1
|
Toner K, McCann CD, Bollard CM. Applications of cell therapy in the treatment of virus-associated cancers. Nat Rev Clin Oncol 2024; 21:709-724. [PMID: 39160243 DOI: 10.1038/s41571-024-00930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/21/2024]
Abstract
A diverse range of viruses have well-established roles as the primary driver of oncogenesis in various haematological malignancies and solid tumours. Indeed, estimates suggest that approximately 1.5 million patients annually are diagnosed with virus-related cancers. The predominant human oncoviruses include Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis B and C viruses (HBV and HCV), human papillomavirus (HPV), human T-lymphotropic virus type 1 (HTLV1), and Merkel cell polyomavirus (MCPyV). In addition, although not inherently oncogenic, human immunodeficiency virus (HIV) is associated with immunosuppression that contributes to the development of AIDS-defining cancers (specifically, Kaposi sarcoma, aggressive B cell non-Hodgkin lymphoma and cervical cancer). Given that an adaptive T cell-mediated immune response is crucial for the control of viral infections, increasing research is being focused on evaluating virus-specific T cell therapies for the treatment of virus-associated cancers. In this Review, we briefly outline the roles of viruses in the pathogenesis of these malignancies before describing progress to date in the field of virus-specific T cell therapy and evaluating the potential utility of these therapies to treat or possibly even prevent virus-related malignancies.
Collapse
Affiliation(s)
- Keri Toner
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Chase D McCann
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
2
|
Wistinghausen B, Toner K, Barkauskas DA, Jerkins LP, Kinoshita H, Chansky P, Pezzella G, Saguilig L, Hayashi RJ, Abhyankar H, Scull B, Karri V, Tanna J, Hanley P, Hermiston ML, Allen CE, Bollard CM. Durable immunity to EBV after rituximab and third-party LMP-specific T cells: a Children's Oncology Group study. Blood Adv 2024; 8:1116-1127. [PMID: 38163318 PMCID: PMC10909726 DOI: 10.1182/bloodadvances.2023010832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 01/03/2024] Open
Abstract
ABSTRACT Posttransplant lymphoproliferative disease (PTLD) in pediatric solid organ transplant (SOT) recipients is characterized by uncontrolled proliferation of Epstein-Barr virus-infected (EBV+) B cells due to decreased immune function. This study evaluated the feasibility, safety, clinical and immunobiological outcomes in pediatric SOT recipients with PTLD treated with rituximab and third-party latent membrane protein-specific T cells (LMP-TCs). Newly diagnosed (ND) patients without complete response to rituximab and all patients with relapsed/refractory (R/R) disease received LMP-TCs. Suitable LMP-TC products were available for all eligible subjects. Thirteen of 15 patients who received LMP-TCs were treated within the prescribed 14-day time frame. LMP-TC therapy was generally well tolerated. Notable adverse events included 3 episodes of rejection in cardiac transplant recipients during LMP-TC therapy attributed to subtherapeutic immunosuppression and 1 episode of grade 3 cytokine release syndrome. Clinical outcomes were associated with disease severity. Overall response rate (ORR) after LMP-TC cycle 1 was 70% (7/10) for the ND cohort and 20% (1/5) for the R/R cohort. For all cohorts combined, the best ORR for LMP-TC cycles 1 and 2 was 53% and the 2-year overall survival was 70.7%. vβT-cell receptor sequencing showed persistence of adoptively transferred third-party LMP-TCs for up to 8 months in the ND cohort. This study establishes the feasibility of administering novel T-cell therapies in a cooperative group clinical trial and demonstrates the potential for positive outcomes without chemotherapy for ND patients with PTLD. This trial was registered at www.clinicaltrials.gov as #NCT02900976 and at the Children's Oncology Group as ANHL1522.
Collapse
Affiliation(s)
- Birte Wistinghausen
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Keri Toner
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Donald A. Barkauskas
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- Children’s Oncology Group Statistics and Data Center, Monrovia, CA
| | - Lauren P Jerkins
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Hannah Kinoshita
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
- The George Washington University School of Medicine and Health Sciences, Washington, DC
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Pamela Chansky
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Gloria Pezzella
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
| | - Lauren Saguilig
- Children’s Oncology Group Statistics and Data Center, Monrovia, CA
| | - Robert J. Hayashi
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO
| | - Harshal Abhyankar
- Baylor College of Medicine, Texas Children’s Hospital Cancer Center, Houston, TX
| | - Brooks Scull
- Baylor College of Medicine, Texas Children’s Hospital Cancer Center, Houston, TX
| | | | - Jay Tanna
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
| | - Patrick Hanley
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Michelle L. Hermiston
- Department of Pediatrics, Benioff Children’s Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Carl E. Allen
- Baylor College of Medicine, Texas Children’s Hospital Cancer Center, Houston, TX
| | - Catherine M. Bollard
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
3
|
Toner K, Bollard CM. EBV+ lymphoproliferative diseases: opportunities for leveraging EBV as a therapeutic target. Blood 2022; 139:983-994. [PMID: 34437680 PMCID: PMC8854679 DOI: 10.1182/blood.2020005466] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/24/2021] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human tumor virus, which contributes to the development of lymphoproliferative disease, most notably in patients with impaired immunity. EBV-associated lymphoproliferation is characterized by expression of latent EBV proteins and ranges in severity from a relatively benign proliferative response to aggressive malignant lymphomas. The presence of EBV can also serve as a unique target for directed therapies for the treatment of EBV lymphoproliferative diseases, including T cell-based immune therapies. In this review, we describe the EBV-associated lymphoproliferative diseases and particularly focus on the therapies that target EBV.
Collapse
Affiliation(s)
- Keri Toner
- Center for Cancer and Immunology Research
- Division of Oncology, and
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC; and
- GW Cancer Center, George Washington University, Washington, DC
| | - Catherine M Bollard
- Center for Cancer and Immunology Research
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC; and
- GW Cancer Center, George Washington University, Washington, DC
| |
Collapse
|
4
|
Lee CC, Hsu TC, Kuo CC, Liu MA, Abdelfattah AM, Chang CN, Yao M, Li CC, Wu KH, Chen TC, Gau JP, Wang PN, Liu YC, Chiou LW, Lee MY, Li SS, Chao TY, Jou ST, Chang HH. Validation of a Post-Transplant Lymphoproliferative Disorder Risk Prediction Score and Derivation of a New Prediction Score Using a National Bone Marrow Transplant Registry Database. Oncologist 2021; 26:e2034-e2041. [PMID: 34506688 DOI: 10.1002/onco.13969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We externally validated Fujimoto's post-transplant lymphoproliferative disorder (PTLD) scoring system for risk prediction by using the Taiwan Blood and Marrow Transplant Registry Database (TBMTRD) and aimed to create a superior scoring system using machine learning methods. MATERIALS AND METHODS Consecutive allogeneic hematopoietic cell transplant (HCT) recipients registered in the TBMTRD from 2009 to 2018 were included in this study. The Fujimoto PTLD score was calculated for each patient. The machine learning algorithm, least absolute shrinkage and selection operator (LASSO), was used to construct a new score system, which was validated using the fivefold cross-validation method. RESULTS We identified 2,148 allogeneic HCT recipients, of which 57 (2.65%) developed PTLD in the TBMTRD. In this population, the probabilities for PTLD development by Fujimoto score at 5 years for patients in the low-, intermediate-, high-, and very-high-risk groups were 1.15%, 3.06%, 4.09%, and 8.97%, respectively. The score model had acceptable discrimination with a C-statistic of 0.65 and a near-perfect moderate calibration curve (HL test p = .81). Using LASSO regression analysis, a four-risk group model was constructed, and the new model showed better discrimination in the validation cohort when compared with The Fujimoto PTLD score (C-statistic: 0.75 vs. 0.65). CONCLUSION Our study demonstrated a more comprehensive model when compared with Fujimoto's PTLD scoring system, which included additional predictors identified through machine learning that may have enhanced discrimination. The widespread use of this promising tool for risk stratification of patients receiving HCT allows identification of high-risk patients that may benefit from preemptive treatment for PTLD. IMPLICATIONS FOR PRACTICE This study validated the Fujimoto score for the prediction of post-transplant lymphoproliferative disorder (PTLD) development following hematopoietic cell transplant (HCT) in an external, independent, and nationally representative population. This study also developed a more comprehensive model with enhanced discrimination for better risk stratification of patients receiving HCT, potentially changing clinical managements in certain risk groups. Previously unreported risk factors associated with the development of PTLD after HCT were identified using the machine learning algorithm, least absolute shrinkage and selection operator, including pre-HCT medical history of mechanical ventilation and the chemotherapy agents used in conditioning regimen.
Collapse
Affiliation(s)
- Chien-Chang Lee
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Center of Intelligent Healthcare, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Chun Hsu
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Chih Kuo
- Department of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Michael A Liu
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Ahmed M Abdelfattah
- Information Services Department, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Chia-Na Chang
- Department of Radiation Oncology, Taipei Municipal Wanfang Hospital, Taipei, Taiwan
| | - Ming Yao
- Division of Hematology and Oncology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Cheng Li
- Division of Pediatric Hematology and Oncology, China Medical University Children's Hospital, Taichung, Taiwan
| | - Kang-Hsi Wu
- Division of Pediatric Hematology and Oncology, China Medical University Children's Hospital, Taichung, Taiwan
| | - Tsung-Chih Chen
- Division of Hematology and Oncology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jyh-Pyng Gau
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Nan Wang
- Division of Hematology and Oncology, Department of Internal Medicine, Chang Gung Medical Foundation, Linkou Branch, Taoyuan, Taiwan
| | - Yi-Chang Liu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lun-Wei Chiou
- Department of Hematology and Medical Oncology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | - Ming-Yang Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Sin-Syue Li
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Tsu-Yi Chao
- Division of Hemato-Oncology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
| | - Shiann-Tarng Jou
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiu-Hao Chang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Cooper RS, Kowalczuk A, Wilkie G, Vickers MA, Turner ML, Campbell JDM, Fraser AR. Cytometric analysis of T cell phenotype using cytokine profiling for improved manufacturing of an EBV-specific T cell therapy. Clin Exp Immunol 2021; 206:68-81. [PMID: 34146397 PMCID: PMC8446406 DOI: 10.1111/cei.13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/06/2021] [Accepted: 05/28/2021] [Indexed: 11/27/2022] Open
Abstract
Adoptive immunotherapy using Epstein–Barr Virus (EBV)‐specific T cells is a potentially curative treatment for patients with EBV‐related malignancies where other clinical options have proved ineffective. We describe improved good manufacturing practice (GMP)‐compliant culture and analysis processes for conventional lymphoblastoid cell line (LCL)‐driven EBV‐specific T cell manufacture, and describe an improved phenotyping approach for analysing T cell products. We optimized the current LCL‐mediated clinical manufacture of EBV‐specific T cells to establish an improved process using xenoprotein‐free GMP‐compliant reagents throughout, and compared resulting products with our previous banked T cell clinical therapy. We assessed effects of changes to LCL:T cell ratio in T cell expansion, and developed a robust flow cytometric marker panel covering T cell memory, activation, differentiation and intracellular cytokine release to characterize T cells more effectively. These data were analysed using a t‐stochastic neighbour embedding (t‐SNE) algorithm. The optimized GMP‐compliant process resulted in reduced cell processing time and improved retention and expansion of central memory T cells. Multi‐parameter flow cytometry determined the optimal protocol for LCL stimulation and expansion of T cells and demonstrated that cytokine profiling using interleukin (IL)‐2, tumour necrosis factor (TNF)‐α and interferon (IFN)‐γ was able to determine the differentiation status of T cells throughout culture and in the final product. We show that fully GMP‐compliant closed‐process culture of LCL‐mediated EBV‐specific T cells is feasible, and profiling of T cells through cytokine expression gives improved characterization of start material, in‐process culture conditions and final product. Visualization of the complex multi‐parameter flow cytometric data can be simplified using t‐SNE analysis.
Collapse
Affiliation(s)
- Rachel S Cooper
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Jack Copland Centre, Edinburgh, UK
| | - Aleksandra Kowalczuk
- Blood Transfusion Centre, Scottish National Blood Transfusion Service, Aberdeen, UK
| | - Gwen Wilkie
- Blood Transfusion Centre, Scottish National Blood Transfusion Service, Aberdeen, UK
| | - Mark A Vickers
- Blood Transfusion Centre, Scottish National Blood Transfusion Service, Aberdeen, UK
| | - Marc L Turner
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Jack Copland Centre, Edinburgh, UK
| | - John D M Campbell
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Jack Copland Centre, Edinburgh, UK
| | - Alasdair R Fraser
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Jack Copland Centre, Edinburgh, UK
| |
Collapse
|
6
|
Bar-Or A, Pender MP, Khanna R, Steinman L, Hartung HP, Maniar T, Croze E, Aftab BT, Giovannoni G, Joshi MA. Epstein-Barr Virus in Multiple Sclerosis: Theory and Emerging Immunotherapies. Trends Mol Med 2019; 26:296-310. [PMID: 31862243 PMCID: PMC7106557 DOI: 10.1016/j.molmed.2019.11.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022]
Abstract
New treatments for multiple sclerosis (MS) focused on B cells have created an atmosphere of excitement in the MS community. B cells are now known to play a major role in disease, demonstrated by the highly impactful effect of a B cell-depleting antibody on controlling MS. The idea that a virus may play a role in the development of MS has a long history and is supported mostly by studies demonstrating a link between B cell-tropic Epstein–Barr virus (EBV) and disease onset. Efforts to develop antiviral strategies for treating MS are underway. Although gaps remain in our understanding of the etiology of MS, the role, if any, of viruses in propagating pathogenic immune responses deserves attention.
Collapse
Affiliation(s)
- Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Pender
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Rajiv Khanna
- Centre for Immunotherapy and Vaccine Development, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Tap Maniar
- Clinical Development, Torque Therapeutics, Boston, MA, USA
| | - Ed Croze
- IRIS-Bay, San Francisco, CA, USA.
| | - Blake T Aftab
- Preclinical Science and Translational Medicine, Atara Biotherapeutics, South San Francisco, CA, USA
| | - Gavin Giovannoni
- Blizard Institute, Queen Mary University London, Barts and the London School of Medicine, London, UK
| | - Manher A Joshi
- Medical Affairs, Atara Biotherapeutics, South San Francisco, CA, USA
| |
Collapse
|
7
|
Münz C. Latency and lytic replication in Epstein-Barr virus-associated oncogenesis. Nat Rev Microbiol 2019; 17:691-700. [PMID: 31477887 DOI: 10.1038/s41579-019-0249-7] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/19/2022]
Abstract
Epstein-Barr virus (EBV) was the first tumour virus identified in humans. The virus is primarily associated with lymphomas and epithelial cell cancers. These tumours express latent EBV antigens and the oncogenic potential of individual latent EBV proteins has been extensively explored. Nevertheless, it was presumed that the pro-proliferative and anti-apoptotic functions of these oncogenes allow the virus to persist in humans; however, recent evidence suggests that cellular transformation is not required for virus maintenance. Vice versa, lytic EBV replication was assumed to destroy latently infected cells and thereby inhibit tumorigenesis, but at least the initiation of the lytic cycle has now been shown to support EBV-driven malignancies. In addition to these changes in the roles of latent and lytic EBV proteins during tumorigenesis, the function of non-coding RNAs has become clearer, suggesting that they might mainly mediate immune escape rather than cellular transformation. In this Review, these recent findings will be discussed with respect to the role of EBV-encoded oncogenes in viral persistence and the contributions of lytic replication as well as non-coding RNAs in virus-driven tumour formation. Accordingly, early lytic EBV antigens and attenuated viruses without oncogenes and microRNAs could be harnessed for immunotherapies and vaccination.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
8
|
Toner K, Bollard CM, Dave H. T-cell therapies for T-cell lymphoma. Cytotherapy 2019; 21:935-942. [PMID: 31320195 DOI: 10.1016/j.jcyt.2019.04.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 01/05/2023]
Abstract
T-cell lymphomas represent a subpopulation of non-Hodgkin lymphomas with poor outcomes when treated with conventional chemotherapy. A variety of novel agents have been introduced as new treatment strategies either as first-line treatment or in conjunction with chemotherapy. Immunotherapy has been demonstrated to be a promising area for new therapeutics, including monoclonal antibodies and adoptive cellular therapeutics. T-cell therapeutics have been shown to have significant success in the treatment of B-cell malignancies and are rapidly expanding as potential treatment options for other cancers including T-cell lymphomas. Although treating T-cell lymphomas with T-cell therapeutics has unique challenges, multiple targets are currently being studied both preclinically and in clinical trials.
Collapse
Affiliation(s)
- Keri Toner
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA; The George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | - Hema Dave
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA; The George Washington School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
9
|
Damania B, Münz C. Immunodeficiencies that predispose to pathologies by human oncogenic γ-herpesviruses. FEMS Microbiol Rev 2019; 43:181-192. [PMID: 30649299 PMCID: PMC6435449 DOI: 10.1093/femsre/fuy044] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022] Open
Abstract
Human γ-herpesviruses include the closely related tumor viruses Epstein Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV). EBV is the most growth-transforming pathogen known and is linked to at least seven human malignancies. KSHV is also associated with three human cancers. Most EBV- and KSHV-infected individuals fortunately remain disease-free despite persistent infection and this is likely due to the robustness of the immune control that they mount against these tumor viruses. However, upon immune suppression EBV- and KSHV-associated malignancies emerge at increased frequencies. Moreover, primary immunodeficiencies with individual mutations that predispose to EBV or KSHV disease allow us to gain insights into a catalog of molecules that are required for the immune control of these tumor viruses. Curiously, there is little overlap between the mutation targets that predispose individuals to EBV versus KSHV disease, even so both viruses can infect the same host cell, human B cells. These differences will be discussed in this review. A better understanding of the crucial components in the near-perfect life-long immune control of EBV and KSHV should allow us to target malignancies that are associated with these viruses, but also induce similar immune responses against other tumors.
Collapse
Affiliation(s)
- Blossom Damania
- Lineberger Cancer Research Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
10
|
Rühl J, Citterio C, Engelmann C, Haigh T, Dzionek A, Dreyer J, Khanna R, Taylor GS, Wilson JB, Leung CS, Münz C. Heterologous prime-boost vaccination protects against EBV antigen-expressing lymphomas. J Clin Invest 2019; 129:2071-2087. [PMID: 31042161 DOI: 10.1172/jci125364] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
The Epstein-Barr virus (EBV) is one of the predominant tumor viruses in humans, but so far no therapeutic or prophylactic vaccination against this transforming pathogen is available. We demonstrated that heterologous prime-boost vaccination with the nuclear antigen 1 of EBV (EBNA1), either targeted to the DEC205 receptor on DCs or expressed from a recombinant modified vaccinia virus Ankara (MVA) vector, improved priming of antigen-specific CD4+ T cell help. This help supported the expansion and maintenance of EBNA1-specific CD8+ T cells that are most efficiently primed by recombinant adenoviruses that encode EBNA1. These combined CD4+ and CD8+ T cell responses protected against EBNA1-expressing T and B cell lymphomas, including lymphoproliferations that emerged spontaneously after EBNA1 expression. In particular, the heterologous EBNA1-expressing adenovirus, boosted by EBNA1-encoding MVA vaccination, demonstrated protection as a prophylactic and therapeutic treatment for the respective lymphoma challenges. Our study shows that such heterologous prime-boost vaccinations against EBV-associated malignancies as well as symptomatic primary EBV infection should be further explored for clinical development.
Collapse
Affiliation(s)
- Julia Rühl
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Carmen Citterio
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Tracey Haigh
- Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, United Kingdom
| | | | - Johannes Dreyer
- Institute for Pathology, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Graham S Taylor
- Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, United Kingdom
| | - Joanna B Wilson
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Carol S Leung
- University of Oxford, Nuffield Department of Medicine, Ludwig Institute for Cancer Research, Oxford, United Kingdom
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Abstract
The human persistent and oncogenic Epstein-Barr virus (EBV) was one of the first viruses that were described to express viral microRNAs (miRNAs). These have been proposed to modulate many host and viral functions, but their predominant role in vivo has remained unclear. We compared recombinant EBVs expressing or lacking miRNAs during in vivo infection of mice with reconstituted human immune system components and found that miRNA-deficient EBV replicates to lower viral titers with decreased frequencies of proliferating EBV-infected B cells. In response, activated cytotoxic EBV-specific T cells expand to lower frequencies than during infection with miRNA-expressing EBV. However, when we depleted CD8+ T cells the miRNA-deficient virus reached similar viral loads as wild-type EBV, increasing by more than 200-fold in the spleens of infected animals. Furthermore, CD8+ T cell depletion resulted in lymphoma formation in the majority of animals after miRNA-deficient EBV infection, while no tumors emerged when CD8+ T cells were present. Thus, miRNAs mainly serve the purpose of immune evasion from T cells in vivo and could become a therapeutic target to render EBV-associated malignancies more immunogenic.IMPORTANCE Epstein-Barr virus (EBV) infects the majority of the human population and usually persists asymptomatically within its host. Nevertheless, EBV is the causative agent for infectious mononucleosis (IM) and for lymphoproliferative disorders, including Burkitt and Hodgkin lymphomas. The immune system of the infected host is thought to prevent tumor formation in healthy virus carriers. EBV was one of the first viruses described to express miRNAs, and many host and viral targets were identified for these in vitro However, their role during EBV infection in vivo remained unclear. This work is the first to describe that EBV miRNAs mainly increase viremia and virus-associated lymphomas through dampening antigen recognition by adaptive immune responses in mice with reconstituted immune responses. Currently, there is no prophylactic or therapeutic treatment to restrict IM or EBV-associated malignancies; thus, targeting EBV miRNAs could promote immune responses and limit EBV-associated pathologies.
Collapse
|
12
|
Wu X, Wang F, Li Y, Wang X, Liu P, Zhang H, Ge Z, Zhang X, Gao C, Chen B. Evaluation of latent membrane protein 1 and microRNA-155 for the prognostic prediction of diffuse large B cell lymphoma. Oncol Lett 2018; 15:9725-9734. [PMID: 29844839 PMCID: PMC5958882 DOI: 10.3892/ol.2018.8560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/16/2018] [Indexed: 12/23/2022] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) has previously been demonstrated to contribute to the mortality of lymphoma with various aggressive features. The prognostic role of the biomarkers latent membrane protein (LMP) 1 and microRNA-(miR)-155 in DLBCL remain controversial. The present study primarily aimed to assess the effect of LMP1 and miR-155 on the survival of DLBCL patients, and additionally evaluate the clinical features to observe their influence on outcomes, compared with previous studies. Formalin-fixed and paraffin-embedded samples were collected from our center between May 2010 and December 2011. Microarray analysis, immunohistochemical analysis and reverse transcription-quantitative polymerase chain reaction were used to evaluate the expression of LMP1 and miR-155. The association between biomarkers or clinical features and patient outcomes was assessed using the log-rank statistical test, Cox proportional hazard model and Kaplan-Meier method. SPSS software was used to statistically analyze the data. A total of 82 patients were included in the present study. The results demonstrated that high expression of LMP1 and miR-155 may be associated with a poor progression-free survival rate, while a high International Prognostic Index score and high expression of LMP1 may be associated with a poor overall survival rate. These results indicated that LMP1 and miR-155 may be novel and reliable biomarkers for the prognostic prediction of lymphoma, and will potentially be analyzed in the future to evaluate patient prognosis.
Collapse
Affiliation(s)
- Xue Wu
- Department of Hematology (Key Department of Jiangsu Medicine), Medical School, The Affiliated Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Fei Wang
- Department of Hematology (Key Department of Jiangsu Medicine), Medical School, The Affiliated Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yuan Li
- Department of Oncology, Medical School, The Affiliated Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiyong Wang
- Department of Oncology, Medical School, The Affiliated Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ping Liu
- Department of Hematology (Key Department of Jiangsu Medicine), Medical School, The Affiliated Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Haijun Zhang
- Department of Oncology, Medical School, The Affiliated Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Zheng Ge
- Department of Hematology (Key Department of Jiangsu Medicine), Medical School, The Affiliated Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaoping Zhang
- Department of Hematology (Key Department of Jiangsu Medicine), Medical School, The Affiliated Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Chong Gao
- Department of Hematology (Key Department of Jiangsu Medicine), Medical School, The Affiliated Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Baoan Chen
- Department of Hematology (Key Department of Jiangsu Medicine), Medical School, The Affiliated Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
13
|
Ahmed M, Lopez-Albaitero A, Pankov D, Santich BH, Liu H, Yan S, Xiang J, Wang P, Hasan AN, Selvakumar A, O'Reilly RJ, Liu C, Cheung NKV. TCR-mimic bispecific antibodies targeting LMP2A show potent activity against EBV malignancies. JCI Insight 2018; 3:97805. [PMID: 29467338 DOI: 10.1172/jci.insight.97805] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/10/2018] [Indexed: 12/14/2022] Open
Abstract
EBV infection is associated with a number of malignancies of clinical unmet need, including Hodgkin lymphoma, nasopharyngeal carcinoma, gastric cancer, and posttransplant lymphoproliferative disease (PTLD), all of which express the EBV protein latent membrane protein 2A (LMP2A), an antigen that is difficult to target by conventional antibody approaches. To overcome this, we utilized phage display technology and a structure-guided selection strategy to generate human T cell receptor-like (TCR-like) monoclonal antibodies with exquisite specificity for the LMP2A-derived nonamer peptide, C426LGGLLTMV434 (CLG), as presented on HLA-A*02:01. Our lead construct, clone 38, closely mimics the native binding mode of a TCR, recognizing residues at position P3-P8 of the CLG peptide. To enhance antitumor potency, we constructed dimeric T cell engaging bispecific antibodies (DiBsAb) of clone 38 and an affinity-matured version clone 38-2. Both DiBsAb showed potent antitumor properties in vitro and in immunodeficient mice implanted with EBV transformed B lymphoblastoid cell lines and human T cell effectors. Clone 38 DiBsAb showed a stronger safety profile compared with its affinity-matured variant, with no activity against EBV- tumor cell lines and a panel of normal tissues, and was less cross-reactive against HLA-A*02:01 cells pulsed with a panel of CLG-like peptides predicted from a proteomic analysis. Clone 38 was also shown to recognize the CLG peptide on other HLA-A*02 suballeles, including HLA-A*02:02, HLA-A*02:04, and HLA-A*02:06, allowing for its potential use in additional populations. Clone 38 DiBsAb is a lead candidate to treat EBV malignancies with one of the strongest safety profiles documented for TCR-like mAbs.
Collapse
Affiliation(s)
- Mahiuddin Ahmed
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andres Lopez-Albaitero
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dmitry Pankov
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Brian H Santich
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hong Liu
- Eureka Therapeutics, Emeryville, California, USA
| | - Su Yan
- Eureka Therapeutics, Emeryville, California, USA
| | - Jingyi Xiang
- Eureka Therapeutics, Emeryville, California, USA
| | - Pei Wang
- Eureka Therapeutics, Emeryville, California, USA
| | - Aisha N Hasan
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Annamalai Selvakumar
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Richard J O'Reilly
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Cheng Liu
- Eureka Therapeutics, Emeryville, California, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
14
|
Kumaresan PR, da Silva TA, Kontoyiannis DP. Methods of Controlling Invasive Fungal Infections Using CD8 + T Cells. Front Immunol 2018; 8:1939. [PMID: 29358941 PMCID: PMC5766637 DOI: 10.3389/fimmu.2017.01939] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Invasive fungal infections (IFIs) cause high rates of morbidity and mortality in immunocompromised patients. Pattern-recognition receptors present on the surfaces of innate immune cells recognize fungal pathogens and activate the first line of defense against fungal infection. The second line of defense is the adaptive immune system which involves mainly CD4+ T cells, while CD8+ T cells also play a role. CD8+ T cell-based vaccines designed to prevent IFIs are currently being investigated in clinical trials, their use could play an especially important role in acquired immune deficiency syndrome patients. So far, none of the vaccines used to treat IFI have been approved by the FDA. Here, we review current and future antifungal immunotherapy strategies involving CD8+ T cells. We highlight recent advances in the use of T cells engineered using a Sleeping Beauty vector to treat IFIs. Recent clinical trials using chimeric antigen receptor (CAR) T-cell therapy to treat patients with leukemia have shown very promising results. We hypothesized that CAR T cells could also be used to control IFI. Therefore, we designed a CAR that targets β-glucan, a sugar molecule found in most of the fungal cell walls, using the extracellular domain of Dectin-1, which binds to β-glucan. Mice treated with D-CAR+ T cells displayed reductions in hyphal growth of Aspergillus compared to the untreated group. Patients suffering from IFIs due to primary immunodeficiency, secondary immunodeficiency (e.g., HIV), or hematopoietic transplant patients may benefit from bioengineered CAR T cell therapy.
Collapse
Affiliation(s)
- Pappanaicken R. Kumaresan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thiago Aparecido da Silva
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
15
|
Sun Z, Yan L, Tang J, Qian Q, Lenberg J, Zhu D, Liu W, Wu K, Wang Y, Lu S. Brief introduction of current technologies in isolation of broadly neutralizing HIV-1 antibodies. Virus Res 2017; 243:75-82. [PMID: 29051051 PMCID: PMC7114535 DOI: 10.1016/j.virusres.2017.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/11/2022]
Abstract
HIV/AIDS has become a worldwide pandemic. Before an effective HIV-1 vaccine eliciting broadly neutralizing monoclonal antibodies (bnmAbs) is fully developed, passive immunization for prevention and treatment of HIV-1 infection may alleviate the burden caused by the pandemic. Among HIV-1 infected individuals, about 20% of them generated cross-reactive neutralizing antibodies two to four years after infection, the details of which could provide knowledge for effective vaccine design. Recent progress in techniques for isolation of human broadly neutralizing antibodies has facilitated the study of passive immunization. The isolation and characterization of large panels of potent human broadly neutralizing antibodies has revealed new insights into the principles of antibody-mediated neutralization of HIV. In this paper, we review the current effective techniques in broadly neutralizing antibody isolation.
Collapse
Affiliation(s)
- Zehua Sun
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States.
| | - Lixin Yan
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China.
| | - Jiansong Tang
- Department of Technical Specialist, China Bioengineering Technology Group Limited, Unit 209,Building 16W, Hong Kong Science Park, Shatin, NT, HK, 999077, Hong Kong
| | - Qian Qian
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States
| | - Jerica Lenberg
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States; Augustana University, 2001 S Summit Avenue, Sioux Falls, SD, 571977, United States
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, 77030, United States
| | - Wan Liu
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China
| | - Kao Wu
- Glyn O. Philips Hydrocolloid Research Center at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Yilin Wang
- University of California, Irvine. 100 Pacific, Irvine, CA, 92618, United States
| | - Shiqiang Lu
- AIDS Institute, Faculty of Medicine, The University of Hong Kong, No21 Sassoon Road, 999077, Hong Kong, Hong Kong.
| |
Collapse
|