1
|
Baric TJ, Reneer ZB. Animal Models, Therapeutics, and Vaccine Approaches to Emerging and Re-Emerging Flaviviruses. Viruses 2024; 17:1. [PMID: 39861790 PMCID: PMC11769264 DOI: 10.3390/v17010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Flaviviruses are arthropod-borne viruses primarily transmitted through the mosquito Aedes aegypti or Culex genus of mosquitos. These viruses are predominantly found in tropical and subtropical regions of the world with their geographical spread predicted to increase as global temperatures continue to rise. These viruses cause a variety of diseases in humans with the most prevalent being caused by dengue, resulting in hemorrhagic fever and associated sequala. Current approaches for therapeutic control of flavivirus infections are limited, and despite recent advances, there are no approved drugs. Vaccines, available for a few circulating flaviviruses, still have limited potential for controlling contemporary and future outbreaks. Mouse models provide us with a valuable tool to test the effectiveness of drugs and vaccines, yet for many flaviviruses, well-established mouse models are lacking. In this review, we highlight the current state of flavivirus vaccines and therapeutics, as well as our current understanding of mouse models for various flaviviruses.
Collapse
Affiliation(s)
| | - Z. Beau Reneer
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3500, USA;
| |
Collapse
|
2
|
Cagigi A, Tinnirello R, Iannolo G, Douradinha B. Orthoflavivirus zikaense (Zika) vaccines: What are we waiting for? Int J Antimicrob Agents 2024; 64:107367. [PMID: 39490448 DOI: 10.1016/j.ijantimicag.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Affiliation(s)
- Alberto Cagigi
- International Vaccine Institute (IVI) Europe Regional Office, Solna, Sweden
| | | | | | - Bruno Douradinha
- Vaccine Technology Subgroup, Emerging Pathogens Group, Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Dabizzi S, Maggi M, Torcia MG. Update on known and emergent viruses affecting human male genital tract and fertility. Basic Clin Androl 2024; 34:6. [PMID: 38486154 PMCID: PMC10941432 DOI: 10.1186/s12610-024-00222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Many viruses infect the male genital tract with harmful consequences at individual and population levels. In fact, viral infections may induce damage to different organs of the male genital tract (MGT), therefore compromising male fertility. The oxidative stress, induced during viral-mediated local and systemic inflammation, is responsible for testicular damage, compromising germinal and endocrine cell functions. A reduction in sperm count, motility, number of normal sperm and an increase in DNA fragmentation are all common findings in the course of viral infections that, however, generally regress after infection clearance. In some cases, however, viral shedding persists for a long time leading to unexpected sexual transmission, even after the disappearance of the viral load from the blood.The recent outbreak of Zika and Ebola Virus evidenced how the MGT could represent a reservoir of dangerous emergent viruses and how new modalities of surveillance of survivors are strongly needed to limit viral transmission among the general population.Here we reviewed the evidence concerning the presence of relevant viruses, including emergent and re-emergent, on the male genital tract, their route of entry, their adverse effects on male fertility and the pattern of viral shedding in the semen.We also described laboratory strategies to reduce the risk of horizontal or vertical cross-infection in serodiscordant couples undergoing assisted reproductive technologies.
Collapse
Affiliation(s)
- Sara Dabizzi
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Center for the Prevention, Diagnosis and Treatment of Infertility, Azienda Ospedaliera Universitaria Careggi Hospital, Florence, Italy.
| | - Mario Maggi
- Endocrinology Unit, Azienda Ospedaliera Universitaria Careggi Hospital, Florence, Italy.
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale G. Pieraccini 6, Florence, Italy.
| | - Maria Gabriella Torcia
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Center for the Prevention, Diagnosis and Treatment of Infertility, Azienda Ospedaliera Universitaria Careggi Hospital, Florence, Italy
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| |
Collapse
|
4
|
Kuhn RJ, Barrett ADT, Desilva AM, Harris E, Kramer LD, Montgomery RR, Pierson TC, Sette A, Diamond MS. A Prototype-Pathogen Approach for the Development of Flavivirus Countermeasures. J Infect Dis 2023; 228:S398-S413. [PMID: 37849402 PMCID: PMC10582523 DOI: 10.1093/infdis/jiad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/28/2023] [Indexed: 10/19/2023] Open
Abstract
Flaviviruses are a genus within the Flaviviridae family of positive-strand RNA viruses and are transmitted principally through mosquito and tick vectors. These viruses are responsible for hundreds of millions of human infections worldwide per year that result in a range of illnesses from self-limiting febrile syndromes to severe neurotropic and viscerotropic diseases and, in some cases, death. A vaccine against the prototype flavivirus, yellow fever virus, has been deployed for 85 years and is highly effective. While vaccines against some medically important flaviviruses are available, others have proven challenging to develop. The emergence and spread of flaviviruses, including dengue virus and Zika virus, demonstrate their pandemic potential. This review highlights the gaps in knowledge that need to be addressed to allow for the rapid development of vaccines against emerging flaviviruses in the future.
Collapse
Affiliation(s)
- Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Aravinda M Desilva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Laura D Kramer
- School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Theodore C Pierson
- Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California in San Diego, San Diego, California, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
5
|
Mingo-Casas P, Blázquez AB, Gómez de Cedrón M, San-Félix A, Molina S, Escribano-Romero E, Calvo-Pinilla E, Jiménez de Oya N, Ramírez de Molina A, Saiz JC, Pérez-Pérez MJ, Martín-Acebes MA. Glycolytic shift during West Nile virus infection provides new therapeutic opportunities. J Neuroinflammation 2023; 20:217. [PMID: 37759218 PMCID: PMC10537838 DOI: 10.1186/s12974-023-02899-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Viral rewiring of host bioenergetics and immunometabolism may provide novel targets for therapeutic interventions against viral infections. Here, we have explored the effect on bioenergetics during the infection with the mosquito-borne flavivirus West Nile virus (WNV), a medically relevant neurotropic pathogen causing outbreaks of meningitis and encephalitis worldwide. RESULTS A systematic literature search and meta-analysis pointed to a misbalance of glucose homeostasis in the central nervous system of WNV patients. Real-time bioenergetic analyses confirmed upregulation of aerobic glycolysis and a reduction of mitochondrial oxidative phosphorylation during viral replication in cultured cells. Transcriptomics analyses in neural tissues from experimentally infected mice unveiled a glycolytic shift including the upregulation of hexokinases 2 and 3 (Hk2 and Hk3) and pyruvate dehydrogenase kinase 4 (Pdk4). Treatment of infected mice with the Hk inhibitor, 2-deoxy-D-glucose, or the Pdk4 inhibitor, dichloroacetate, alleviated WNV-induced neuroinflammation. CONCLUSIONS These results highlight the importance of host energetic metabolism and specifically glycolysis in WNV infection in vivo. This study provides proof of concept for the druggability of the glycolytic pathway for the future development of therapies to combat WNV pathology.
Collapse
Affiliation(s)
- Patricia Mingo-Casas
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain
| | - Ana-Belén Blázquez
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain
| | - Marta Gómez de Cedrón
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, 28049, Madrid, Spain
| | - Ana San-Félix
- Instituto de Quimica Medica (IQM), CSIC, 28006, Madrid, Spain
| | - Susana Molina
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, 28049, Madrid, Spain
| | - Estela Escribano-Romero
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain
| | - Eva Calvo-Pinilla
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain
| | - Nereida Jiménez de Oya
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, 28049, Madrid, Spain
| | - Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain
| | | | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain.
| |
Collapse
|
6
|
Mingo-Casas P, Sanchez-Céspedes J, Blázquez AB, Casas J, Balsera-Manzanero M, Herrero L, Vázquez A, Pachón J, Aguilar-Guisado M, Cisneros JM, Saiz JC, Martín-Acebes MA. Lipid signatures of West Nile virus infection unveil alterations of sphingolipid metabolism providing novel biomarkers. Emerg Microbes Infect 2023:2231556. [PMID: 37377355 DOI: 10.1080/22221751.2023.2231556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
West Nile virus (WNV) is a neurotropic flavivirus transmitted by the bites of infected mosquitoes. Severe forms of West Nile disease (WND) can curse with meningitis, encephalitis or acute flaccid paralysis. A better understanding of the physiopathology associated with disease progression is mandatory to find biomarkers and effective therapies. In this scenario, blood derivatives (plasma and serum) constitute the more commonly used biofluids due to its ease of collection and high value for diagnostic purposes. Therefore, the potential impact of this virus in the circulating lipidome was addressed combining the analysis of samples from experimentally infected mice and naturally WND patients. Our results unveil dynamic alterations in the lipidome that define specific metabolic fingerprints of different infection stages. Concomitant with neuroinvasion in mice, the lipid landscape was dominated by a metabolic reprograming that resulted in significant elevations of circulating sphingolipids (ceramides, dihydroceramides and dihydrosphingomyelins), phosphatidylethanolamines and triacylglycerols. Remarkably, patients suffering from WND also displayed an elevation of ceramides, dihydroceramides, lactosylceramides and monoacylglycerols in their sera. The dysregulation of sphingolipid metabolism by WNV may provide new therapeutic opportunities and supports the potential of certain lipids as novel peripheral biomarkers of WND progression.
Collapse
Affiliation(s)
- Patricia Mingo-Casas
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Javier Sanchez-Céspedes
- Department of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana-Belén Blázquez
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Josefina Casas
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Balsera-Manzanero
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Lura Herrero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Vázquez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Department of Medicine, School of Medicine, University of Seville, Seville, Spain
| | - Manuela Aguilar-Guisado
- Department of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José Miguel Cisneros
- Department of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| |
Collapse
|
7
|
Jurisic L, Malatesta D, Zaccaria G, Di Teodoro G, Bonfini B, Valleriani F, Teodori L, Bencivenga F, Leone A, Ripà P, D'Innocenzo V, Rossi E, Lorusso A. Immunization with Usutu virus and with a chimeric West Nile virus (WNV) harboring Usutu-E protein protects immunocompetent adult mice against lethal challenges with different WNV lineage 1 and 2 strains. Vet Microbiol 2023; 277:109636. [PMID: 36580873 DOI: 10.1016/j.vetmic.2022.109636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
West Nile virus (WNV) and Usutu virus (USUV), two antigenically related flaviviruses co-circulating in Europe, can cause severe neurological disease in animals and humans. The immune response against USUV and WNV and their immunopathogenesis are still poorly investigated. Here we present results upon sequential infections of adult immunocompetent CD-1 and BALB/c mice primed with two different doses (high dose, HD or low dose, LD) of an USUV isolate and challenged with HD or LD of three different WNV isolates. CD-1 and BALB/c LD USUV-primed mice, regardless of the dose, are largely protected from lethal WNV challenges despite showing no detectable neutralizing antibodies. Furthermore, mice immunized with a chimeric virus harboring the E protein of USUV within the WNV backbone (WNVE-USUV) are protected against a lethal challenge with WNV. We believe these findings could contribute to understanding the dynamics of the interaction during sequential infection of these two flaviviruses.
Collapse
Affiliation(s)
- Lucija Jurisic
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Daniela Malatesta
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Guendalina Zaccaria
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Barbara Bonfini
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Fabrizia Valleriani
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | | | - Alessandra Leone
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Paola Ripà
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Vincenzo D'Innocenzo
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy.
| |
Collapse
|
8
|
Animal Models of Zika Virus Infection during Pregnancy. Viruses 2018; 10:v10110598. [PMID: 30384472 PMCID: PMC6266710 DOI: 10.3390/v10110598] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) emerged suddenly in the Americas in 2015 and was associated with a widespread outbreak of microcephaly and other severe congenital abnormalities in infants born to mothers infected during pregnancy. Vertical transmission of ZIKV in humans was confirmed when viral RNA was detected in fetal and placental tissues, and this outcome has been recapitulated experimentally in animals. Unlike other flaviviruses, ZIKV is both arthropod- and sexually-transmitted, and has a broad tissue tropism in humans, including multiple tissues of the reproductive tract. The threats posed by ZIKV have prompted the development of multiple in vivo models to better understand the pathogenesis of ZIKV, particularly during pregnancy. Here, we review the progress on animal models of ZIKV infection during pregnancy. These studies have generated a foundation of insights into the biology of ZIKV, and provide a means for evaluating vaccines and therapeutics.
Collapse
|