimental optimization, bind their targets with nanomolar to picomolar affinities. We succeeded in solving crystal structures of five of the binder-target complexes, and all five closely match the corresponding computational design models. Experimental data on nearly half a million computational designs and hundreds of thousands of point mutants provide detailed feedback on the strengths and limitations of the method and of our current understanding of protein-protein interactions, and should guide improvements of both. Our approach enables the targeted design of binders to sites of interest on a wide variety of proteins for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Longxing Cao
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Brian Coventry
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Buwei Huang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - William Sheffler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Joon Sung Park
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin M Jude
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Iva Marković
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Rameshwar U Kadam
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Koen H G Verschueren
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Kenneth Verstraete
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Scott Thomas Russell Walsh
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- J.A.M.E.S. Farm, Clarksville, MD, USA
| | - Nathaniel Bennett
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, USA
| | - Ashish Phal
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Aerin Yang
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa Kozodoy
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Michelle DeWitt
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lora Picton
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren Miller
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Eva-Maria Strauch
- Deptartment of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Nicholas D DeBouver
- UCB Pharma, Bainbridge Island, WA, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Allison Pires
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
- Seattle Children's Center for Global Infectious Disease Research, Seattle, WA, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Samer Halabiya
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Bradley Hammerson
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Wei Yang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Steffen Bernard
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lance Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Sangwon Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Savvas N Savvides
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - K Christopher Garcia
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
18
|
Scheck A, Rosset S, Defferrard M, Loukas A, Bonet J, Vandergheynst P, Correia BE. RosettaSurf-A surface-centric computational design approach. PLoS Comput Biol 2022; 18:e1009178. [PMID: 35294435 PMCID: PMC9015148 DOI: 10.1371/journal.pcbi.1009178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 04/18/2022] [Accepted: 02/21/2022] [Indexed: 11/19/2022] Open
Abstract
Proteins are typically represented by discrete atomic coordinates providing an accessible framework to describe different conformations. However, in some fields proteins are more accurately represented as near-continuous surfaces, as these are imprinted with geometric (shape) and chemical (electrostatics) features of the underlying protein structure. Protein surfaces are dependent on their chemical composition and, ultimately determine protein function, acting as the interface that engages in interactions with other molecules. In the past, such representations were utilized to compare protein structures on global and local scales and have shed light on functional properties of proteins. Here we describe RosettaSurf, a surface-centric computational design protocol, that focuses on the molecular surface shape and electrostatic properties as means for protein engineering, offering a unique approach for the design of proteins and their functions. The RosettaSurf protocol combines the explicit optimization of molecular surface features with a global scoring function during the sequence design process, diverging from the typical design approaches that rely solely on an energy scoring function. With this computational approach, we attempt to address a fundamental problem in protein design related to the design of functional sites in proteins, even when structurally similar templates are absent in the characterized structural repertoire. Surface-centric design exploits the premise that molecular surfaces are, to a certain extent, independent of the underlying sequence and backbone configuration, meaning that different sequences in different proteins may present similar surfaces. We benchmarked RosettaSurf on various sequence recovery datasets and showcased its design capabilities by generating epitope mimics that were biochemically validated. Overall, our results indicate that the explicit optimization of surface features may lead to new routes for the design of functional proteins.
Collapse
Affiliation(s)
- Andreas Scheck
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Stéphane Rosset
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Michaël Defferrard
- Signal Processing Laboratory (LTS2), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andreas Loukas
- Signal Processing Laboratory (LTS2), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jaume Bonet
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Pierre Vandergheynst
- Signal Processing Laboratory (LTS2), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bruno E. Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| |
Collapse
|
19
|
Nguyen PT, Yarov-Yarovoy V. Towards Structure-Guided Development of Pain Therapeutics Targeting Voltage-Gated Sodium Channels. Front Pharmacol 2022; 13:842032. [PMID: 35153801 PMCID: PMC8830516 DOI: 10.3389/fphar.2022.842032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium (NaV) channels are critical molecular determinants of action potential generation and propagation in excitable cells. Normal NaV channel function disruption can affect physiological neuronal signaling and lead to increased sensitivity to pain, congenital indifference to pain, uncoordinated movement, seizures, or paralysis. Human genetic studies have identified human NaV1.7 (hNaV1.7), hNaV1.8, and hNaV1.9 channel subtypes as crucial players in pain signaling. The premise that subtype selective NaV inhibitors can reduce pain has been reinforced through intensive target validation and therapeutic development efforts. However, an ideal therapeutic has yet to emerge. This review is focused on recent progress, current challenges, and future opportunities to develop NaV channel targeting small molecules and peptides as non-addictive therapeutics to treat pain.
Collapse
Affiliation(s)
- Phuong T Nguyen
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States.,Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
20
|
Luo R, Liu H, Cheng Z. Protein scaffolds: Antibody alternative for cancer diagnosis and therapy. RSC Chem Biol 2022; 3:830-847. [PMID: 35866165 PMCID: PMC9257619 DOI: 10.1039/d2cb00094f] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Although antibodies are well developed and widely used in cancer therapy and diagnostic fields, some defects remain, such as poor tissue penetration, long in vivo metabolic retention, potential cytotoxicity, patent limitation, and high production cost. These issues have led scientists to explore and develop novel antibody alternatives. Protein scaffolds are small monomeric proteins with stable tertiary structures and mutable residues, which emerged in the 1990s. By combining robust gene engineering and phage display techniques, libraries with sufficient diversity could be established for target binding scaffold selection. Given the properties of small size, high affinity, and excellent specificity and stability, protein scaffolds have been applied in basic research, and preclinical and clinical fields over the past two decades. To date, more than 20 types of protein scaffolds have been developed, with the most frequently used being affibody, adnectin, ANTICALIN®, DARPins, and knottin. In this review, we focus on the protein scaffold applications in cancer therapy and diagnosis in the last 5 years, and discuss the pros and cons, and strategies of optimization and design. Although antibodies are well developed and widely used in cancer therapy and diagnostic fields, some defects remain, such as poor tissue penetration, long in vivo metabolic retention, potential cytotoxicity, patent limitation, and high production cost.![]()
Collapse
Affiliation(s)
- Renli Luo
- Department of Molecular Medicine, College of Life and Health Sciences, Northeastern University Shenyang China
| | - Hongguang Liu
- Department of Molecular Medicine, College of Life and Health Sciences, Northeastern University Shenyang China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery Yantai Shandong 264117 China
| |
Collapse
|
21
|
Zacharias M. Match_Motif: A rapid computational tool to assist in protein-protein interaction design. Protein Sci 2022; 31:147-157. [PMID: 34648221 PMCID: PMC8740833 DOI: 10.1002/pro.4208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/12/2022]
Abstract
In order to generate protein assemblies with a desired function, the rational design of protein-protein binding interfaces is of significant interest. Approaches based on random mutagenesis or directed evolution may involve complex experimental selection procedures. Also, molecular modeling approaches to design entirely new proteins and interactions with partner molecules can involve large computational efforts and screening steps. In order to simplify at least the initial effort for designing a putative binding interface between two proteins the Match_Motif approach has been developed. It employs the large collection of known protein-protein complex structures to suggest interface modifications that may lead to improved binding for a desired input interaction geometry. The approach extracts interaction motifs based on the backbone structure of short (four residues) segments and the relative arrangement with respect to short segments on the partner protein. The interaction geometry is used to search through a database of such motifs in known stable bound complexes. All matches are rapidly identified (within a few seconds) and collected and can be used to guide changes in the interface that may lead to improved binding. In the output, an alternative interface structure is also proposed based on the frequency of occurrence of side chains at a given interface position in all matches and based on sterical considerations. Applications of the procedure to known complex structures and alternative arrangements are presented and discussed. The program, data files, and example applications can be downloaded from https://www.groups.ph.tum.de/t38/downloads/.
Collapse
Affiliation(s)
- Martin Zacharias
- Center of Functional Protein AssembliesTechnical University of MunichGarchingGermany
| |
Collapse
|
22
|
Hussain M, Cummins MC, Endo-Streeter S, Sondek J, Kuhlman B. Designer proteins that competitively inhibit Gα q by targeting its effector site. J Biol Chem 2021; 297:101348. [PMID: 34715131 PMCID: PMC8633581 DOI: 10.1016/j.jbc.2021.101348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
During signal transduction, the G protein, Gαq, binds and activates phospholipase C-β isozymes. Several diseases have been shown to manifest upon constitutively activating mutation of Gαq, such as uveal melanoma. Therefore, methods are needed to directly inhibit Gαq. Previously, we demonstrated that a peptide derived from a helix-turn-helix (HTH) region of PLC-β3 (residues 852-878) binds Gαq with low micromolar affinity and inhibits Gαq by competing with full-length PLC-β isozymes for binding. Since the HTH peptide is unstructured in the absence of Gαq, we hypothesized that embedding the HTH in a folded protein might stabilize the binding-competent conformation and further improve the potency of inhibition. Using the molecular modeling software Rosetta, we searched the Protein Data Bank for proteins with similar HTH structures near their surface. The candidate proteins were computationally docked against Gαq, and their surfaces were redesigned to stabilize this interaction. We then used yeast surface display to affinity mature the designs. The most potent design bound Gαq/i with high affinity in vitro (KD = 18 nM) and inhibited activation of PLC-β isozymes in HEK293 cells. We anticipate that our genetically encoded inhibitor will help interrogate the role of Gαq in healthy and disease model systems. Our work demonstrates that grafting interaction motifs into folded proteins is a powerful approach for generating inhibitors of protein-protein interactions.
Collapse
Affiliation(s)
- Mahmud Hussain
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew C Cummins
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Stuart Endo-Streeter
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - John Sondek
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA.
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
23
|
Computational Design of Structured and Functional Peptide Macrocycles. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2371:63-100. [PMID: 34596844 DOI: 10.1007/978-1-0716-1689-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Structure-based computational design methods have been developed to create proteins in silico with diverse shapes and sizes that accurately fold in vitro, from 7-residue macrocycles to megadalton-scale self-assembling nanomaterials. Precise control over protein shape has further enabled design and optimization of functional therapeutic proteins, including agonists, antagonists, enzymes, and vaccines. Computational design of functional peptides of smaller size presents a persistent challenge, with few successful examples to date. Herein we describe validated general methods for computational design of peptides using the Rosetta molecular modeling suite and discuss outstanding challenges and future directions.
Collapse
|
24
|
Shui S, Gainza P, Scheller L, Yang C, Kurumida Y, Rosset S, Georgeon S, Di Roberto RB, Castellanos-Rueda R, Reddy ST, Correia BE. A rational blueprint for the design of chemically-controlled protein switches. Nat Commun 2021; 12:5754. [PMID: 34599176 PMCID: PMC8486872 DOI: 10.1038/s41467-021-25735-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
Small-molecule responsive protein switches are crucial components to control synthetic cellular activities. However, the repertoire of small-molecule protein switches is insufficient for many applications, including those in the translational spaces, where properties such as safety, immunogenicity, drug half-life, and drug side-effects are critical. Here, we present a computational protein design strategy to repurpose drug-inhibited protein-protein interactions as OFF- and ON-switches. The designed binders and drug-receptors form chemically-disruptable heterodimers (CDH) which dissociate in the presence of small molecules. To design ON-switches, we converted the CDHs into a multi-domain architecture which we refer to as activation by inhibitor release switches (AIR) that incorporate a rationally designed drug-insensitive receptor protein. CDHs and AIRs showed excellent performance as drug responsive switches to control combinations of synthetic circuits in mammalian cells. This approach effectively expands the chemical space and logic responses in living cells and provides a blueprint to develop new ON- and OFF-switches. Small-molecule responsive protein switches are crucial components to control synthetic cellular activities. Here, we present a computational protein design strategy to repurpose drug-inhibited protein-protein interactions into OFF- and ON-switches active in cells.
Collapse
Affiliation(s)
- Sailan Shui
- Laboratory of Protein Design and Immunoengineering (LPDI) - STI - EPFL, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, CH-1015, Switzerland
| | - Pablo Gainza
- Laboratory of Protein Design and Immunoengineering (LPDI) - STI - EPFL, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, CH-1015, Switzerland
| | - Leo Scheller
- Laboratory of Protein Design and Immunoengineering (LPDI) - STI - EPFL, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, CH-1015, Switzerland
| | - Che Yang
- Laboratory of Protein Design and Immunoengineering (LPDI) - STI - EPFL, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, CH-1015, Switzerland
| | - Yoichi Kurumida
- Department of Life Science, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Stéphane Rosset
- Laboratory of Protein Design and Immunoengineering (LPDI) - STI - EPFL, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, CH-1015, Switzerland
| | - Sandrine Georgeon
- Laboratory of Protein Design and Immunoengineering (LPDI) - STI - EPFL, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, CH-1015, Switzerland
| | - Raphaël B Di Roberto
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | | | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Bruno E Correia
- Laboratory of Protein Design and Immunoengineering (LPDI) - STI - EPFL, Lausanne, Switzerland. .,Swiss Institute of Bioinformatics (SIB), Lausanne, CH-1015, Switzerland.
| |
Collapse
|
25
|
Loeffler FF, Viana IFT, Fischer N, Coêlho DF, Silva CS, Purificação AF, Araújo CMCS, Leite BHS, Durães-Carvalho R, Magalhães T, Morais CNL, Cordeiro MT, Lins RD, Marques ETA, Jaenisch T. Identification of a Zika NS2B epitope as a biomarker for severe clinical phenotypes. RSC Med Chem 2021; 12:1525-1539. [PMID: 34671736 DOI: 10.1039/d1md00124h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/17/2021] [Indexed: 01/04/2023] Open
Abstract
The identification of specific biomarkers for Zika infection and its clinical complications is fundamental to mitigate the infection spread, which has been associated with a broad range of neurological sequelae. We present the characterization of antibody responses in serum samples from individuals infected with Zika, presenting non-severe (classical) and severe (neurological disease) phenotypes, with high-density peptide arrays comprising the Zika NS1 and NS2B proteins. The data pinpoints one strongly IgG-targeted NS2B epitope in non-severe infections, which is absent in Zika patients, where infection progressed to the severe phenotype. This differential IgG profile between the studied groups was confirmed by multivariate data analysis. Molecular dynamics simulations and circular dichroism have shown that the peptide in solution presents itself in a sub-optimal conformation for antibody recognition, which led us to computationally engineer an artificial protein able to stabilize the NS2B epitope structure. The engineered protein was used to interrogate paired samples from mothers and their babies presenting Zika-associated microcephaly and confirmed the absence of NS2B IgG response in those samples. These findings suggest that the assessment of antibody responses to the herein identified NS2B epitope is a strong candidate biomarker for the diagnosis and prognosis of Zika-associated neurological disease.
Collapse
Affiliation(s)
- Felix F Loeffler
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems Potsdam Germany
| | - Isabelle F T Viana
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Nico Fischer
- Section Clinical Tropical Medicine, Department of Infectious Diseases, Heidelberg University Hospital Germany
| | - Danilo F Coêlho
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil.,Department of Fundamental Chemistry, Federal University of Pernambuco Recife PE Brazil
| | - Carolina S Silva
- Department of Chemical Engineering, Federal University of Pernambuco Recife PE Brazil
| | - Antônio F Purificação
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Catarina M C S Araújo
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Bruno H S Leite
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | | | - Tereza Magalhães
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Clarice N L Morais
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Marli T Cordeiro
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Roberto D Lins
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Ernesto T A Marques
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Pittsburgh PA USA
| | - Thomas Jaenisch
- Section Clinical Tropical Medicine, Department of Infectious Diseases, Heidelberg University Hospital Germany .,German Centre for Infection Research (DZIF) Heidelberg Site Heidelberg Germany
| |
Collapse
|
26
|
Abstract
Programmed cell death protein-1 (PD-1) inhibitory antibodies, often referred to as checkpoint inhibitors, have revolutionized the treatment of cancer. However, there is an unmet need for PD-1 agonists to treat autoimmune disorders. Herein, we describe the de novo design of a small, stable PD-1 binding protein and development of a synthetic PD-1 agonist. Programmed cell death protein-1 (PD-1) expressed on activated T cells inhibits T cell function and proliferation to prevent an excessive immune response, and disease can result if this delicate balance is shifted in either direction. Tumor cells often take advantage of this pathway by overexpressing the PD-1 ligand PD-L1 to evade destruction by the immune system. Alternatively, if there is a decrease in function of the PD-1 pathway, unchecked activation of the immune system and autoimmunity can result. Using a combination of computation and experiment, we designed a hyperstable 40-residue miniprotein, PD-MP1, that specifically binds murine and human PD-1 at the PD-L1 interface with a Kd of ∼100 nM. The apo crystal structure shows that the binder folds as designed with a backbone RMSD of 1.3 Å to the design model. Trimerization of PD-MP1 resulted in a PD-1 agonist that strongly inhibits murine T cell activation. This small, hyperstable PD-1 binding protein was computationally designed with an all-beta interface, and the trimeric agonist could contribute to treatments for autoimmune and inflammatory diseases.
Collapse
|
27
|
Bottom-up de novo design of functional proteins with complex structural features. Nat Chem Biol 2021; 17:492-500. [PMID: 33398169 DOI: 10.1038/s41589-020-00699-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/26/2020] [Indexed: 01/28/2023]
Abstract
De novo protein design has enabled the creation of new protein structures. However, the design of functional proteins has proved challenging, in part due to the difficulty of transplanting structurally complex functional sites to available protein structures. Here, we used a bottom-up approach to build de novo proteins tailored to accommodate structurally complex functional motifs. We applied the bottom-up strategy to successfully design five folds for four distinct binding motifs, including a bifunctionalized protein with two motifs. Crystal structures confirmed the atomic-level accuracy of the computational designs. These de novo proteins were functional as components of biosensors to monitor antibody responses and as orthogonal ligands to modulate synthetic signaling receptors in engineered mammalian cells. Our work demonstrates the potential of bottom-up approaches to accommodate complex structural motifs, which will be essential to endow de novo proteins with elaborate biochemical functions, such as molecular recognition or catalysis.
Collapse
|
28
|
Schoeder C, Schmitz S, Adolf-Bryfogle J, Sevy AM, Finn JA, Sauer MF, Bozhanova NG, Mueller BK, Sangha AK, Bonet J, Sheehan JH, Kuenze G, Marlow B, Smith ST, Woods H, Bender BJ, Martina CE, del Alamo D, Kodali P, Gulsevin A, Schief WR, Correia BE, Crowe JE, Meiler J, Moretti R. Modeling Immunity with Rosetta: Methods for Antibody and Antigen Design. Biochemistry 2021; 60:825-846. [PMID: 33705117 PMCID: PMC7992133 DOI: 10.1021/acs.biochem.0c00912] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/02/2021] [Indexed: 01/16/2023]
Abstract
Structure-based antibody and antigen design has advanced greatly in recent years, due not only to the increasing availability of experimentally determined structures but also to improved computational methods for both prediction and design. Constant improvements in performance within the Rosetta software suite for biomolecular modeling have given rise to a greater breadth of structure prediction, including docking and design application cases for antibody and antigen modeling. Here, we present an overview of current protocols for antibody and antigen modeling using Rosetta and exemplify those by detailed tutorials originally developed for a Rosetta workshop at Vanderbilt University. These tutorials cover antibody structure prediction, docking, and design and antigen design strategies, including the addition of glycans in Rosetta. We expect that these materials will allow novice users to apply Rosetta in their own projects for modeling antibodies and antigens.
Collapse
Affiliation(s)
- Clara
T. Schoeder
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Samuel Schmitz
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Jared Adolf-Bryfogle
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Alexander M. Sevy
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
- Vanderbilt
Vaccine Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232-0417, United States
| | - Jessica A. Finn
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Vanderbilt
Vaccine Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232-0417, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Marion F. Sauer
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
- Vanderbilt
Vaccine Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232-0417, United States
| | - Nina G. Bozhanova
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Benjamin K. Mueller
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Amandeep K. Sangha
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Jaume Bonet
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jonathan H. Sheehan
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Georg Kuenze
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Institute
for Drug Discovery, University Leipzig Medical
School, 04103 Leipzig, Germany
| | - Brennica Marlow
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
| | - Shannon T. Smith
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
| | - Hope Woods
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
| | - Brian J. Bender
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Cristina E. Martina
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Diego del Alamo
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
| | - Pranav Kodali
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Alican Gulsevin
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - William R. Schief
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Bruno E. Correia
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - James E. Crowe
- Vanderbilt
Vaccine Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232-0417, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Pediatrics, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| | - Jens Meiler
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Institute
for Drug Discovery, University Leipzig Medical
School, 04103 Leipzig, Germany
| | - Rocco Moretti
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| |
Collapse
|
29
|
Linsky TW, Vergara R, Codina N, Nelson JW, Walker MJ, Su W, Barnes CO, Hsiang TY, Esser-Nobis K, Yu K, Reneer ZB, Hou YJ, Priya T, Mitsumoto M, Pong A, Lau UY, Mason ML, Chen J, Chen A, Berrocal T, Peng H, Clairmont NS, Castellanos J, Lin YR, Josephson-Day A, Baric RS, Fuller DH, Walkey CD, Ross TM, Swanson R, Bjorkman PJ, Gale M, Blancas-Mejia LM, Yen HL, Silva DA. De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2. Science 2020; 370:1208-1214. [PMID: 33154107 PMCID: PMC7920261 DOI: 10.1126/science.abe0075] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/30/2020] [Indexed: 01/04/2023]
Abstract
We developed a de novo protein design strategy to swiftly engineer decoys for neutralizing pathogens that exploit extracellular host proteins to infect the cell. Our pipeline allowed the design, validation, and optimization of de novo human angiotensin-converting enzyme 2 (hACE2) decoys to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The best monovalent decoy, CTC-445.2, bound with low nanomolar affinity and high specificity to the receptor-binding domain (RBD) of the spike protein. Cryo-electron microscopy (cryo-EM) showed that the design is accurate and can simultaneously bind to all three RBDs of a single spike protein. Because the decoy replicates the spike protein target interface in hACE2, it is intrinsically resilient to viral mutational escape. A bivalent decoy, CTC-445.2d, showed ~10-fold improvement in binding. CTC-445.2d potently neutralized SARS-CoV-2 infection of cells in vitro, and a single intranasal prophylactic dose of decoy protected Syrian hamsters from a subsequent lethal SARS-CoV-2 challenge.
Collapse
Affiliation(s)
| | | | | | | | | | - Wen Su
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tien-Ying Hsiang
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Katharina Esser-Nobis
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Kevin Yu
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | - Z Beau Reneer
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Yixuan J Hou
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Tanu Priya
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | | | - Avery Pong
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | - Uland Y Lau
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | | | - Jerry Chen
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | - Alex Chen
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | | | - Hong Peng
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | | | | | - Yu-Ru Lin
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | | | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | | | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | | | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | | |
Collapse
|
30
|
Quijano-Rubio A, Ulge UY, Walkey CD, Silva DA. The advent of de novo proteins for cancer immunotherapy. Curr Opin Chem Biol 2020; 56:119-128. [PMID: 32371023 DOI: 10.1016/j.cbpa.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022]
Abstract
Engineered proteins are revolutionizing immunotherapy, but advances are still needed to harness their full potential. Traditional protein engineering methods use naturally existing proteins as a starting point, and therefore, are intrinsically limited to small alterations of a protein's natural structure and function. Conversely, computational de novo protein design is free of such limitation, and can produce a virtually infinite number of novel protein sequences, folds, and functions. Recently, we used de novo protein engineering to create Neoleukin-2/15 (Neo-2/15), a protein mimetic of the function of both interleukin-2 (IL-2) and interleukin-15 (IL-15). To our knowledge, Neo-2/15 is the first de novo protein with immunotherapeutic activity, and in murine cancer models, it has demonstrated enhanced therapeutic potency and reduced toxicity compared to IL-2. De novo protein design is already showcasing its tremendous potential for driving the next wave of protein-based therapeutics that are explicitly engineered to treat disease.
Collapse
Affiliation(s)
| | - Umut Y Ulge
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | | | | |
Collapse
|
31
|
Crook ZR, Nairn NW, Olson JM. Miniproteins as a Powerful Modality in Drug Development. Trends Biochem Sci 2020; 45:332-346. [PMID: 32014389 PMCID: PMC7197703 DOI: 10.1016/j.tibs.2019.12.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/06/2019] [Accepted: 12/31/2019] [Indexed: 01/03/2023]
Abstract
Miniproteins are a diverse group of protein scaffolds characterized by small (1-10 kDa) size, stability, and versatility in drug-like roles. Coming largely from native sources, they have been widely adopted into drug development pipelines. While their structures and capabilities are diverse, the approaches to their utilization share more similarities with each other than with more widely used modalities (e.g., antibodies or small molecules). In this review, we highlight recent advances in miniprotein-based approaches to otherwise poorly addressed clinical needs, including structure-based and functional characterization. We also summarize their unique screening strategies and pharmacology considerations. Through a greater understanding of the unique properties that make them attractive for drug design, miniproteins can be effectively utilized against targets that are intractable by other approaches.
Collapse
Affiliation(s)
- Zachary R Crook
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., Room D4-100, Seattle, WA 98109, USA
| | - Natalie W Nairn
- Blaze Bioscience, Inc, 530 Fairview Ave N., Suite 1400, Seattle, WA 98109, USA
| | - James M Olson
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., Room D4-100, Seattle, WA 98109, USA.
| |
Collapse
|
32
|
Giordano-Attianese G, Gainza P, Gray-Gaillard E, Cribioli E, Shui S, Kim S, Kwak MJ, Vollers S, Corria Osorio ADJ, Reichenbach P, Bonet J, Oh BH, Irving M, Coukos G, Correia BE. A computationally designed chimeric antigen receptor provides a small-molecule safety switch for T-cell therapy. Nat Biotechnol 2020; 38:426-432. [PMID: 32015549 DOI: 10.1038/s41587-019-0403-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/23/2019] [Indexed: 01/01/2023]
Abstract
Approaches to increase the activity of chimeric antigen receptor (CAR)-T cells against solid tumors may also increase the risk of toxicity and other side effects. To improve the safety of CAR-T-cell therapy, we computationally designed a chemically disruptable heterodimer (CDH) based on the binding of two human proteins. The CDH self-assembles, can be disrupted by a small-molecule drug and has a high-affinity protein interface with minimal amino acid deviation from wild-type human proteins. We incorporated the CDH into a synthetic heterodimeric CAR, called STOP-CAR, that has an antigen-recognition chain and a CD3ζ- and CD28-containing endodomain signaling chain. We tested STOP-CAR-T cells specific for two antigens in vitro and in vivo and found similar antitumor activity compared to second-generation (2G) CAR-T cells. Timed administration of the small-molecule drug dynamically inactivated the activity of STOP-CAR-T cells. Our work highlights the potential for structure-based design to add controllable elements to synthetic cellular therapies.
Collapse
Affiliation(s)
- Greta Giordano-Attianese
- Ludwig Institute for Cancer Research, University of Lausanne (UNIL), Epalinges, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Pablo Gainza
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Elise Gray-Gaillard
- Ludwig Institute for Cancer Research, University of Lausanne (UNIL), Epalinges, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Elisabetta Cribioli
- Ludwig Institute for Cancer Research, University of Lausanne (UNIL), Epalinges, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Sailan Shui
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Seonghoon Kim
- Department of Biological Sciences, Institute for the Biocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Mi-Jeong Kwak
- Department of Biological Sciences, Institute for the Biocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Sabrina Vollers
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Angel De Jesus Corria Osorio
- Ludwig Institute for Cancer Research, University of Lausanne (UNIL), Epalinges, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Patrick Reichenbach
- Ludwig Institute for Cancer Research, University of Lausanne (UNIL), Epalinges, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Jaume Bonet
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Byung-Ha Oh
- Department of Biological Sciences, Institute for the Biocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Melita Irving
- Ludwig Institute for Cancer Research, University of Lausanne (UNIL), Epalinges, Switzerland. .,Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne (UNIL), Epalinges, Switzerland. .,Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
| | - Bruno E Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. .,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
33
|
Rosetta FunFolDes - A general framework for the computational design of functional proteins. PLoS Comput Biol 2018; 14:e1006623. [PMID: 30452434 PMCID: PMC6277116 DOI: 10.1371/journal.pcbi.1006623] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/03/2018] [Accepted: 11/06/2018] [Indexed: 01/11/2023] Open
Abstract
The robust computational design of functional proteins has the potential to deeply impact translational research and broaden our understanding of the determinants of protein function and stability. The low success rates of computational design protocols and the extensive in vitro optimization often required, highlight the challenge of designing proteins that perform essential biochemical functions, such as binding or catalysis. One of the most simplistic approaches for the design of function is to adopt functional motifs in naturally occurring proteins and transplant them to computationally designed proteins. The structural complexity of the functional motif largely determines how readily one can find host protein structures that are "designable", meaning that are likely to present the functional motif in the desired conformation. One promising route to enhance the "designability" of protein structures is to allow backbone flexibility. Here, we present a computational approach that couples conformational folding with sequence design to embed functional motifs into heterologous proteins-Rosetta Functional Folding and Design (FunFolDes). We performed extensive computational benchmarks, where we observed that the enforcement of functional requirements resulted in designs distant from the global energetic minimum of the protein. An observation consistent with several experimental studies that have revealed function-stability tradeoffs. To test the design capabilities of FunFolDes we transplanted two viral epitopes into distant structural templates including one de novo "functionless" fold, which represent two typical challenges where the designability problem arises. The designed proteins were experimentally characterized showing high binding affinities to monoclonal antibodies, making them valuable candidates for vaccine design endeavors. Overall, we present an accessible strategy to repurpose old protein folds for new functions. This may lead to important improvements on the computational design of proteins, with structurally complex functional sites, that can perform elaborate biochemical functions related to binding and catalysis.
Collapse
|
34
|
Marcos E, Silva D. Essentials of
de novo
protein design: Methods and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1374] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Enrique Marcos
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Daniel‐Adriano Silva
- Department of BiochemistryUniversity of WashingtonSeattleWashington
- Institute for Protein DesignUniversity of WashingtonSeattleWashington
| |
Collapse
|
35
|
Chevalier A, Silva DA, Rocklin GJ, Hicks DR, Vergara R, Murapa P, Bernard SM, Zhang L, Lam KH, Yao G, Bahl CD, Miyashita SI, Goreshnik I, Fuller JT, Koday MT, Jenkins CM, Colvin T, Carter L, Bohn A, Bryan CM, Fernández-Velasco DA, Stewart L, Dong M, Huang X, Jin R, Wilson IA, Fuller DH, Baker D. Massively parallel de novo protein design for targeted therapeutics. Nature 2017; 550:74-79. [PMID: 28953867 PMCID: PMC5802399 DOI: 10.1038/nature23912] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/17/2017] [Indexed: 12/24/2022]
Abstract
De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.
Collapse
Affiliation(s)
- Aaron Chevalier
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Daniel-Adriano Silva
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Gabriel J Rocklin
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Derrick R Hicks
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | - Renan Vergara
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
- Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, México City 04510, Mexico
| | - Patience Murapa
- Department of Microbiology, University of Washington, Seattle, Washington 98109, USA
| | - Steffen M Bernard
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | - Guorui Yao
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | - Christopher D Bahl
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Shin-Ichiro Miyashita
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - James T Fuller
- Department of Microbiology, University of Washington, Seattle, Washington 98109, USA
| | - Merika T Koday
- Department of Microbiology, University of Washington, Seattle, Washington 98109, USA
- Virvio Inc., Seattle, Washington 98195, USA
| | - Cody M Jenkins
- Department of Microbiology, University of Washington, Seattle, Washington 98109, USA
| | - Tom Colvin
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Alan Bohn
- Department of Microbiology, University of Washington, Seattle, Washington 98109, USA
| | - Cassie M Bryan
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - D Alejandro Fernández-Velasco
- Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, México City 04510, Mexico
| | - Lance Stewart
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xuhui Huang
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, Washington 98109, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
36
|
Ge Y, Kier BL, Andersen NH, Voelz VA. Computational and Experimental Evaluation of Designed β-Cap Hairpins Using Molecular Simulations and Kinetic Network Models. J Chem Inf Model 2017; 57:1609-1620. [PMID: 28614661 DOI: 10.1021/acs.jcim.7b00132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular simulation has been used to model the detailed folding properties of peptides, yet prospective computational peptide design by such approaches remains challenging and nontrivial. To test the accuracy of simulation-based hairpin design, we characterized the folding properties of a series of so-called β-cap hairpin peptides designed to mimic a conserved hairpin of LapD, a bacterial intracellular signaling protein, both experimentally by NMR spectroscopy and computationally by implicit-solvent replica-exchange molecular dynamics using three different AMBER force fields (ff96, ff99sb-ildn, and ff99sb-ildn-NMR). A unique challenge presented by these designs is the presence of both a terminal Trp-Trp capping motif and a conserved GWxQ motif in the hairpin turn required for binding to LapG. Consistent with previous studies, we found AMBER ff96 to be the most accurate when used with the OBC GBSA implicit solvent model, despite its known bias toward β-sheet conformations when used in explicit-solvent simulations. To gain microscopic insight into the folding landscape of the hairpin designs, we additionally performed parallel simulations on the Folding@home distributed computing platform using AMBER ff99sb-ildn-NMR with TIP3P explicit solvent. Markov state models (MSMs) built from trajectory data reveal a number of non-native interactions between Trp and other amino acid side chains, creating potential problems in achieving well-folded hairpin structures in solution.
Collapse
Affiliation(s)
- Yunhui Ge
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Brandon L Kier
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Niels H Andersen
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Vincent A Voelz
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
37
|
Berger S, Procko E, Margineantu D, Lee EF, Shen BW, Zelter A, Silva DA, Chawla K, Herold MJ, Garnier JM, Johnson R, MacCoss MJ, Lessene G, Davis TN, Stayton PS, Stoddard BL, Fairlie WD, Hockenbery DM, Baker D. Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer. eLife 2016; 5. [PMID: 27805565 PMCID: PMC5127641 DOI: 10.7554/elife.20352] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/01/2016] [Indexed: 01/07/2023] Open
Abstract
Many cancers overexpress one or more of the six human pro-survival BCL2 family proteins to evade apoptosis. To determine which BCL2 protein or proteins block apoptosis in different cancers, we computationally designed three-helix bundle protein inhibitors specific for each BCL2 pro-survival protein. Following in vitro optimization, each inhibitor binds its target with high picomolar to low nanomolar affinity and at least 300-fold specificity. Expression of the designed inhibitors in human cancer cell lines revealed unique dependencies on BCL2 proteins for survival which could not be inferred from other BCL2 profiling methods. Our results show that designed inhibitors can be generated for each member of a closely-knit protein family to probe the importance of specific protein-protein interactions in complex biological processes.
Collapse
Affiliation(s)
- Stephanie Berger
- Department of Bioengineering, University of Washington, Seattle, United States
| | - Erik Procko
- Department of Biochemistry, University of Washington, Seattle, United States.,Department of Biochemistry, University of Illinois, Urbana, United States
| | - Daciana Margineantu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Erinna F Lee
- Department of Chemistry and Physics, LaTrobe Institute for Molecular Science, Melbourne, Australia.,Olivia Newton-John Cancer Research Institute, Olivia Newton-John Cancer and Wellness Centre, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Betty W Shen
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Alex Zelter
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Daniel-Adriano Silva
- Department of Biochemistry, University of Washington, Seattle, United States.,Institute for Protein Design, University of Washington, Seattle, United States
| | - Kusum Chawla
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Jean-Marc Garnier
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Patrick S Stayton
- Department of Bioengineering, University of Washington, Seattle, United States
| | - Barry L Stoddard
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - W Douglas Fairlie
- Department of Chemistry and Physics, LaTrobe Institute for Molecular Science, Melbourne, Australia.,Olivia Newton-John Cancer Research Institute, Olivia Newton-John Cancer and Wellness Centre, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - David M Hockenbery
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, United States.,Institute for Protein Design, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| |
Collapse
|