1
|
Pemberton JG, Tenkova T, Felgner P, Zimmerberg J, Balla T, Heuser J. Defining the EM-signature of successful cell-transfection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583927. [PMID: 38496608 PMCID: PMC10942431 DOI: 10.1101/2024.03.07.583927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In this report, we describe the architecture of Lipofectamine 2000 and 3000 transfection- reagents, as they appear inside of transfected cells, using classical transmission electron microscopy (EM). We also demonstrate that they provoke consistent structural changes after they have entered cells, changes that not only provide new insights into the mechanism of action of these particular transfection-reagents, but also provide a convenient and robust method for identifying by EM which cells in any culture have been successfully transfected. This also provides clues to the mechanism(s) of their toxic effects, when they are applied in excess. We demonstrate that after being bulk-endocytosed by cells, the cationic spheroids of Lipofectamine remain intact throughout the entire time of culturing, but escape from their endosomes and penetrate directly into the cytoplasm of the cell. In so doing, they provoke a stereotypical recruitment and rearrangement of endoplasmic reticulum (ER), and they ultimately end up escaping into the cytoplasm and forming unique 'inclusion-bodies.' Once free in the cytoplasm, they also invariably develop dense and uniform coatings of cytoplasmic ribosomes on their surfaces, and finally, they become surrounded by 'annulate' lamellae' of the ER. In the end, these annulate-lamellar enclosures become the ultrastructural 'signatures' of these inclusion-bodies, and serve to positively and definitively identify all cells that have been effectively transfected. Importantly, these new EM-observations define several new and unique properties of these classical Lipofectamines, and allow them to be discriminated from other lipoidal or particulate transfection-reagents, which we find do not physically break out of endosomes or end up in inclusion bodies, and in fact, provoke absolutely none of these 'signature' cytoplasmic reactions.
Collapse
|
2
|
Iqbal S, Luo B, Melamed JR, Day ES. Critical Evaluation of Different Lysosomal Labeling Methods Used to Analyze RNA Nanocarrier Trafficking in Cells. Bioconjug Chem 2021; 32:2245-2256. [PMID: 34543006 PMCID: PMC9014481 DOI: 10.1021/acs.bioconjchem.1c00405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of nucleic acids to regulate gene expression is a rapidly developing field with immense clinical potential. Nanomaterials are frequently used to deliver nucleic acids into cells as they can overcome the poor cellular uptake and endo/lysosomal degradation of bare nucleic acids. For these nanocarriers to be effective, they must escape endo/lysosomal compartments to deliver their nucleic acid cargo into the cytosol (for ribonucleic acid (RNA)) or nucleus (for deoxyribonucleic acid (DNA)). This process is poorly understood and remains an area of active research toward the goal of developing effective delivery strategies. Fluorescent endo/lysosomal markers are among the most widely employed tools used to evaluate the endosomal escape of nucleic acid nanocarriers. However, the endo/lysosomal labeling method may alter the extent of and route of nanocarrier uptake by cells. The impact of these markers on cellular function and cell-nanocarrier interactions has not been probed in a systematic manner. To investigate this, we compared the effects of several common lysosomal labeling methods, namely, LysoTracker Red (LT Red), transient lysosomal-associated membrane protein 1-mutant green fluorescent protein (LAMP1-mGFP) transfection (Transient GFP), and stable lentiviral LAMP1-mGFP transfection (Stable GFP), on cellular metabolic activity, nanocarrier uptake, nanocarrier/lysosomal label colocalization, and gene silencing potency in U87 glioblastoma and MDA-MB-231 breast cancer cells using polyethyleneimine (PEI)/ribonucleic acid (RNA) polyplexes as a model nanocarrier. In both U87s and MDA-MB-231s, Transient GFP and LT Red labeling reduced metabolic activity relative to untransfected (Parental) cells, while Stable GFP labeling increased metabolic activity. Congruently, flow cytometry indicates Stable GFP cells have greater polyplex uptake than LT Red-labeled cells in both cell lines. Despite these similar trends in uptake, polyplex intracellular trafficking differs in the two cell lines, as confocal imaging revealed greater polyplex/lysosome colocalization in Stable GFP U87 cells than LT Red-labeled U87 cells, while the trend was reversed in MBA-MB-231s. The level of RNA-mediated gene silencing achieved in Parental versus Stable GFP U87 and MDA-MB-231 cells agreed with the observed levels of polyplex/lysosome colocalization, supporting the established concept that endosomal escape is the rate-limiting step for RNA interference. These findings indicate that lysosomal labels can profoundly alter cellular function and cell-nanocarrier interactions, presenting critical new considerations for researchers investigating nanoparticle trafficking.
Collapse
Affiliation(s)
- Shoaib Iqbal
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware 19716, United States
| | - Benjamin Luo
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware 19716, United States
| | - Jilian R Melamed
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware 19716, United States
| | - Emily S Day
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware 19716, United States
- Department of Materials Science & Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
- Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown Stanton Road, Newark, Delaware 19713, United States
| |
Collapse
|
3
|
Wonder EA, Ewert KK, Liu C, Steffes VM, Kwak J, Qahar V, Majzoub RN, Zhang Z, Carragher B, Potter CS, Li Y, Qiao W, Safinya CR. Assembly of Building Blocks by Double-End-Anchored Polymers in the Dilute Regime Mediated by Hydrophobic Interactions at Controlled Distances. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45728-45743. [PMID: 32960036 PMCID: PMC7671076 DOI: 10.1021/acsami.0c10972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hierarchical assembly of building blocks via competing, orthogonal interactions is a hallmark of many of nature's composite materials that do not require highly specific ligand-receptor interactions. To mimic this assembly mechanism requires the development of building blocks capable of tunable interactions. In the present work, we explored the interplay between repulsive (steric and electrostatic) and attractive hydrophobic forces. The designed building blocks allow hydrophobic forces to effectively act at controlled, large distances, to create and tune the assembly of membrane-based building blocks under dilute conditions, and to affect their interactions with cellular membranes via physical cross-bridges. Specifically, we employed double-end-anchored poly(ethylene glycol)s (DEA-PEGs)-hydrophilic PEG tethers with hydrophobic tails on both ends. Using differential-interference-contrast optical microscopy, synchrotron small-angle X-ray scattering (SAXS), and cryogenic electron microscopy, we investigated the ability of DEA-PEGs to mediate assembly in the dilute regime on multiple length scales and on practical time scales. The PEG length, anchor hydrophobicity, and molar fraction of DEA-PEG molecules within a membrane strongly affect the assembly properties. Additional tuning of the intermembrane interactions can be achieved by adding repulsive interactions via PEG-lipids (steric) or cationic lipids to the DEA-PEG-mediated attractions. While the optical and electron microscopy imaging methods provided qualitative evidence of the ability of DEA-PEGs to assemble liposomes, the SAXS measurements and quantitative line-shape analysis in dilute preparations demonstrated that the ensemble average of loosely organized liposomal assemblies maintains DEA-PEG concentration-dependent tethering on defined nanometer length scales. For cationic liposome-DNA nanoparticles (CL-DNA NPs), aggregation induced by DEA-PEGs decreased internalization of NPs by cells, but tuning the DEA-PEG-induced attractions by adding repulsive steric interactions via PEG-lipids limited aggregation and increased NP uptake. Furthermore, confocal microscopy imaging together with colocalization studies with Rab11 and LysoTracker as markers of intracellular pathways showed that modifying CL-DNA NPs with DEA-PEGs alters their interactions with the plasma and endosomal membranes.
Collapse
Affiliation(s)
- Emily A. Wonder
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Kai K. Ewert
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Chenyu Liu
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Victoria M. Steffes
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Jasmin Kwak
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Vikar Qahar
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Ramsey N. Majzoub
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Zhening Zhang
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Bridget Carragher
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Clinton S. Potter
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Weihong Qiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cyrus R. Safinya
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
4
|
Eslami M, Zeglio E, Alosaimi G, Yan Y, Ruprai H, Macmillan A, Seidel J, Lauto A, Joukhdar H, Rnjak-Kovacina J, Mawad D. A One Step Procedure toward Conductive Suspensions of Liposome-Polyaniline Complexes. Macromol Biosci 2020; 20:e2000103. [PMID: 32537900 DOI: 10.1002/mabi.202000103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/21/2020] [Indexed: 11/07/2022]
Abstract
Interaction of conjugated polymers with liposomes is an attractive approach that benefits from both systems' characteristics such as electroactivity and enhanced interaction with cells. Conjugated polymer-liposome complexes have been investigated for bioimaging, drug delivery, and photothermal therapy. Their fabrication has largely been achieved by multistep procedures that require first the synthesis and processing of the conjugated polymer. Here, a new one step fabrication approach is reported based on in situ polymerization of a conjugated monomer precursor around liposomes. Polyaniline (PANI) doped with phytic acid is synthesized via oxidative polymerization in the presence of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) vesicles to produce a conductive aqueous suspension of Liposome-PANI complexes. PANI interacts with liposomes without disrupting the bilayer as shown using differential scanning calorimetry and fluorescence quenching studies of the hydrophobic Nile red probe. The electronic conductivity of the Liposome-PANI complexes, which stems from the doped PANI accessible on the liposome surface, is confirmed using conductive atomic force microscopy and electrochemical impedance spectroscopy. Further, short-term in vitro cell studies show that the complexes colocalize with the cell membrane without reducing cell proliferation. This study presents a novel fabrication route to conductive suspensions of conjugated polymer-liposome complexes suitable for potential applications at the biointerface.
Collapse
Affiliation(s)
- Minoo Eslami
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Centre for Advanced Macromolecular Design, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Erica Zeglio
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Centre for Advanced Macromolecular Design, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Ghaida Alosaimi
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- School of Chemistry, Taif University, Taif, 26571, Kingdom of Saudi Arabia
| | - Yihan Yan
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Centre for Advanced Macromolecular Design, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Herleen Ruprai
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Alexander Macmillan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Jan Seidel
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Antonio Lauto
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Habib Joukhdar
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Damia Mawad
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Centre for Advanced Macromolecular Design, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Australian Centre for Nano Medicine and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
5
|
Wonder E, Simón-Gracia L, Scodeller P, Majzoub RN, Kotamraju VR, Ewert KK, Teesalu T, Safinya CR. Competition of charge-mediated and specific binding by peptide-tagged cationic liposome-DNA nanoparticles in vitro and in vivo. Biomaterials 2018; 166:52-63. [PMID: 29544111 PMCID: PMC5944340 DOI: 10.1016/j.biomaterials.2018.02.052] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/14/2018] [Accepted: 02/27/2018] [Indexed: 12/31/2022]
Abstract
Cationic liposome-nucleic acid (CL-NA) complexes, which form spontaneously, are a highly modular gene delivery system. These complexes can be sterically stabilized via PEGylation [PEG: poly (ethylene glycol)] into nanoparticles (NPs) and targeted to specific tissues and cell types via the conjugation of an affinity ligand. However, there are currently no guidelines on how to effectively navigate the large space of compositional parameters that modulate the specific and nonspecific binding interactions of peptide-targeted NPs with cells. Such guidelines are desirable to accelerate the optimization of formulations with novel peptides. Using PEG-lipids functionalized with a library of prototypical tumor-homing peptides, we varied the peptide density and other parameters (binding motif, peptide charge, CL/DNA charge ratio) to study their effect on the binding and uptake of the corresponding NPs. We used flow cytometry to quantitatively assess binding as well as internalization of NPs by cultured cancer cells. Surprisingly, full peptide coverage resulted in less binding and internalization than intermediate coverage, with the optimum coverage varying between cell lines. In, addition, our data revealed that great care must be taken to prevent nonspecific electrostatic interactions from interfering with the desired specific binding and internalization. Importantly, such considerations must take into account the charge of the peptide ligand as well as the membrane charge density and the CL/DNA charge ratio. To test our guidelines, we evaluated the in vivo tumor selectivity of selected NP formulations in a mouse model of peritoneally disseminated human gastric cancer. Intraperitoneally administered peptide-tagged CL-DNA NPs showed tumor binding, minimal accumulation in healthy control tissues, and preferential penetration of smaller tumor nodules, a highly clinically relevant target known to drive recurrence of the peritoneal cancer.
Collapse
Affiliation(s)
- Emily Wonder
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Lorena Simón-Gracia
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Pablo Scodeller
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ramsey N Majzoub
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Venkata Ramana Kotamraju
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kai K Ewert
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Tambet Teesalu
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Cyrus R Safinya
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California at Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|