1
|
Yu H, Wang L, Liu X, Zheng J, Xiang H, Zheng Y, Lv D, Yang J, Zhang Y, Qiu J, Wang D. Mechanistic insights into the multitarget synergistic efficacy of farrerol and β-lactam antibiotics in combating methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2025; 69:e0155124. [PMID: 40019240 PMCID: PMC11963547 DOI: 10.1128/aac.01551-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a principal causative agent of infections worldwide, urgently requires innovative interventions to counter its increasing risk. The present study revealed the profound impact of farrerol (FA), a robust bioactive agent, on the virulence and resistance mechanisms of MRSA. Our in-depth investigation revealed that FA significantly mitigated the β-lactam resistance of MRSA USA300, an achievement attributed to its precise interference with the BlaZ and Pbp2a protein. Additionally, FA indirectly diminishes the oligomerization of PBP2a by disrupting pigment synthesis, further contributing to its efficacy. In addition, FA extends its functional footprint beyond resistance modulation, exhibiting substantial antivirulence efficacy through selective inhibition of the accessory gene regulator (Agr) system, thereby significantly curbing MRSA pathogenicity in A549 cell and murine models. This study comprehensively explored the multiple impacts of FA on MRSA, shedding light on its versatile role as a BlaZ suppressor, pigment synthesis regulator, and AgrA activity modulator. These intricate findings firmly position FA as a compelling therapeutic candidate for addressing MRSA infections in the clinic.
Collapse
Affiliation(s)
- Hangqian Yu
- College of Animal Science, Jilin University, Changchun, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xin Liu
- College of Animal Science, Jilin University, Changchun, China
| | - Jianze Zheng
- College of Animal Science, Jilin University, Changchun, China
| | - Hua Xiang
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Yanyang Zheng
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Dongmei Lv
- College of Animal Science, Jilin University, Changchun, China
| | - Jingjing Yang
- College of Animal Science, Jilin University, Changchun, China
| | - Yuxin Zhang
- College of Animal Science, Jilin University, Changchun, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
2
|
Sionov RV, Banerjee S, Bogomolov S, Smoum R, Mechoulam R, Steinberg D. Targeting the Achilles' Heel of Multidrug-Resistant Staphylococcus aureus by the Endocannabinoid Anandamide. Int J Mol Sci 2022; 23:7798. [PMID: 35887146 PMCID: PMC9319909 DOI: 10.3390/ijms23147798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Antibiotic-resistant Staphylococcus aureus is a major health issue that requires new therapeutic approaches. Accumulating data suggest that it is possible to sensitize these bacteria to antibiotics by combining them with inhibitors targeting efflux pumps, the low-affinity penicillin-binding protein PBP2a, cell wall teichoic acid, or the cell division protein FtsZ. We have previously shown that the endocannabinoid Anandamide (N-arachidonoylethanolamine; AEA) could sensitize drug-resistant S. aureus to a variety of antibiotics, among others, through growth arrest and inhibition of drug efflux. Here, we looked at biochemical alterations caused by AEA. We observed that AEA increased the intracellular drug concentration of a fluorescent penicillin and augmented its binding to membrane proteins with concomitant altered membrane distribution of these proteins. AEA also prevented the secretion of exopolysaccharides (EPS) and reduced the cell wall teichoic acid content, both processes known to require transporter proteins. Notably, AEA was found to inhibit membrane ATPase activity that is necessary for transmembrane transport. AEA did not affect the membrane GTPase activity, and the GTPase cell division protein FtsZ formed the Z-ring of the divisome normally in the presence of AEA. Rather, AEA caused a reduction in murein hydrolase activities involved in daughter cell separation. Altogether, this study shows that AEA affects several biochemical processes that culminate in the sensitization of the drug-resistant bacteria to antibiotics.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| | - Shreya Banerjee
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| | - Sergei Bogomolov
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| | - Reem Smoum
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (R.S.); (R.M.)
| | - Raphael Mechoulam
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (R.S.); (R.M.)
| | - Doron Steinberg
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| |
Collapse
|
3
|
Exploring the Role of Staphylococcus aureus in Inflammatory Diseases. Toxins (Basel) 2022; 14:toxins14070464. [PMID: 35878202 PMCID: PMC9318596 DOI: 10.3390/toxins14070464] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is a very common Gram-positive bacterium, and S. aureus infections play an extremely important role in a variety of diseases. This paper describes the types of virulence factors involved, the inflammatory cells activated, the process of host cell death, and the associated diseases caused by S. aureus. S. aureus can secrete a variety of enterotoxins and other toxins to trigger inflammatory responses and activate inflammatory cells, such as keratinocytes, helper T cells, innate lymphoid cells, macrophages, dendritic cells, mast cells, neutrophils, eosinophils, and basophils. Activated inflammatory cells can express various cytokines and induce an inflammatory response. S. aureus can also induce host cell death through pyroptosis, apoptosis, necroptosis, autophagy, etc. This article discusses S. aureus and MRSA (methicillin-resistant S. aureus) in atopic dermatitis, psoriasis, pulmonary cystic fibrosis, allergic asthma, food poisoning, sarcoidosis, multiple sclerosis, and osteomyelitis. Summarizing the pathogenic mechanism of Staphylococcus aureus provides a basis for the targeted treatment of Staphylococcus aureus infection.
Collapse
|
4
|
Xiong M, Chen L, Zhao J, Xiao X, Zhou J, Fang F, Li X, Pan Y, Li Y. Genomic Analysis of the Unusual Staphylococcus aureus ST630 Isolates Harboring WTA Glycosyltransferase Genes tarM and tagN. Microbiol Spectr 2022; 10:e0150121. [PMID: 35170993 PMCID: PMC8849055 DOI: 10.1128/spectrum.01501-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/26/2022] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus aureus (S. aureus) can cause a broad spectrum of diseases ranging from skin infections to life-threatening diseases in both community and hospital settings. The surface-exposed wall teichoic acid (WTA) has a strong impact on host interaction, pathogenicity, horizontal gene transfer, and biofilm formation in S. aureus. The unusual S. aureus ST630 strains containing both ribitol-phosphate (RboP) WTA glycosyltransferase gene tarM and glycerol-phosphate (GroP) WTA glycosyltransferase gene tagN have been found recently. Native PAGE analysis showed that the WTA of tagN, tarM-encoding ST630 strains migrated slower than that of non-tagN-encoding ST630 strains, indicating the differences in WTA structure. Some mobile genetic elements (MGEs) such as the unique GroP-WTA biosynthetic gene cluster (SaGroWI), SCCmec element, and prophages that probably originated from the CoNS were identified in tagN, tarM-encoding ST630 strains. The SaGroWI element was first defined in S. aureus ST395 strain, which was refractory to exchange MGEs with typical RboP-WTA expressing S. aureus but could undergo horizontal gene transfer events with other species and genera via the specific bacteriophage Φ187. Overall, our data indicated that this rare ST630 was prone to acquire DNA from CoNS and might serve as a novel hub for the exchange of MGEs between CoNS and S. aureus. IMPORTANCE The structure of wall-anchored glycopolymers wall teichoic acid (WTA) produced by most Gram-positive bacteria is highly variable. While most dominant Staphylococcus aureus lineages produce poly-ribitol-phosphate (RboP) WTA, the tagN, tarM-encoding ST630 lineage probably has a poly-glycerol-phosphate (GroP) WTA backbone like coagulase-negative staphylococci (CoNS). There is growing evidence that staphylococcal horizontal gene transfer depends largely on transducing helper phages via WTA as the receptor. The structural difference of WTA greatly affects the transfer of mobile genetic elements among various bacteria. With the growing advances in sequencing and analysis technologies, genetic analysis has revolutionized research activities in the field of the important pathogen S. aureus. Here, we analyzed the molecular characteristics of ST630 and found an evolutionary link between ST630 and CoNS. Elucidating the genetic information of ST630 lineage will contribute to understanding the emergence and diversification of new pathogenic strains in S. aureus.
Collapse
Affiliation(s)
- Mengyuan Xiong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liangjun Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jin Zhao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao Xiao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junying Zhou
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fang Fang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinwei Li
- Medical School of Zhengzhou University, Zhengzhou, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China
| |
Collapse
|
5
|
Pan T, Guan J, Li Y, Sun B. LcpB Is a Pyrophosphatase Responsible for Wall Teichoic Acid Synthesis and Virulence in Staphylococcus aureus Clinical Isolate ST59. Front Microbiol 2021; 12:788500. [PMID: 34975809 PMCID: PMC8716876 DOI: 10.3389/fmicb.2021.788500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
The community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) causes severe pandemics primarily consisting of skin and soft tissue infections. However, the underlying pathomechanisms of the bacterium are yet to fully understood. The present study identifies LcpB protein, which belongs to the LytR-A-Psr (LCP) family, is crucial for cell wall synthesis and virulence in S. aureus. The findings revealed that LcpB is a pyrophosphatase responsible for wall teichoic acid synthesis. The results also showed that LcpB regulates enzyme activity through specific key arginine sites in its LCP domain. Furthermore, knockout of lcpB in the CA-MRSA isolate ST59 resulted in enhanced hemolytic activity, enlarged of abscesses, and increased leukocyte infiltration. Meanwhile, we also found that LcpB regulates virulence in agr-independent manner and the key sites for pyrophosphatase of LcpB play critical roles in regulating the virulence. In addition, the results showed that the role of LcpB was different between methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA). This study therefore highlights the dual role of LcpB in cell wall synthesis and regulation of virulence. These insights on the underlying molecular mechanisms can thus guide the development of novel anti-infective strategies.
Collapse
Affiliation(s)
- Ting Pan
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing Guan
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yujie Li
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
6
|
Semenov AV. Peptidoglycan of Bacterial Cell Wall Affects Competitive Properties of Microorganisms. Bull Exp Biol Med 2021; 172:164-168. [PMID: 34855091 DOI: 10.1007/s10517-021-05356-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 10/19/2022]
Abstract
We studied the effect of bacterial wall peptidoglycan of 7 bacterial species on the competitive properties of human-associated microorganisms. Addition of peptidoglycan to the culture medium did not change the growth characteristics of the test cultures; however, an increase in the antagonism and hydrophobicity of Bifidobacterium sp. and Enterococcus sp. was observed, while the effect on enterobacteria was predominantly indifferent or inhibitory. The effect did not depend much on the source of peptidoglycan and was equally manifested on both indigenous and probiotic strains. The observed new property of peptidoglycan indicates its participation in the formation and functioning of microbiota. The obtained data on the regulation of the properties of microorganisms provide new possibilities for the correction and maintenance of host homeostasis through host-associated microbiota.
Collapse
Affiliation(s)
- A V Semenov
- Institute of Cellular and Intracellular Symbiosis, Ural Division of the Russian Academy of Sciences, Orenburg, Russia.
| |
Collapse
|
7
|
Hort M, Bertsche U, Nozinovic S, Dietrich A, Schrötter AS, Mildenberger L, Axtmann K, Berscheid A, Bierbaum G. The Role of β-Glycosylated Wall Teichoic Acids in the Reduction of Vancomycin Susceptibility in Vancomycin-Intermediate Staphylococcus aureus. Microbiol Spectr 2021; 9:e0052821. [PMID: 34668723 PMCID: PMC8528128 DOI: 10.1128/spectrum.00528-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/12/2021] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that causes a wide range of infections. Due to the rapid evolution of antibiotic resistance that leads to treatment failure, it is important to understand the underlying mechanisms. Here, the cell wall structures of several laboratory vancomycin-intermediate S. aureus (VISA) strains were analyzed. Among the VISA strains were S. aureus VC40, which accumulated 79 mutations, including most importantly 2 exchanges in the histidine-kinase VraS, and developed full resistance against vancomycin (MIC, 64 μg/ml); a revertant S. aureus VC40R, which has an additional mutation in vraR (MIC, 4 μg/ml); and S. aureus VraS(VC40), in which the 2 vraS mutations were reconstituted into a susceptible background (MIC, 4 μg/ml). A ultraperformance liquid chromatography (UPLC) analysis showed that S. aureus VC40 had a significantly decreased cross-linking of the peptidoglycan. Both S. aureus VC40 and S. aureus VraS(VC40) displayed reduced autolysis and an altered autolysin profile in a zymogram. Most striking was the significant increase in d-alanine and N-acetyl-d-glucosamine (GlcNAc) substitution of the wall teichoic acids (WTAs) in S. aureus VC40. Nuclear magnetic resonance (NMR) analysis revealed that this strain had mostly β-glycosylated WTAs in contrast to the other strains, which showed only the α-glycosylation peak. Salt stress induced the incorporation of β-GlcNAc anomers and drastically increased the vancomycin MIC for S. aureus VC40R. In addition, β-glycosylated WTAs decreased the binding affinity of AtlA, the major autolysin of S. aureus, to the cell wall, compared with α-glycosylated WTAs. In conclusion, there is a novel connection between wall teichoic acids, autolysis, and vancomycin susceptibility in S. aureus. IMPORTANCE Infections with methicillin-resistant Staphylococcus aureus are commonly treated with vancomycin. This antibiotic inhibits cell wall biosynthesis by binding to the cell wall building block lipid II. We set out to characterize the mechanisms leading to decreased vancomycin susceptibility in a laboratory-generated strain, S. aureus VC40. This strain has an altered cell wall architecture with a thick cell wall with low cross-linking, which provides decoy binding sites for vancomycin. The low cross-linking, necessary for this resistance mechanism, decreases the stability of the cell wall against lytic enzymes, which separate the daughter cells. Protection against these enzymes is provided by another cell wall polymer, the teichoic acids, which contain an unusually high substitution with sugars in the β-conformation. By experimentally increasing the proportion of β-N-acetyl-d-glucosamine in a closely related isolate through the induction of salt stress, we could show that the β-conformation of the sugars plays a vital role in the resistance of S. aureus VC40.
Collapse
Affiliation(s)
- Michael Hort
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Ute Bertsche
- Department of Infection Biology, University of Tuebingen, Tuebingen, Germany
| | | | - Alina Dietrich
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Anne Sophie Schrötter
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Laura Mildenberger
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Katharina Axtmann
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Anne Berscheid
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Zhang K, Raju C, Zhong W, Pethe K, Gründling A, Chan-Park MB. Cationic Glycosylated Block Co-β-peptide Acts on the Cell Wall of Gram-Positive Bacteria as Anti-biofilm Agents. ACS APPLIED BIO MATERIALS 2021; 4:3749-3761. [PMID: 35006805 DOI: 10.1021/acsabm.0c01241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antimicrobial resistance is a global threat. In addition to the emergence of resistance to last resort drugs, bacteria escape antibiotics killing by forming complex biofilms. Strategies to tackle antibiotic resistance as well as biofilms are urgently needed. Wall teichoic acid (WTA), a generic anionic glycopolymer present on the cell surface of many Gram-positive bacteria, has been proposed as a possible therapeutic target, but its druggability remains to be demonstrated. Here we report a cationic glycosylated block co-β-peptide that binds to WTA. By doing so, the co-β-peptide not only inhibits biofilm formation, it also disperses preformed biofilms in several Gram-positive bacteria and resensitizes methicillin-resistant Staphylococcus aureus to oxacillin. The cationic block of the co-β-peptide physically interacts with the anionic WTA within the cell envelope, whereas the glycosylated block forms a nonfouling corona around the bacteria. This reduces physical interaction between bacteria-substrate and bacteria-biofilm matrix, leading to biofilm inhibition and dispersal. The WTA-targeting co-β-peptide is a promising lead for the future development of broad-spectrum anti-biofilm strategies against Gram-positive bacteria.
Collapse
Affiliation(s)
- Kaixi Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
| | - Cheerlavancha Raju
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
| | - Wenbin Zhong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
| | - Kevin Pethe
- Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.,Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Angelika Gründling
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, Flowers Building London, London SW7 2AZ, United Kingdom
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.,Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921
| |
Collapse
|
9
|
Vaz F, Kounatidis I, Covas G, Parton RM, Harkiolaki M, Davis I, Filipe SR, Ligoxygakis P. Accessibility to Peptidoglycan Is Important for the Recognition of Gram-Positive Bacteria in Drosophila. Cell Rep 2020; 27:2480-2492.e6. [PMID: 31116990 PMCID: PMC6533200 DOI: 10.1016/j.celrep.2019.04.103] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 03/19/2019] [Accepted: 04/23/2019] [Indexed: 11/16/2022] Open
Abstract
In Drosophila, it is thought that peptidoglycan recognition proteins (PGRPs) SA and LC structurally discriminate between bacterial peptidoglycans with lysine (Lys) or diaminopimelic (DAP) acid, respectively, thus inducing differential antimicrobial transcription response. Here, we find that accessibility to PG at the cell wall plays a central role in immunity to infection. When wall teichoic acids (WTAs) are genetically removed from S. aureus (Lys type) and Bacillus subtilis (DAP type), thus increasing accessibility, the binding of both PGRPs to either bacterium is increased. PGRP-SA and -LC double mutant flies are more susceptible to infection with both WTA-less bacteria. In addition, WTA-less bacteria grow better in PGRP-SA/-LC double mutant flies. Finally, infection with WTA-less bacteria abolishes any differential activation of downstream antimicrobial transcription. Our results indicate that accessibility to cell wall PG is a major factor in PGRP-mediated immunity and may be the cause for discrimination between classes of pathogens.
Collapse
Affiliation(s)
- Filipa Vaz
- Department of Biochemistry, University of Oxford, South Parks Rd., OX1 3QU Oxford, UK; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Ilias Kounatidis
- Department of Biochemistry, University of Oxford, South Parks Rd., OX1 3QU Oxford, UK; Diamond Light Source, Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
| | - Gonçalo Covas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Richard M Parton
- Department of Biochemistry, University of Oxford, South Parks Rd., OX1 3QU Oxford, UK
| | - Maria Harkiolaki
- Diamond Light Source, Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Rd., OX1 3QU Oxford, UK
| | - Sergio Raposo Filipe
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Petros Ligoxygakis
- Department of Biochemistry, University of Oxford, South Parks Rd., OX1 3QU Oxford, UK.
| |
Collapse
|
10
|
Gajdiss M, Monk IR, Bertsche U, Kienemund J, Funk T, Dietrich A, Hort M, Sib E, Stinear TP, Bierbaum G. YycH and YycI Regulate Expression of Staphylococcus aureus Autolysins by Activation of WalRK Phosphorylation. Microorganisms 2020; 8:microorganisms8060870. [PMID: 32526915 PMCID: PMC7355866 DOI: 10.3390/microorganisms8060870] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is a facultative pathogen that can encode numerous antibiotic resistance and immune evasion genes and can cause severe infections. Reduced susceptibility to last resort antibiotics such as vancomycin and daptomycin is often associated with mutations in walRK, an essential two-component regulatory system (TCS). This study focuses on the WalK accessory membrane proteins YycH and YycI and their influence on WalRK phosphorylation. Depletion of YycH and YycI by antisense RNA caused an impaired autolysis, indicating a positive regulatory function on WalK as has been previously described. Phosphorylation assays with full-length recombinant proteins in phospholipid liposomes showed that YycH and YycI stimulate WalK activity and that both regulatory proteins are needed for full activation of the WalK kinase. This was validated in vivo through examining the phosphorylation status of WalR using Phos-tag SDS-PAGE with a yycHI deletion mutant exhibiting reduced levels of phosphorylated WalR. In the yycHI knockdown strain, muropeptide composition of the cell wall was not affected, however, the wall teichoic acid content was increased. In conclusion, a direct modulation of WalRK phosphorylation activity by the accessory proteins YycH and YycI is reported both in vitro and in vivo. Taken together, our results show that YycH and YycI are important in the direct regulation of WalRK-dependent cell wall metabolism.
Collapse
Affiliation(s)
- Mike Gajdiss
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Ian R. Monk
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3010, Australia; (I.R.M.); (T.P.S.)
| | - Ute Bertsche
- Department of Infection Biology, University of Tuebingen, 72076 Tuebingen, Germany;
| | - Janina Kienemund
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Tanja Funk
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Alina Dietrich
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Michael Hort
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Esther Sib
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3010, Australia; (I.R.M.); (T.P.S.)
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
- Correspondence:
| |
Collapse
|
11
|
Chen L, Hou WT, Fan T, Liu B, Pan T, Li YH, Jiang YL, Wen W, Chen ZP, Sun L, Zhou CZ, Chen Y. Cryo-electron Microscopy Structure and Transport Mechanism of a Wall Teichoic Acid ABC Transporter. mBio 2020; 11:e02749-19. [PMID: 32184247 PMCID: PMC7078476 DOI: 10.1128/mbio.02749-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/21/2020] [Indexed: 01/24/2023] Open
Abstract
The wall teichoic acid (WTA) is a major cell wall component of Gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), a common cause of fatal clinical infections in humans. Thus, the indispensable ABC transporter TarGH, which flips WTA from cytoplasm to extracellular space, becomes a promising target of anti-MRSA drugs. Here, we report the 3.9-Å cryo-electron microscopy (cryo-EM) structure of a 50% sequence-identical homolog of TarGH from Alicyclobacillus herbarius at an ATP-free and inward-facing conformation. Structural analysis combined with activity assays enables us to clearly decode the binding site and inhibitory mechanism of the anti-MRSA inhibitor Targocil, which targets TarGH. Moreover, we propose a "crankshaft conrod" mechanism utilized by TarGH, which can be applied to similar ABC transporters that translocate a rather big substrate through relatively subtle conformational changes. These findings provide a structural basis for the rational design and optimization of antibiotics against MRSA.IMPORTANCE The wall teichoic acid (WTA) is a major component of cell wall and a pathogenic factor in methicillin-resistant Staphylococcus aureus (MRSA). The ABC transporter TarGH is indispensable for flipping WTA precursor from cytoplasm to the extracellular space, thus making it a promising drug target for anti-MRSA agents. The 3.9-Å cryo-EM structure of a TarGH homolog helps us to decode the binding site and inhibitory mechanism of a recently reported inhibitor, Targocil, and provides a structural platform for rational design and optimization of potential antibiotics. Moreover, we propose a "crankshaft conrod" mechanism to explain how a big substrate is translocated through subtle conformational changes of type II exporters. These findings advance our understanding of anti-MRSA drug design and ABC transporters.
Collapse
Affiliation(s)
- Li Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen-Tao Hou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Tao Fan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Banghui Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Ting Pan
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu-Hui Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen Wen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhi-Peng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Linfeng Sun
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- CAS Centre for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
12
|
Schuster CF, Wiedemann DM, Kirsebom FCM, Santiago M, Walker S, Gründling A. High-throughput transposon sequencing highlights the cell wall as an important barrier for osmotic stress in methicillin resistant Staphylococcus aureus and underlines a tailored response to different osmotic stressors. Mol Microbiol 2019; 113:699-717. [PMID: 31770461 PMCID: PMC7176532 DOI: 10.1111/mmi.14433] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/28/2022]
Abstract
Staphylococcus aureus is an opportunistic pathogen that can cause soft tissue infections but is also a frequent cause of foodborne illnesses. One contributing factor for this food association is its high salt tolerance allowing this organism to survive commonly used food preservation methods. How this resistance is mediated is poorly understood, particularly during long-term exposure. In this study, we used transposon sequencing (TN-seq) to understand how the responses to osmotic stressors differ. Our results revealed distinctly different long-term responses to NaCl, KCl and sucrose stresses. In addition, we identified the DUF2538 domain containing gene SAUSA300_0957 (gene 957) as essential under salt stress. Interestingly, a 957 mutant was less susceptible to oxacillin and showed increased peptidoglycan crosslinking. The salt sensitivity phenotype could be suppressed by amino acid substitutions in the transglycosylase domain of the penicillin-binding protein Pbp2, and these changes restored the peptidoglycan crosslinking to WT levels. These results indicate that increased crosslinking of the peptidoglycan polymer can be detrimental and highlight a critical role of the bacterial cell wall for osmotic stress resistance. This study will serve as a starting point for future research on osmotic stress response and help develop better strategies to tackle foodborne staphylococcal infections.
Collapse
Affiliation(s)
- Christopher F Schuster
- Section of Molecular Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - David M Wiedemann
- Section of Molecular Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Freja C M Kirsebom
- Section of Molecular Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Marina Santiago
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Angelika Gründling
- Section of Molecular Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| |
Collapse
|
13
|
G C B, Sahukhal GS, Elasri MO. Role of the msaABCR Operon in Cell Wall Biosynthesis, Autolysis, Integrity, and Antibiotic Resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2019; 63:e00680-19. [PMID: 31307991 PMCID: PMC6761503 DOI: 10.1128/aac.00680-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is an important human pathogen in both community and health care settings. One of the challenges with S. aureus as a pathogen is its acquisition of antibiotic resistance. Previously, we showed that deletion of the msaABCR operon reduces cell wall thickness, resulting in decreased resistance to vancomycin in vancomycin-intermediate S. aureus (VISA). In this study, we investigated the nature of the cell wall defect in the msaABCR operon mutant in the Mu50 (VISA) and USA300 LAC methicillin-resistant Staphylococcus aureus (MRSA) strains. Results showed that msaABCR mutant cells had decreased cross-linking in both strains. This defect is typically due to increased murein hydrolase activity and/or nonspecific processing of murein hydrolases mediated by increased protease activity in mutant cells. The defect was enhanced by a decrease in teichoic acid content in the msaABCR mutant. Therefore, we propose that deletion of the msaABCR operon results in decreased peptidoglycan cross-linking, leading to increased susceptibility toward cell wall-targeting antibiotics, such as β-lactams and vancomycin. Moreover, we also observed significantly downregulated transcription of early cell wall-synthesizing genes, supporting the finding that msaABCR mutant cells have decreased peptidoglycan synthesis. More specifically, the msaABCR mutant in the USA300 LAC strain (MRSA) showed significantly reduced expression of the murA gene, whereas the msaABCR mutant in the Mu50 strain (VISA) showed significantly reduced expression of glmU, murA, and murD Thus, we conclude that the msaABCR operon controls the balance between cell wall synthesis and cell wall hydrolysis, which is required for maintaining a robust cell wall and acquiring resistance to cell wall-targeting antibiotics, such as vancomycin and the β-lactams.
Collapse
Affiliation(s)
- Bibek G C
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Gyan S Sahukhal
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Mohamed O Elasri
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| |
Collapse
|
14
|
Inactivation of the Monofunctional Peptidoglycan Glycosyltransferase SgtB Allows Staphylococcus aureus To Survive in the Absence of Lipoteichoic Acid. J Bacteriol 2018; 201:JB.00574-18. [PMID: 30322854 PMCID: PMC6287468 DOI: 10.1128/jb.00574-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 12/29/2022] Open
Abstract
The bacterial cell wall acts as a primary defense against environmental insults such as changes in osmolarity. It is also a vulnerable structure, as defects in its synthesis can lead to growth arrest or cell death. The important human pathogen Staphylococcus aureus has a typical Gram-positive cell wall, which consists of peptidoglycan and the anionic polymers LTA and wall teichoic acid. Several clinically relevant antibiotics inhibit the synthesis of peptidoglycan; therefore, it and teichoic acids are considered attractive targets for the development of new antimicrobials. We show that LTA is required for efficient peptidoglycan cross-linking in S. aureus and inactivation of a peptidoglycan glycosyltransferase can partially rescue this defect, together revealing an intimate link between peptidoglycan and LTA synthesis. The cell wall of Staphylococcus aureus is composed of peptidoglycan and the anionic polymers lipoteichoic acid (LTA) and wall teichoic acid. LTA is required for growth and normal cell morphology in S. aureus. Strains lacking LTA are usually viable only when grown under osmotically stabilizing conditions or after the acquisition of compensatory mutations. LTA-negative suppressor strains with inactivating mutations in gdpP, which resulted in increased intracellular c-di-AMP levels, were described previously. Here, we sought to identify factors other than c-di-AMP that allow S. aureus to survive without LTA. LTA-negative strains able to grow in unsupplemented medium were obtained and found to contain mutations in sgtB, mazE, clpX, or vraT. The growth improvement through mutations in mazE and sgtB was confirmed by complementation analysis. We also showed that an S. aureussgtB transposon mutant, with the monofunctional peptidoglycan glycosyltransferase SgtB inactivated, displayed a 4-fold increase in the MIC of oxacillin, suggesting that alterations in the peptidoglycan structure could help bacteria compensate for the lack of LTA. Muropeptide analysis of peptidoglycans isolated from a wild-type strain and sgtB mutant strain did not reveal any sizable alterations in the peptidoglycan structure. In contrast, the peptidoglycan isolated from an LTA-negative ltaS mutant strain showed a significant reduction in the fraction of highly cross-linked peptidoglycan, which was partially rescued in the sgtB ltaS double mutant suppressor strain. Taken together, these data point toward an important function of LTA in cell wall integrity through its necessity for proper peptidoglycan assembly. IMPORTANCE The bacterial cell wall acts as a primary defense against environmental insults such as changes in osmolarity. It is also a vulnerable structure, as defects in its synthesis can lead to growth arrest or cell death. The important human pathogen Staphylococcus aureus has a typical Gram-positive cell wall, which consists of peptidoglycan and the anionic polymers LTA and wall teichoic acid. Several clinically relevant antibiotics inhibit the synthesis of peptidoglycan; therefore, it and teichoic acids are considered attractive targets for the development of new antimicrobials. We show that LTA is required for efficient peptidoglycan cross-linking in S. aureus and inactivation of a peptidoglycan glycosyltransferase can partially rescue this defect, together revealing an intimate link between peptidoglycan and LTA synthesis.
Collapse
|
15
|
Bello-López JM, Hernández-Rodríguez F, Rojo-Medina J. Bactericidal effect of γ-radiation with 137Cesium in platelet concentrates. Transfus Apher Sci 2016; 55:347-352. [DOI: 10.1016/j.transci.2016.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 01/06/2023]
|