1
|
Yadav DS, Savopol T. Optical tweezers in biomedical research - progress and techniques. J Med Life 2024; 17:978-993. [PMID: 39781305 PMCID: PMC11705474 DOI: 10.25122/jml-2024-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/04/2024] [Indexed: 01/12/2025] Open
Abstract
Optical tweezers, which leverage the forces exerted by radiation pressure, have emerged as a pivotal technique for precisely manipulating and analyzing microscopic particles. Since Arthur Ashkin's ground-breaking work in the 1970s and the subsequent development of the single-beam optical trap in 1986, the capabilities of optical tweezers have expanded significantly, enabling the intricate manipulation of biological specimens at the micro- and nanoscale. This review elucidates the foundational principles of optical trapping and their extensive applications in the biomedical sciences. The applications of optical tweezers in biomedicine are vast, ranging from the investigation of cellular mechanical properties, such as cell stretching, membrane elasticity, and stiffness, to single-molecule studies encompassing DNA and protein mechanics, protein-DNA interactions, molecular motor functions, and pathogen-host interactions. Advancement of optical tweezers in this field includes their integration with holography, fluorescence microscopy, microfluidics, and enhancements in force sensitivity and positional accuracy. These tools have profoundly impacted the study of cellular mechanics, drug discovery processes, and disease diagnostics, providing unparalleled insights into the biophysical mechanisms underlying health and pathology.
Collapse
Key Words
- AFM, Atomic Force Microscopy
- CCD, Charge-Coupled Device
- DNA stretching
- E. Coli, Escherichia coli
- HOT, Holographic Optical Tweezers
- IVF, In-Vitro Fertilization
- ODS, Optical DNA Supercoiling
- RBC, Red Blood Cells
- RNAP, RNA Polymerase
- SLM, Spatial Light Modulator
- cell manipulation
- cell stretching
- dsDNA, Double-Stranded DNA
- elastic properties of cells
- membrane tethering
- optical tweezers
- single molecule studies
Collapse
Affiliation(s)
- Dharm Singh Yadav
- Biophysics and Cellular Biotechnology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
2
|
Shepherd JW, Guilbaud S, Zhou Z, Howard JAL, Burman M, Schaefer C, Kerrigan A, Steele-King C, Noy A, Leake MC. Correlating fluorescence microscopy, optical and magnetic tweezers to study single chiral biopolymers such as DNA. Nat Commun 2024; 15:2748. [PMID: 38553446 PMCID: PMC10980717 DOI: 10.1038/s41467-024-47126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 03/21/2024] [Indexed: 04/02/2024] Open
Abstract
Biopolymer topology is critical for determining interactions inside cell environments, exemplified by DNA where its response to mechanical perturbation is as important as biochemical properties to its cellular roles. The dynamic structures of chiral biopolymers exhibit complex dependence with extension and torsion, however the physical mechanisms underpinning the emergence of structural motifs upon physiological twisting and stretching are poorly understood due to technological limitations in correlating force, torque and spatial localization information. We present COMBI-Tweez (Combined Optical and Magnetic BIomolecule TWEEZers), a transformative tool that overcomes these challenges by integrating optical trapping, time-resolved electromagnetic tweezers, and fluorescence microscopy, demonstrated on single DNA molecules, that can controllably form and visualise higher order structural motifs including plectonemes. This technology combined with cutting-edge MD simulations provides quantitative insight into complex dynamic structures relevant to DNA cellular processes and can be adapted to study a range of filamentous biopolymers.
Collapse
Affiliation(s)
- Jack W Shepherd
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, England
- Department of Biology, University of York, York, YO10 5DD, England
| | - Sebastien Guilbaud
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, England
| | - Zhaokun Zhou
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jamieson A L Howard
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, England
| | - Matthew Burman
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, England
| | - Charley Schaefer
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, England
| | - Adam Kerrigan
- The York-JEOL Nanocentre, University of York, York, YO10 5BR, England
| | - Clare Steele-King
- Bioscience Technology Facility, University of York, York, YO10 5DD, England
| | - Agnes Noy
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, England
| | - Mark C Leake
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, England.
- Department of Biology, University of York, York, YO10 5DD, England.
| |
Collapse
|
3
|
Bobrovnikov D, Makurath MA, Wolfe CH, Chemla YR, Ha T. Helicase Activity Modulation with On-Demand Light-Based Conformational Control. J Am Chem Soc 2023; 145:21253-21262. [PMID: 37739407 PMCID: PMC10557133 DOI: 10.1021/jacs.3c05254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 09/24/2023]
Abstract
Engineering a protein variant with a desired role relies on deep knowledge of the relationship between a protein's native structure and function. Using our structural understanding of a regulatory subdomain found in a family of DNA helicases, we engineered novel helicases for which the subdomain orientation is designed to switch between unwinding-inactive and -active conformations upon trans-cis isomerization of an azobenzene-based crosslinker. This on-demand light-based conformational control directly alters helicase activity as demonstrated by both bulk phase experiments and single-molecule optical tweezers analysis of one of the engineered helicases. The "opto-helicase" may be useful in future applications that require spatiotemporal control of DNA hybridization states.
Collapse
Affiliation(s)
- Dmitriy Bobrovnikov
- Department
of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Monika A. Makurath
- Department
of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Clara H. Wolfe
- Department
of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Yann R. Chemla
- Department
of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Taekjip Ha
- Department
of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Biophysics, Department of Biological Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Howard Hughes
Medical Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
4
|
Wijesinghe WCB, Min D. Single-Molecule Force Spectroscopy of Membrane Protein Folding. J Mol Biol 2023; 435:167975. [PMID: 37330286 DOI: 10.1016/j.jmb.2023.167975] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/19/2023]
Abstract
Single-molecule force spectroscopy is a unique method that can probe the structural changes of single proteins at a high spatiotemporal resolution while mechanically manipulating them over a wide force range. Here, we review the current understanding of membrane protein folding learned by using the force spectroscopy approach. Membrane protein folding in lipid bilayers is one of the most complex biological processes in which diverse lipid molecules and chaperone proteins are intricately involved. The approach of single protein forced unfolding in lipid bilayers has produced important findings and insights into membrane protein folding. This review provides an overview of the forced unfolding approach, including recent achievements and technical advances. Progress in the methods can reveal more interesting cases of membrane protein folding and clarify general mechanisms and principles.
Collapse
Affiliation(s)
- W C Bhashini Wijesinghe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
5
|
Magazzù A, Marcuello C. Investigation of Soft Matter Nanomechanics by Atomic Force Microscopy and Optical Tweezers: A Comprehensive Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:963. [PMID: 36985857 PMCID: PMC10053849 DOI: 10.3390/nano13060963] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 05/17/2023]
Abstract
Soft matter exhibits a multitude of intrinsic physico-chemical attributes. Their mechanical properties are crucial characteristics to define their performance. In this context, the rigidity of these systems under exerted load forces is covered by the field of biomechanics. Moreover, cellular transduction processes which are involved in health and disease conditions are significantly affected by exogenous biomechanical actions. In this framework, atomic force microscopy (AFM) and optical tweezers (OT) can play an important role to determine the biomechanical parameters of the investigated systems at the single-molecule level. This review aims to fully comprehend the interplay between mechanical forces and soft matter systems. In particular, we outline the capabilities of AFM and OT compared to other classical bulk techniques to determine nanomechanical parameters such as Young's modulus. We also provide some recent examples of nanomechanical measurements performed using AFM and OT in hydrogels, biopolymers and cellular systems, among others. We expect the present manuscript will aid potential readers and stakeholders to fully understand the potential applications of AFM and OT to soft matter systems.
Collapse
Affiliation(s)
- Alessandro Magazzù
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, 98158 Mesina, Italy
- NLHT-Lab, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
6
|
Haghizadeh A, Iftikhar M, Dandpat SS, Simpson T. Looking at Biomolecular Interactions through the Lens of Correlated Fluorescence Microscopy and Optical Tweezers. Int J Mol Sci 2023; 24:2668. [PMID: 36768987 PMCID: PMC9916863 DOI: 10.3390/ijms24032668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Understanding complex biological events at the molecular level paves the path to determine mechanistic processes across the timescale necessary for breakthrough discoveries. While various conventional biophysical methods provide some information for understanding biological systems, they often lack a complete picture of the molecular-level details of such dynamic processes. Studies at the single-molecule level have emerged to provide crucial missing links to understanding complex and dynamic pathways in biological systems, which are often superseded by bulk biophysical and biochemical studies. Latest developments in techniques combining single-molecule manipulation tools such as optical tweezers and visualization tools such as fluorescence or label-free microscopy have enabled the investigation of complex and dynamic biomolecular interactions at the single-molecule level. In this review, we present recent advances using correlated single-molecule manipulation and visualization-based approaches to obtain a more advanced understanding of the pathways for fundamental biological processes, and how this combination technique is facilitating research in the dynamic single-molecule (DSM), cell biology, and nanomaterials fields.
Collapse
|
7
|
Determination of protein-protein interactions at the single-molecule level using optical tweezers. Q Rev Biophys 2022; 55:e8. [PMID: 35946323 DOI: 10.1017/s0033583522000075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biomolecular interactions are at the base of all physical processes within living organisms; the study of these interactions has led to the development of a plethora of different methods. Among these, single-molecule (in singulo) experiments have become relevant in recent years because these studies can give insight into mechanisms and interactions that are hidden for ensemble-based (in multiplo) methods. The focus of this review is on optical tweezer (OT) experiments, which can be used to apply and measure mechanical forces in molecular systems. OTs are based on optical trapping, where a laser is used to exert a force on a dielectric bead; and optically trap the bead at a controllable position in all three dimensions. Different experimental approaches have been developed to study protein–protein interactions using OTs, such as: (1) refolding and unfolding in trans interaction where one protein is tethered between the beads and the other protein is in the solution; (2) constant force in cis interaction where each protein is bound to a bead, and the tension is suddenly increased. The interaction may break after some time, giving information about the lifetime of the binding at that tension. And (3) force ramp in cis interaction where each protein is attached to a bead and a ramp force is applied until the interaction breaks. With these experiments, parameters such as kinetic constants (koff, kon), affinity values (KD), energy to the transition state ΔG≠, distance to the transition state Δx≠ can be obtained. These parameters characterize the energy landscape of the interaction. Some parameters such as distance to the transition state can only be obtained from force spectroscopy experiments such as those described here.
Collapse
|
8
|
Buck S, Pekarek L, Caliskan N. POTATO: Automated pipeline for batch analysis of optical tweezers data. Biophys J 2022; 121:2830-2839. [PMID: 35778838 PMCID: PMC9388390 DOI: 10.1016/j.bpj.2022.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Optical tweezers are a single-molecule technique that allows probing of intra- and intermolecular interactions that govern complex biological processes involving molecular motors, protein-nucleic acid interactions, and protein/RNA folding. Recent developments in instrumentation eased and accelerated optical tweezers data acquisition, but analysis of the data remains challenging. Here, to enable high-throughput data analysis, we developed an automated python-based analysis pipeline called POTATO (practical optical tweezers analysis tool). POTATO automatically processes the high-frequency raw data generated by force-ramp experiments and identifies (un)folding events using predefined parameters. After segmentation of the force-distance trajectories at the identified (un)folding events, sections of the curve can be fitted independently to a worm-like chain and freely jointed chain models, and the work applied on the molecule can be calculated by numerical integration. Furthermore, the tool allows plotting of constant force data and fitting of the Gaussian distance distribution over time. All these features are wrapped in a user-friendly graphical interface, which allows researchers without programming knowledge to perform sophisticated data analysis.
Collapse
Affiliation(s)
- Stefan Buck
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
| | - Lukas Pekarek
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
| | - Neva Caliskan
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany; Medical Faculty, Julius-Maximilians University Würzburg, Würzburg, Germany.
| |
Collapse
|
9
|
Desai VP, Frank F, Bustamante CJ. Cotemporal Single-Molecule Force and Fluorescence Measurements to Determine the Mechanism of Ribosome Translocation. Methods Mol Biol 2022; 2478:381-399. [PMID: 36063328 DOI: 10.1007/978-1-0716-2229-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ribosomes are at the core of the central dogma of life. They perform the last major step of gene expression by translating the information written in the nucleotide codon sequences into the amino acid sequence of a protein. This is a complex mechanochemical process that requires the coordination of multiple dynamic events within the ribosome such as the precise timing of decoding and the subsequent translocation along the mRNA. We have previously used a high-resolution optical tweezers instrument with single-molecule fluorescence capabilities ("fleezers") to study how ribosomes couple binding of the GTPase translation elongation factor EF-G with internal conformational changes to unwind and progress across the mechanical barriers posed by mRNA secondary structures. Here, we present a detailed description of the procedures for monitoring two orthogonal channels (EF-G binding and translocation) by single actively translating ribosomes in real-time, to uncover the mechanism by which they harness chemical energy to generate mechanical force and displacement.
Collapse
Affiliation(s)
- Varsha P Desai
- University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Carlos J Bustamante
- University of California and Howard Hughes Medical Institute, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
10
|
Yadav R, Senanayake KB, Comstock MJ. High-Resolution Optical Tweezers Combined with Multicolor Single-Molecule Microscopy. Methods Mol Biol 2022; 2478:141-240. [PMID: 36063322 DOI: 10.1007/978-1-0716-2229-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We present an instrument that combines high-resolution optical tweezers and multicolor confocal fluorescence spectroscopy. Biological macromolecules exhibit complex conformation and stoichiometry changes in coordination with their motion and activity. To further our understanding of the complex machinery of life, we need methods that can simultaneously probe more than one degree of freedom of single molecules and complexes. Fluorescence optical tweezers, or "fleezers," combine the capabilities of optical tweezers and single-molecule fluorescence microscopy into a single instrument. Here we present the latest generation of a high-resolution fleezers instrument integrated with multicolor fluorescence spectroscopy. The tweezers portion of the instrument can manipulate biological macromolecules with pN scale forces while measuring subnanometer distances. Simultaneous with tweezers measurements, the multicolor fluorescence capability allows the direct observation of multiple molecules or multiple degrees of freedom which allows, for example, the observation of multiple proteins simultaneously within a complex. The instrument incorporates three fluorescence excitation lasers, all sourced from a single-mode optical fiber allowing a reliable alignment scheme, that allows, for example, three independent fluorescent probes or fluorescence resonance energy transfer (FRET) measurements and also increases flexibility in the choice of fluorescent probes. To avoid photobleaching and improve tweezers stability, the instrument implements a timesharing (using a single trap laser to produce a pair of traps via rapid switching between two locations) and interlacing (turning the trapping beam off when the fluorescence excitation beams are on and vice versa) scheme using acousto-optic modulators (AOM) to rapidly and precisely modulate lasers. Our latest "random phase" trap AOM control method obliterates previous residual trap positioning and bead position measurement errors. Here we present the general design principles and detailed construction and testing protocols for the instrument.
Collapse
Affiliation(s)
- Rajeev Yadav
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | - Kasun B Senanayake
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | - Matthew J Comstock
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
11
|
Kinetic and structural mechanism for DNA unwinding by a non-hexameric helicase. Nat Commun 2021; 12:7015. [PMID: 34853304 PMCID: PMC8636605 DOI: 10.1038/s41467-021-27304-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
UvrD, a model for non-hexameric Superfamily 1 helicases, utilizes ATP hydrolysis to translocate stepwise along single-stranded DNA and unwind the duplex. Previous estimates of its step size have been indirect, and a consensus on its stepping mechanism is lacking. To dissect the mechanism underlying DNA unwinding, we use optical tweezers to measure directly the stepping behavior of UvrD as it processes a DNA hairpin and show that UvrD exhibits a variable step size averaging ~3 base pairs. Analyzing stepping kinetics across ATP reveals the type and number of catalytic events that occur with different step sizes. These single-molecule data reveal a mechanism in which UvrD moves one base pair at a time but sequesters the nascent single strands, releasing them non-uniformly after a variable number of catalytic cycles. Molecular dynamics simulations point to a structural basis for this behavior, identifying the protein-DNA interactions responsible for strand sequestration. Based on structural and sequence alignment data, we propose that this stepping mechanism may be conserved among other non-hexameric helicases.
Collapse
|
12
|
A viral genome packaging ring-ATPase is a flexibly coordinated pentamer. Nat Commun 2021; 12:6548. [PMID: 34772936 PMCID: PMC8589836 DOI: 10.1038/s41467-021-26800-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/21/2021] [Indexed: 01/13/2023] Open
Abstract
Multi-subunit ring-ATPases carry out a myriad of biological functions, including genome packaging in viruses. Though the basic structures and functions of these motors have been well-established, the mechanisms of ATPase firing and motor coordination are poorly understood. Here, using single-molecule fluorescence, we determine that the active bacteriophage T4 DNA packaging motor consists of five subunits of gp17. By systematically doping motors with an ATPase-defective subunit and selecting single motors containing a precise number of active or inactive subunits, we find that the packaging motor can tolerate an inactive subunit. However, motors containing one or more inactive subunits exhibit fewer DNA engagements, a higher failure rate in encapsidation, reduced packaging velocity, and increased pausing. These findings suggest a DNA packaging model in which the motor, by re-adjusting its grip on DNA, can skip an inactive subunit and resume DNA translocation, suggesting that strict coordination amongst motor subunits of packaging motors is not crucial for function.
Collapse
|
13
|
Methods for Studying Bacterial–Fungal Interactions in the Microenvironments of Soil. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Due to their small size, microorganisms directly experience only a tiny portion of the environmental heterogeneity manifested in the soil. The microscale variations in soil properties constrain the distribution of fungi and bacteria, and the extent to which they can interact with each other, thereby directly influencing their behavior and ecological roles. Thus, to obtain a realistic understanding of bacterial–fungal interactions, the spatiotemporal complexity of their microenvironments must be accounted for. The objective of this review is to further raise awareness of this important aspect and to discuss an overview of possible methodologies, some of easier applicability than others, that can be implemented in the experimental design in this field of research. The experimental design can be rationalized in three different scales, namely reconstructing the physicochemical complexity of the soil matrix, identifying and locating fungi and bacteria to depict their physical interactions, and, lastly, analyzing their molecular environment to describe their activity. In the long term, only relevant experimental data at the cell-to-cell level can provide the base for any solid theory or model that may serve for accurate functional prediction at the ecosystem level. The way to this level of application is still long, but we should all start small.
Collapse
|
14
|
Bocanegra R, Ismael Plaza GA, Pulido CR, Ibarra B. DNA replication machinery: Insights from in vitro single-molecule approaches. Comput Struct Biotechnol J 2021; 19:2057-2069. [PMID: 33995902 PMCID: PMC8085672 DOI: 10.1016/j.csbj.2021.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
The replisome is the multiprotein molecular machinery that replicates DNA. The replisome components work in precise coordination to unwind the double helix of the DNA and replicate the two strands simultaneously. The study of DNA replication using in vitro single-molecule approaches provides a novel quantitative understanding of the dynamics and mechanical principles that govern the operation of the replisome and its components. ‘Classical’ ensemble-averaging methods cannot obtain this information. Here we describe the main findings obtained with in vitro single-molecule methods on the performance of individual replisome components and reconstituted prokaryotic and eukaryotic replisomes. The emerging picture from these studies is that of stochastic, versatile and highly dynamic replisome machinery in which transient protein-protein and protein-DNA associations are responsible for robust DNA replication.
Collapse
Affiliation(s)
- Rebeca Bocanegra
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - G A Ismael Plaza
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Carlos R Pulido
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Borja Ibarra
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
15
|
Bustamante CJ, Chemla YR, Liu S, Wang MD. Optical tweezers in single-molecule biophysics. NATURE REVIEWS. METHODS PRIMERS 2021; 1:25. [PMID: 34849486 PMCID: PMC8629167 DOI: 10.1038/s43586-021-00021-6] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
Optical tweezers have become the method of choice in single-molecule manipulation studies. In this Primer, we first review the physical principles of optical tweezers and the characteristics that make them a powerful tool to investigate single molecules. We then introduce the modifications of the method to extend the measurement of forces and displacements to torques and angles, and to develop optical tweezers with single-molecule fluorescence detection capabilities. We discuss force and torque calibration of these instruments, their various modes of operation and most common experimental geometries. We describe the type of data obtained in each experimental design and their analyses. This description is followed by a survey of applications of these methods to the studies of protein-nucleic acid interactions, protein/RNA folding and molecular motors. We also discuss data reproducibility, the factors that lead to the data variability among different laboratories and the need to develop field standards. We cover the current limitations of the methods and possible ways to optimize instrument operation, data extraction and analysis, before suggesting likely areas of future growth.
Collapse
Affiliation(s)
- Carlos J. Bustamante
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Kavli Energy NanoScience Institute, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Yann R. Chemla
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Michelle D. Wang
- Department of Physics, Laboratory of Atomic and Solid State Physics, Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
| |
Collapse
|
16
|
Stekas B, Yeo S, Troitskaia A, Honda M, Sho S, Spies M, Chemla YR. Switch-like control of helicase processivity by single-stranded DNA binding protein. eLife 2021; 10:60515. [PMID: 33739282 PMCID: PMC7997660 DOI: 10.7554/elife.60515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase function, although the underlying mechanisms remain largely unknown. Ferroplasma acidarmanus xeroderma pigmentosum group D (XPD) helicase serves as a model for understanding the molecular mechanisms of superfamily 2B helicases, and its activity is enhanced by the cognate single-stranded DNA binding protein replication protein A 2 (RPA2). Here, optical trap measurements of the unwinding activity of a single XPD helicase in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different processivities and transient RPA2 interactions stabilize the more processive state, activating a latent 'processivity switch' in XPD. A point mutation at a regulatory DNA binding site on XPD similarly activates this switch. These findings provide new insights on mechanisms of helicase regulation by accessory proteins.
Collapse
Affiliation(s)
- Barbara Stekas
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Steve Yeo
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Alice Troitskaia
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Masayoshi Honda
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Sei Sho
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Maria Spies
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Yann R Chemla
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, United States.,Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, United States.,Center for the Physics of Living Cells, University of Illinois, Urbana-Champaign, Urbana, United States
| |
Collapse
|
17
|
Brosh RM, Matson SW. History of DNA Helicases. Genes (Basel) 2020; 11:genes11030255. [PMID: 32120966 PMCID: PMC7140857 DOI: 10.3390/genes11030255] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the DNA double helix, there has been a fascination in understanding the molecular mechanisms and cellular processes that account for: (i) the transmission of genetic information from one generation to the next and (ii) the remarkable stability of the genome. Nucleic acid biologists have endeavored to unravel the mysteries of DNA not only to understand the processes of DNA replication, repair, recombination, and transcription but to also characterize the underlying basis of genetic diseases characterized by chromosomal instability. Perhaps unexpectedly at first, DNA helicases have arisen as a key class of enzymes to study in this latter capacity. From the first discovery of ATP-dependent DNA unwinding enzymes in the mid 1970's to the burgeoning of helicase-dependent pathways found to be prevalent in all kingdoms of life, the story of scientific discovery in helicase research is rich and informative. Over four decades after their discovery, we take this opportunity to provide a history of DNA helicases. No doubt, many chapters are left to be written. Nonetheless, at this juncture we are privileged to share our perspective on the DNA helicase field - where it has been, its current state, and where it is headed.
Collapse
Affiliation(s)
- Robert M. Brosh
- Section on DNA Helicases, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| | - Steven W. Matson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| |
Collapse
|
18
|
Patrick EM, Slivka JD, Payne B, Comstock MJ, Schmidt JC. Observation of processive telomerase catalysis using high-resolution optical tweezers. Nat Chem Biol 2020; 16:801-809. [PMID: 32066968 PMCID: PMC7311264 DOI: 10.1038/s41589-020-0478-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Telomere maintenance by telomerase is essential for continuous proliferation of human cells and is vital for the survival of stem cells and 90% of cancer cells. To compensate for telomeric DNA lost during DNA replication, telomerase processively adds GGTTAG repeats to chromosome ends by copying the template region within its RNA subunit. Between repeat additions, the RNA template must be recycled. How telomerase remains associated with substrate DNA during this critical translocation step remains unknown. Using a newly developed single-molecule telomerase activity assay utilizing high-resolution optical tweezers, we demonstrate that stable substrate DNA binding at an anchor site within telomerase facilitates the processive synthesis of telomeric repeats. The product DNA synthesized by telomerase can be recaptured by the anchor site or fold into G-quadruplex structures. Our results provide detailed mechanistic insights into telomerase catalysis, a process of critical importance in aging and cancer.
Collapse
Affiliation(s)
- Eric M Patrick
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Joseph D Slivka
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | - Bramyn Payne
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | - Matthew J Comstock
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA.
| | - Jens C Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA. .,Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
19
|
Chuang CY, Zammit M, Whitmore ML, Comstock MJ. Combined High-Resolution Optical Tweezers and Multicolor Single-Molecule Fluorescence with an Automated Single-Molecule Assembly Line. J Phys Chem A 2019; 123:9612-9620. [PMID: 31621318 DOI: 10.1021/acs.jpca.9b08282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present an instrument that combines high-resolution optical tweezers and multicolor confocal fluorescence spectroscopy along with automated single-molecule assembly. The multicolor allows the simultaneous observation of multiple molecules or multiple degrees of freedom, which allows, for example, the observation of multiple proteins simultaneously within a complex. The instrument incorporates three fluorescence excitation lasers, with a reliable alignment scheme, which will allow three independent fluorescent probe or FRET measurements and also increases flexibility in the choice of fluorescent molecules. We demonstrate the ability to simultaneously measure angstrom-scale changes in tether extension and fluorescence signals. Simultaneous tweezers and fluorescence measurement are particularly challenging because of fluorophore photobleaching, even more so if multiple fluorophores are to be measured. Therefore, (1) fluorescence excitation and detection is interlaced with time-shared dual optical traps. (2) We investigated the photostability of common fluorophores. The mean number of photons emitted before bleaching was unaffected by the trap laser and decreased only slightly with increasing excitation laser intensity. Surprisingly, we found that Cy5 outperforms other commonly used fluorophores by more than fivefold. (3) We devised computer-controlled automation, which conserves fluorophore lifetime by quickly detecting fluorophore-labeled molecule binding, turning off lasers, and moving to add the next fluorophore-labeled component. The single-molecule assembly line enables the precise assembly of multimolecule complexes while preserving fluorophores.
Collapse
Affiliation(s)
- Cho-Ying Chuang
- Department of Physics and Astronomy , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Matthew Zammit
- Department of Physics and Astronomy , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Miles L Whitmore
- Department of Physics and Astronomy , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Matthew J Comstock
- Department of Physics and Astronomy , Michigan State University , East Lansing , Michigan 48824 , United States
| |
Collapse
|
20
|
Desai VP, Frank F, Lee A, Righini M, Lancaster L, Noller HF, Tinoco I, Bustamante C. Co-temporal Force and Fluorescence Measurements Reveal a Ribosomal Gear Shift Mechanism of Translation Regulation by Structured mRNAs. Mol Cell 2019; 75:1007-1019.e5. [PMID: 31471187 DOI: 10.1016/j.molcel.2019.07.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/12/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022]
Abstract
The movement of ribosomes on mRNA is often interrupted by secondary structures that present mechanical barriers and play a central role in translation regulation. We investigate how ribosomes couple their internal conformational changes with the activity of translocation factor EF-G to unwind mRNA secondary structures using high-resolution optical tweezers with single-molecule fluorescence capability. We find that hairpin opening occurs during EF-G-catalyzed translocation and is driven by the forward rotation of the small subunit head. Modulating the magnitude of the hairpin barrier by force shows that ribosomes respond to strong barriers by shifting their operation to an alternative 7-fold-slower kinetic pathway prior to translocation. Shifting into a slow gear results from an allosteric switch in the ribosome that may allow it to exploit thermal fluctuations to overcome mechanical barriers. Finally, we observe that ribosomes occasionally open the hairpin in two successive sub-codon steps, revealing a previously unobserved translocation intermediate.
Collapse
Affiliation(s)
- Varsha P Desai
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Filipp Frank
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Antony Lee
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Maurizio Righini
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Laura Lancaster
- Department of Molecular, Cell, and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Harry F Noller
- Department of Molecular, Cell, and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ignacio Tinoco
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carlos Bustamante
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
21
|
Chen Z, Gabizon R, Brown AI, Lee A, Song A, Díaz-Celis C, Kaplan CD, Koslover EF, Yao T, Bustamante C. High-resolution and high-accuracy topographic and transcriptional maps of the nucleosome barrier. eLife 2019; 8:48281. [PMID: 31364986 PMCID: PMC6744274 DOI: 10.7554/elife.48281] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
Nucleosomes represent mechanical and energetic barriers that RNA Polymerase II (Pol II) must overcome during transcription. A high-resolution description of the barrier topography, its modulation by epigenetic modifications, and their effects on Pol II nucleosome crossing dynamics, is still missing. Here, we obtain topographic and transcriptional (Pol II residence time) maps of canonical, H2A.Z, and monoubiquitinated H2B (uH2B) nucleosomes at near base-pair resolution and accuracy. Pol II crossing dynamics are complex, displaying pauses at specific loci, backtracking, and nucleosome hopping between wrapped states. While H2A.Z widens the barrier, uH2B heightens it, and both modifications greatly lengthen Pol II crossing time. Using the dwell times of Pol II at each nucleosomal position we extract the energetics of the barrier. The orthogonal barrier modifications of H2A.Z and uH2B, and their effects on Pol II dynamics rationalize their observed enrichment in +1 nucleosomes and suggest a mechanism for selective control of gene expression.
Collapse
Affiliation(s)
- Zhijie Chen
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Ronen Gabizon
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, Berkeley, United States
| | - Aidan I Brown
- Department of Physics, University of California, San Diego, San Diego, United States
| | - Antony Lee
- Department of Physics, University of California, Berkeley, Berkeley, United States
| | - Aixin Song
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - César Díaz-Celis
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Elena F Koslover
- Department of Physics, University of California, San Diego, San Diego, United States
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Carlos Bustamante
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Department of Physics, University of California, Berkeley, Berkeley, United States.,Jason L Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, United States.,Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States.,Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, United States.,Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
22
|
Extreme mechanical diversity of human telomeric DNA revealed by fluorescence-force spectroscopy. Proc Natl Acad Sci U S A 2019; 116:8350-8359. [PMID: 30944218 DOI: 10.1073/pnas.1815162116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G-quadruplexes (GQs) can adopt diverse structures and are functionally implicated in transcription, replication, translation, and maintenance of telomere. Their conformational diversity under physiological levels of mechanical stress, however, is poorly understood. We used single-molecule fluorescence-force spectroscopy that combines fluorescence resonance energy transfer with optical tweezers to measure human telomeric sequences under tension. Abrupt GQ unfolding with K+ in solution occurred at as many as four discrete levels of force. Added to an ultrastable state and a gradually unfolding state, there were six mechanically distinct structures. Extreme mechanical diversity was also observed with Na+, although GQs were mechanically weaker. Our ability to detect small conformational changes at low forces enabled the determination of refolding forces of about 2 pN. Refolding was rapid and stochastically redistributed molecules to mechanically distinct states. A single guanine-to-thymine substitution mutant required much higher ion concentrations to display GQ-like unfolding and refolded via intermediates, contrary to the wild type. Contradicting an earlier proposal, truncation to three hexanucleotide repeats resulted in a single-stranded DNA-like mechanical behavior under all conditions, indicating that at least four repeats are required to form mechanically stable structures.
Collapse
|
23
|
Izadi D, Chen Y, Whitmore ML, Slivka JD, Ching K, Lapidus LJ, Comstock MJ. Combined Force Ramp and Equilibrium High-Resolution Investigations Reveal Multipath Heterogeneous Unfolding of Protein G. J Phys Chem B 2018; 122:11155-11165. [DOI: 10.1021/acs.jpcb.8b06199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dena Izadi
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yujie Chen
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Miles L. Whitmore
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Joseph D. Slivka
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kevin Ching
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lisa J. Lapidus
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Matthew J. Comstock
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
24
|
Baveye PC, Otten W, Kravchenko A, Balseiro-Romero M, Beckers É, Chalhoub M, Darnault C, Eickhorst T, Garnier P, Hapca S, Kiranyaz S, Monga O, Mueller CW, Nunan N, Pot V, Schlüter S, Schmidt H, Vogel HJ. Emergent Properties of Microbial Activity in Heterogeneous Soil Microenvironments: Different Research Approaches Are Slowly Converging, Yet Major Challenges Remain. Front Microbiol 2018; 9:1929. [PMID: 30210462 PMCID: PMC6119716 DOI: 10.3389/fmicb.2018.01929] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/30/2018] [Indexed: 01/17/2023] Open
Abstract
Over the last 60 years, soil microbiologists have accumulated a wealth of experimental data showing that the bulk, macroscopic parameters (e.g., granulometry, pH, soil organic matter, and biomass contents) commonly used to characterize soils provide insufficient information to describe quantitatively the activity of soil microorganisms and some of its outcomes, like the emission of greenhouse gasses. Clearly, new, more appropriate macroscopic parameters are needed, which reflect better the spatial heterogeneity of soils at the microscale (i.e., the pore scale) that is commensurate with the habitat of many microorganisms. For a long time, spectroscopic and microscopic tools were lacking to quantify processes at that scale, but major technological advances over the last 15 years have made suitable equipment available to researchers. In this context, the objective of the present article is to review progress achieved to date in the significant research program that has ensued. This program can be rationalized as a sequence of steps, namely the quantification and modeling of the physical-, (bio)chemical-, and microbiological properties of soils, the integration of these different perspectives into a unified theory, its upscaling to the macroscopic scale, and, eventually, the development of new approaches to measure macroscopic soil characteristics. At this stage, significant progress has been achieved on the physical front, and to a lesser extent on the (bio)chemical one as well, both in terms of experiments and modeling. With regard to the microbial aspects, although a lot of work has been devoted to the modeling of bacterial and fungal activity in soils at the pore scale, the appropriateness of model assumptions cannot be readily assessed because of the scarcity of relevant experimental data. For significant progress to be made, it is crucial to make sure that research on the microbial components of soil systems does not keep lagging behind the work on the physical and (bio)chemical characteristics. Concerning the subsequent steps in the program, very little integration of the various disciplinary perspectives has occurred so far, and, as a result, researchers have not yet been able to tackle the scaling up to the macroscopic level. Many challenges, some of them daunting, remain on the path ahead. Fortunately, a number of these challenges may be resolved by brand new measuring equipment that will become commercially available in the very near future.
Collapse
Affiliation(s)
- Philippe C. Baveye
- UMR ECOSYS, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, rance
| | - Wilfred Otten
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Alexandra Kravchenko
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - María Balseiro-Romero
- UMR ECOSYS, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, rance
- Department of Soil Science and Agricultural Chemistry, Centre for Research in Environmental Technologies, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Éléonore Beckers
- Soil–Water–Plant Exchanges, Terra Research Centre, BIOSE, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Maha Chalhoub
- UMR ECOSYS, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - Christophe Darnault
- Laboratory of Hydrogeoscience and Biological Engineering, L.G. Rich Environmental Laboratory, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, United States
| | - Thilo Eickhorst
- Faculty 2 Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Patricia Garnier
- UMR ECOSYS, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - Simona Hapca
- Dundee Epidemiology and Biostatistics Unit, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Serkan Kiranyaz
- Department of Electrical Engineering, Qatar University, Doha, Qatar
| | - Olivier Monga
- Institut de Recherche pour le Développement, Bondy, France
| | - Carsten W. Mueller
- Lehrstuhl für Bodenkunde, Technical University of Munich, Freising, Germany
| | - Naoise Nunan
- Institute of Ecology and Environmental Sciences – Paris, Sorbonne Universités, CNRS, IRD, INRA, P7, UPEC, Paris, France
| | - Valérie Pot
- UMR ECOSYS, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - Steffen Schlüter
- Soil System Science, Helmholtz-Zentrum für Umweltforschung GmbH – UFZ, Leipzig, Germany
| | - Hannes Schmidt
- Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry meets Microbiology’, University of Vienna, Vienna, Austria
| | - Hans-Jörg Vogel
- Soil System Science, Helmholtz-Zentrum für Umweltforschung GmbH – UFZ, Leipzig, Germany
- Institute of Soil Science and Plant Nutrition, Martin Luther University of Halle-Wittenberg, Halle, Germany
| |
Collapse
|
25
|
Gabizon R, Lee A, Vahedian-Movahed H, Ebright RH, Bustamante CJ. Pause sequences facilitate entry into long-lived paused states by reducing RNA polymerase transcription rates. Nat Commun 2018; 9:2930. [PMID: 30050038 PMCID: PMC6062546 DOI: 10.1038/s41467-018-05344-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022] Open
Abstract
Transcription by RNA polymerase (RNAP) is interspersed with sequence-dependent pausing. The processes through which paused states are accessed and stabilized occur at spatiotemporal scales beyond the resolution of previous methods, and are poorly understood. Here, we combine high-resolution optical trapping with improved data analysis methods to investigate the formation of paused states at enhanced temporal resolution. We find that pause sites reduce the forward transcription rate of nearly all RNAP molecules, rather than just affecting the subset of molecules that enter long-lived pauses. We propose that the reduced rates at pause sites allow time for the elongation complex to undergo conformational changes required to enter long-lived pauses. We also find that backtracking occurs stepwise, with states backtracked by at most one base pair forming quickly, and further backtracking occurring slowly. Finally, we find that nascent RNA structures act as modulators that either enhance or attenuate pausing, depending on the sequence context.
Collapse
Affiliation(s)
- Ronen Gabizon
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA, 94720, USA
| | - Antony Lee
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Hanif Vahedian-Movahed
- Department of Chemistry and Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Richard H Ebright
- Department of Chemistry and Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Carlos J Bustamante
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA, 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Department of Molecular and Cell Biology, and Kavli Energy Nanoscience Institute, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
26
|
Madariaga-Marcos J, Hormeño S, Pastrana CL, Fisher GLM, Dillingham MS, Moreno-Herrero F. Force determination in lateral magnetic tweezers combined with TIRF microscopy. NANOSCALE 2018; 10:4579-4590. [PMID: 29461549 PMCID: PMC5831119 DOI: 10.1039/c7nr07344e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/07/2017] [Indexed: 06/08/2023]
Abstract
Combining single-molecule techniques with fluorescence microscopy has attracted much interest because it allows the correlation of mechanical measurements with directly visualized DNA : protein interactions. In particular, its combination with total internal reflection fluorescence microscopy (TIRF) is advantageous because of the high signal-to-noise ratio this technique achieves. This, however, requires stretching long DNA molecules across the surface of a flow cell to maximize polymer exposure to the excitation light. In this work, we develop a module to laterally stretch DNA molecules at a constant force, which can be easily implemented in regular or combined magnetic tweezers (MT)-TIRF setups. The pulling module is further characterized in standard flow cells of different thicknesses and glass capillaries, using two types of micrometer size superparamagnetic beads, long DNA molecules, and a home-built device to rotate capillaries with mrad precision. The force range achieved by the magnetic pulling module was between 0.1 and 30 pN. A formalism for estimating forces in flow-stretched tethered beads is also proposed, and the results compared with those of lateral MT, demonstrating that lateral MT achieve higher forces with lower dispersion. Finally, we show the compatibility with TIRF microscopy and the parallelization of measurements by characterizing DNA binding by the centromere-binding protein ParB from Bacillus subtilis. Simultaneous MT pulling and fluorescence imaging demonstrate the non-specific binding of BsParB on DNA under conditions restrictive to condensation.
Collapse
Affiliation(s)
- J. Madariaga-Marcos
- Department of Macromolecular Structures , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas , 28049 Cantoblanco , Madrid , Spain .
| | - S. Hormeño
- Department of Macromolecular Structures , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas , 28049 Cantoblanco , Madrid , Spain .
| | - C. L. Pastrana
- Department of Macromolecular Structures , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas , 28049 Cantoblanco , Madrid , Spain .
| | - G. L. M. Fisher
- DNA:Protein Interactions Unit , School of Biochemistry , Biomedical Sciences Building , University of Bristol , Bristol , BS8 1TD , UK
| | - M. S. Dillingham
- DNA:Protein Interactions Unit , School of Biochemistry , Biomedical Sciences Building , University of Bristol , Bristol , BS8 1TD , UK
| | - F. Moreno-Herrero
- Department of Macromolecular Structures , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas , 28049 Cantoblanco , Madrid , Spain .
| |
Collapse
|
27
|
Whitley K, Comstock M, Chemla Y. High-Resolution Optical Tweezers Combined With Single-Molecule Confocal Microscopy. Methods Enzymol 2017; 582:137-169. [PMID: 28062033 PMCID: PMC5540136 DOI: 10.1016/bs.mie.2016.10.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We describe the design, construction, and application of an instrument combining dual-trap, high-resolution optical tweezers and a confocal microscope. This hybrid instrument allows nanomechanical manipulation and measurement simultaneously with single-molecule fluorescence detection. We present the general design principles that overcome the challenges of maximizing optical trap resolution while maintaining single-molecule fluorescence sensitivity, and provide details on the construction and alignment of the instrument. This powerful new tool is just beginning to be applied to biological problems. We present step-by-step instructions on an application of this technique that highlights the instrument's capabilities, detecting conformational dynamics in a nucleic acid-processing enzyme.
Collapse
Affiliation(s)
- K.D. Whitley
- University of Illinois at Urbana–Champaign, Urbana, IL, United States
| | - M.J. Comstock
- Michigan State University, East Lansing, MI, United States
| | - Y.R. Chemla
- University of Illinois at Urbana–Champaign, Urbana, IL, United States,Center for the Physics of Living Cells, University of Illinois at Urbana–Champaign, Urbana, IL, United States,Corresponding author:
| |
Collapse
|