1
|
Hagen KD, Hart CJS, McInally SG, Dawson SC. Harnessing the power of new genetic tools to illuminate Giardia biology and pathogenesis. Genetics 2024; 227:iyae038. [PMID: 38626297 PMCID: PMC11151923 DOI: 10.1093/genetics/iyae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 04/18/2024] Open
Abstract
Giardia is a prevalent single-celled microaerophilic intestinal parasite causing diarrheal disease and significantly impacting global health. Double diploid (essentially tetraploid) Giardia trophozoites have presented a formidable challenge to the development of molecular genetic tools to interrogate gene function. High sequence divergence and the high percentage of hypothetical proteins lacking homology to proteins in other eukaryotes have limited our understanding of Giardia protein function, slowing drug target validation and development. For more than 25 years, Giardia A and B assemblages have been readily amenable to transfection with plasmids or linear DNA templates. Here, we highlight the utility and power of genetic approaches developed to assess protein function in Giardia, with particular emphasis on the more recent clustered regularly interspaced palindromic repeats/Cas9-based methods for knockdowns and knockouts. Robust and reliable molecular genetic approaches are fundamental toward the interrogation of Giardia protein function and evaluation of druggable targets. New genetic approaches tailored for the double diploid Giardia are imperative for understanding Giardia's unique biology and pathogenesis.
Collapse
Affiliation(s)
- Kari D Hagen
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Christopher J S Hart
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Shane G McInally
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Hardin WR, Alas GCM, Taparia N, Thomas EB, Steele-Ogus MC, Hvorecny KL, Halpern AR, Tůmová P, Kollman JM, Vaughan JC, Sniadecki NJ, Paredez AR. The Giardia ventrolateral flange is a lamellar membrane protrusion that supports attachment. PLoS Pathog 2022; 18:e1010496. [PMID: 35482847 PMCID: PMC9089883 DOI: 10.1371/journal.ppat.1010496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/10/2022] [Accepted: 04/04/2022] [Indexed: 12/01/2022] Open
Abstract
Attachment to the intestinal epithelium is critical to the lifestyle of the ubiquitous parasite Giardia lamblia. The ventrolateral flange is a sheet-like membrane protrusion at the interface between parasites and attached surfaces. This structure has been implicated in attachment, but its role has been poorly defined. Here, we identified a novel actin associated protein with putative WH2-like actin binding domains we named Flangin. Flangin complexes with Giardia actin (GlActin) and is enriched in the ventrolateral flange making it a valuable marker for studying the flanges' role in Giardia biology. Live imaging revealed that the flange grows to around 1 μm in width after cytokinesis, then remains uniform in size during interphase, grows in mitosis, and is resorbed during cytokinesis. A flangin truncation mutant stabilizes the flange and blocks cytokinesis, indicating that flange disassembly is necessary for rapid myosin-independent cytokinesis in Giardia. Rho family GTPases are important regulators of membrane protrusions and GlRac, the sole Rho family GTPase in Giardia, was localized to the flange. Knockdown of Flangin, GlActin, and GlRac result in flange formation defects. This indicates a conserved role for GlRac and GlActin in forming membrane protrusions, despite the absence of canonical actin binding proteins that link Rho GTPase signaling to lamellipodia formation. Flangin-depleted parasites had reduced surface contact and when challenged with fluid shear force in flow chambers they had a reduced ability to remain attached, confirming a role for the flange in attachment. This secondary attachment mechanism complements the microtubule based adhesive ventral disc, a feature that may be particularly important during mitosis when the parental ventral disc disassembles in preparation for cytokinesis. This work supports the emerging view that Giardia's unconventional actin cytoskeleton has an important role in supporting parasite attachment.
Collapse
Affiliation(s)
- William R. Hardin
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Germain C. M. Alas
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Nikita Taparia
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth B. Thomas
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Melissa C. Steele-Ogus
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Kelli L. Hvorecny
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Aaron R. Halpern
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Pavla Tůmová
- Institute of Immunology and Microbiology, 1 Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Justin M. Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- Bioengineering, University of Washington, Seattle, Washington, United States of America
- Lab Medicine & Pathology, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Alexander R. Paredez
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Steele-Ogus MC, Obenaus AM, Sniadecki NJ, Paredez AR. Disc and Actin Associated Protein 1 influences attachment in the intestinal parasite Giardia lamblia. PLoS Pathog 2022; 18:e1010433. [PMID: 35333908 PMCID: PMC8986099 DOI: 10.1371/journal.ppat.1010433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/06/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
The deep-branching eukaryote Giardia lamblia is an extracellular parasite that attaches to the host intestine via a microtubule-based structure called the ventral disc. Control of attachment is mediated in part by the movement of two regions of the ventral disc that either permit or exclude the passage of fluid under the disc. Several known disc-associated proteins (DAPs) contribute to disc structure and function, but no force-generating protein has been identified among them. We recently identified several Giardia actin (GlActin) interacting proteins at the ventral disc, which could potentially employ actin polymerization for force generation and disc conformational changes. One of these proteins, Disc and Actin Associated Protein 1 (DAAP1), is highly enriched at the two regions of the disc previously shown to be important for fluid flow during attachment. In this study, we investigate the role of both GlActin and DAAP1 in ventral disc morphology and function. We confirmed interaction between GlActin and DAAP1 through coimmunoprecipitation, and used immunofluorescence to localize both proteins throughout the cell cycle and during trophozoite attachment. Similar to other DAPs, the association of DAAP1 with the disc is stable, except during cell division when the disc disassembles. Depletion of GlActin by translation-blocking antisense morpholinos resulted in both impaired attachment and defects in the ventral disc, indicating that GlActin contributes to disc-mediated attachment. Depletion of DAAP1 through CRISPR interference resulted in intact discs but impaired attachment, gating, and flow under the disc. As attachment is essential for infection, elucidation of these and other molecular mediators is a promising area for development of new therapeutics against a ubiquitous parasite.
Collapse
Affiliation(s)
- Melissa C. Steele-Ogus
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Ava M. Obenaus
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Alexander R. Paredez
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
4
|
Marucci G, Zullino I, Bertuccini L, Camerini S, Cecchetti S, Pietrantoni A, Casella M, Vatta P, Greenwood AD, Fiorillo A, Lalle M. Re-Discovery of Giardiavirus: Genomic and Functional Analysis of Viruses from Giardia duodenalis Isolates. Biomedicines 2021; 9:654. [PMID: 34201207 PMCID: PMC8230311 DOI: 10.3390/biomedicines9060654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/29/2022] Open
Abstract
Giardiasis, caused by the protozoan parasite Giardia duodenalis, is an intestinal diarrheal disease affecting almost one billion people worldwide. A small endosymbiotic dsRNA viruses, G. lamblia virus (GLV), genus Giardiavirus, family Totiviridae, might inhabit human and animal isolates of G. duodenalis. Three GLV genomes have been sequenced so far, and only one was intensively studied; moreover, a positive correlation between GLV and parasite virulence is yet to be proved. To understand the biological significance of GLV infection in Giardia, the characterization of several GLV strains from naturally infected G. duodenalis isolates is necessary. Here we report high-throughput sequencing of four GLVs strains, from Giardia isolates of human and animal origin. We also report on a new, unclassified viral sequence (designed GdRV-2), unrelated to Giardiavirus, encoding and expressing for a single large protein with an RdRp domain homologous to Totiviridae and Botybirnaviridae. The result of our sequencing and proteomic analyses challenge the current knowledge on GLV and strongly suggest that viral capsid protein translation unusually starts with a proline and that translation of the RNA-dependent RNA polymerase (RdRp) occurs via a +1/-2 ribosomal frameshift mechanism. Nucleotide polymorphism, confirmed by mass-spectrometry analysis, was also observed among and between GLV strains. Phylogenetic analysis indicated the occurrence of at least two GLV subtypes which display different phenotypes and transmissibility in experimental infections of a GLV naïve Giardia isolate.
Collapse
Affiliation(s)
- Gianluca Marucci
- Unit of Foodborne and Neglected Parasitic Disease, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (I.Z.); (P.V.)
| | - Ilaria Zullino
- Unit of Foodborne and Neglected Parasitic Disease, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (I.Z.); (P.V.)
| | - Lucia Bertuccini
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (S.C.); (S.C.); (A.P.); (M.C.)
| | - Serena Camerini
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (S.C.); (S.C.); (A.P.); (M.C.)
| | - Serena Cecchetti
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (S.C.); (S.C.); (A.P.); (M.C.)
| | - Agostina Pietrantoni
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (S.C.); (S.C.); (A.P.); (M.C.)
| | - Marialuisa Casella
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (S.C.); (S.C.); (A.P.); (M.C.)
| | - Paolo Vatta
- Unit of Foodborne and Neglected Parasitic Disease, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (I.Z.); (P.V.)
| | - Alex D. Greenwood
- Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany;
- Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany
| | - Annarita Fiorillo
- Department of Biochemical Science “A. Rossi-Fanelli”, Sapienza University, 00185 Rome, Italy;
| | - Marco Lalle
- Unit of Foodborne and Neglected Parasitic Disease, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (I.Z.); (P.V.)
| |
Collapse
|
5
|
Emery-Corbin SJ, Hamey JJ, Ansell BRE, Balan B, Tichkule S, Stroehlein AJ, Cooper C, McInerney BV, Hediyeh-Zadeh S, Vuong D, Crombie A, Lacey E, Davis MJ, Wilkins MR, Bahlo M, Svärd SG, Gasser RB, Jex AR. Eukaryote-Conserved Methylarginine Is Absent in Diplomonads and Functionally Compensated in Giardia. Mol Biol Evol 2021; 37:3525-3549. [PMID: 32702104 PMCID: PMC7743719 DOI: 10.1093/molbev/msaa186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Methylation is a common posttranslational modification of arginine and lysine in eukaryotic proteins. Methylproteomes are best characterized for higher eukaryotes, where they are functionally expanded and evolved complex regulation. However, this is not the case for protist species evolved from the earliest eukaryotic lineages. Here, we integrated bioinformatic, proteomic, and drug-screening data sets to comprehensively explore the methylproteome of Giardia duodenalis-a deeply branching parasitic protist. We demonstrate that Giardia and related diplomonads lack arginine-methyltransferases and have remodeled conserved RGG/RG motifs targeted by these enzymes. We also provide experimental evidence for methylarginine absence in proteomes of Giardia but readily detect methyllysine. We bioinformatically infer 11 lysine-methyltransferases in Giardia, including highly diverged Su(var)3-9, Enhancer-of-zeste and Trithorax proteins with reduced domain architectures, and novel annotations demonstrating conserved methyllysine regulation of eukaryotic elongation factor 1 alpha. Using mass spectrometry, we identify more than 200 methyllysine sites in Giardia, including in species-specific gene families involved in cytoskeletal regulation, enriched in coiled-coil features. Finally, we use known methylation inhibitors to show that methylation plays key roles in replication and cyst formation in this parasite. This study highlights reduced methylation enzymes, sites, and functions early in eukaryote evolution, including absent methylarginine networks in the Diplomonadida. These results challenge the view that arginine methylation is eukaryote conserved and demonstrate that functional compensation of methylarginine was possible preceding expansion and diversification of these key networks in higher eukaryotes.
Collapse
Affiliation(s)
- Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Brendan R E Ansell
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Balu Balan
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Swapnil Tichkule
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Andreas J Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Crystal Cooper
- Central Analytical Research Facility (CARF), Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | - Bernie V McInerney
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, NSW, Australia
| | - Soroor Hediyeh-Zadeh
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Daniel Vuong
- Microbial Screening Technologies, Smithfield, NSW, Australia
| | - Andrew Crombie
- Microbial Screening Technologies, Smithfield, NSW, Australia
| | - Ernest Lacey
- Microbial Screening Technologies, Smithfield, NSW, Australia.,Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, North Ryde, NSW, Australia
| | - Melissa J Davis
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Aaron R Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
6
|
Barrow P, Dujardin JC, Fasel N, Greenwood AD, Osterrieder K, Lomonossoff G, Fiori PL, Atterbury R, Rossi M, Lalle M. Viruses of protozoan parasites and viral therapy: Is the time now right? Virol J 2020; 17:142. [PMID: 32993724 PMCID: PMC7522927 DOI: 10.1186/s12985-020-01410-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Infections caused by protozoan parasites burden the world with huge costs in terms of human and animal health. Most parasitic diseases caused by protozoans are neglected, particularly those associated with poverty and tropical countries, but the paucity of drug treatments and vaccines combined with increasing problems of drug resistance are becoming major concerns for their control and eradication. In this climate, the discovery/repurposing of new drugs and increasing effort in vaccine development should be supplemented with an exploration of new alternative/synergic treatment strategies. Viruses, either native or engineered, have been employed successfully as highly effective and selective therapeutic approaches to treat cancer (oncolytic viruses) and antibiotic-resistant bacterial diseases (phage therapy). Increasing evidence is accumulating that many protozoan, but also helminth, parasites harbour a range of different classes of viruses that are mostly absent from humans. Although some of these viruses appear to have no effect on their parasite hosts, others either have a clear direct negative impact on the parasite or may, in fact, contribute to the virulence of parasites for humans. This review will focus mainly on the viruses identified in protozoan parasites that are of medical importance. Inspired and informed by the experience gained from the application of oncolytic virus- and phage-therapy, rationally-driven strategies to employ these viruses successfully against parasitic diseases will be presented and discussed in the light of the current knowledge of the virus biology and the complex interplay between the viruses, the parasite hosts and the human host. We also highlight knowledge gaps that should be addressed to advance the potential of virotherapy against parasitic diseases.
Collapse
Affiliation(s)
- Paul Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Jean Claude Dujardin
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat, 155, 2000, Antwerpen, Belgium
| | - Nicolas Fasel
- Department of Biochemistry, Faculty of Biology and Medicine, University of Lausanne, Ch. des Boveresses 155, 1066, Epalinges, Switzerland
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Institut für Virologie, Robert Von Ostertag-Haus - Zentrum Fuer Infektionsmedizin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Klaus Osterrieder
- Institut für Virologie, Robert Von Ostertag-Haus - Zentrum Fuer Infektionsmedizin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, 31 To Yuen Street, Kowloon, Hong Kong
| | - George Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Pier Luigi Fiori
- Dipartimento Di Scienze Biomedice, Universita Degli Studi Di Sassari, Sardinia, Italy
| | - Robert Atterbury
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Matteo Rossi
- Department of Biochemistry, Faculty of Biology and Medicine, University of Lausanne, Ch. des Boveresses 155, 1066, Epalinges, Switzerland
| | - Marco Lalle
- Unit of Foodborne and Neglected Parasitic Diseases, European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore Di Sanità, viale Regina Elena 299, 00186, Rome, Italy.
| |
Collapse
|
7
|
Riches A, Hart CJS, Trenholme KR, Skinner-Adams TS. Anti- Giardia Drug Discovery: Current Status and Gut Feelings. J Med Chem 2020; 63:13330-13354. [PMID: 32869995 DOI: 10.1021/acs.jmedchem.0c00910] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Giardia parasites are ubiquitous protozoans of global importance that impact a wide range of animals including humans. They are the most common enteric pathogen of cats and dogs in developed countries and infect ∼1 billion people worldwide. While Giardia infections can be asymptomatic, they often result in severe and chronic diseases. There is also mounting evidence that they are linked to postinfection disorders. Despite growing evidence of the widespread morbidity associated with Giardia infections, current treatment options are limited to compound classes with broad antimicrobial activity. Frontline anti-Giardia drugs are also associated with increasing drug resistance and treatment failures. To improve the health and well-being of millions, new selective anti-Giardia drugs are needed alongside improved health education initiatives. Here we discuss current treatment options together with recent advances and gaps in drug discovery. We also propose criteria to guide the discovery of new anti-Giardia compounds.
Collapse
Affiliation(s)
- Andrew Riches
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, Victoria 3168, Australia
| | - Christopher J S Hart
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Katharine R Trenholme
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4029, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland 4029, Australia
| | - Tina S Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
8
|
Hennessey KM, Alas GCM, Rogiers I, Li R, Merritt EA, Paredez AR. Nek8445, a protein kinase required for microtubule regulation and cytokinesis in Giardia lamblia. Mol Biol Cell 2020; 31:1611-1622. [PMID: 32459558 PMCID: PMC7521801 DOI: 10.1091/mbc.e19-07-0406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022] Open
Abstract
Giardia has 198 Nek kinases whereas humans have only 11. Giardia has a complex microtubule cytoskeleton that includes eight flagella and several unique microtubule arrays that are utilized for parasite attachment and facilitation of rapid mitosis and cytokinesis. The need to regulate these structures may explain the parallel expansion of the number of Nek family kinases. Here we use live and fixed cell imaging to uncover the role of Nek8445 in regulating Giardia cell division. We demonstrate that Nek8445 localization is cell cycle regulated and this kinase has a role in regulating overall microtubule organization. Nek8445 depletion results in short flagella, aberrant ventral disk organization, loss of the funis, defective axoneme exit, and altered cell shape. The axoneme exit defect is specific to the caudal axonemes, which exit from the posterior of the cell, and this defect correlates with rounding of the cell posterior and loss of the funis. Our findings implicate a role for the funis in establishing Giardia's cell shape and guiding axoneme docking. On a broader scale our results support the emerging view that Nek family kinases have a general role in regulating microtubule organization.
Collapse
Affiliation(s)
| | | | - Ilse Rogiers
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Renyu Li
- Department of Biology, University of Washington, Seattle, WA 98195
| | - Ethan A. Merritt
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | | |
Collapse
|
9
|
Abstract
Giardia intestinalis, the causative agent of giardiasis, has complex cytoskeleton organization with structures involved in motility, adhesion, cell division, and cell differentiation. Microtubules are key components of the cytoskeleton and are the main elements of the ventral disc, median body, funis, in addition to four pairs of flagella. These cytoskeletal elements are basically stable microtubule arrangements. Although tubulins are the main proteins of these elements, molecular and biochemical analyses of Giardia trophozoites have revealed the presence of several new and not yet characterized proteins in these structures, which may contribute to their nanoarchitecture (mainly in the ventral disc). Despite these findings, morphological data are still required for understanding the organization and biogenesis of the cytoskeletal structures. In the study of this complex and specialized network of filaments in Giardia, two distinct and complementary approaches have been used in recent years: (a) transmission electron microscopy tomography of conventionally processed as well as cryo-fixed samples and (b) high-resolution scanning electron microscopy and helium ion microscopy in combination with new plasma membrane extraction protocols. In this review we include the most recent studies that have allowed better understanding of new Giardia components and their association with other filamentous structures of this parasite, thus providing new insights in the role of the cytoskeletal structures and their function in Giardia trophozoites.
Collapse
|
10
|
Jex AR, Svärd S, Hagen KD, Starcevich H, Emery-Corbin SJ, Balan B, Nosala C, Dawson SC. Recent advances in functional research in Giardia intestinalis. ADVANCES IN PARASITOLOGY 2020; 107:97-137. [PMID: 32122532 PMCID: PMC7878119 DOI: 10.1016/bs.apar.2019.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review considers current advances in tools to investigate the functional biology of Giardia, it's coding and non-coding genes, features and cellular and molecular biology. We consider major gaps in current knowledge of the parasite and discuss the present state-of-the-art in its in vivo and in vitro cultivation. Advances in in silico tools, including for the modelling non-coding RNAs and genomic elements, as well as detailed exploration of coding genes through inferred homology to model organisms, have provided significant, primary level insight. Improved methods to model the three-dimensional structure of proteins offer new insights into their function, and binding interactions with ligands, other proteins or precursor drugs, and offer substantial opportunities to prioritise proteins for further study and experimentation. These approaches can be supplemented by the growing and highly accessible arsenal of systems-based methods now being applied to Giardia, led by genomic, transcriptomic and proteomic methods, but rapidly incorporating advanced tools for detection of real-time transcription, evaluation of chromatin states and direct measurement of macromolecular complexes. Methods to directly interrogate and perturb gene function have made major leaps in recent years, with CRISPr-interference now available. These approaches, coupled with protein over-expression, fluorescent labelling and in vitro and in vivo imaging, are set to revolutionize the field and herald an exciting time during which the field may finally realise Giardia's long proposed potential as a model parasite and eukaryote.
Collapse
Affiliation(s)
- Aaron R Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Staffan Svärd
- Centre for Biomedicine, Uppsala University, Uppsala, Sweden
| | - Kari D Hagen
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Hannah Starcevich
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Balu Balan
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Chris Nosala
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Scott C Dawson
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| |
Collapse
|
11
|
Echigoya Y, Lim KRQ, Melo D, Bao B, Trieu N, Mizobe Y, Maruyama R, Mamchaoui K, Tanihata J, Aoki Y, Takeda S, Mouly V, Duddy W, Yokota T. Exons 45-55 Skipping Using Mutation-Tailored Cocktails of Antisense Morpholinos in the DMD Gene. Mol Ther 2019; 27:2005-2017. [PMID: 31416775 DOI: 10.1016/j.ymthe.2019.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022] Open
Abstract
Mutations in the dystrophin (DMD) gene and consequent loss of dystrophin cause Duchenne muscular dystrophy (DMD). A promising therapy for DMD, single-exon skipping using antisense phosphorodiamidate morpholino oligomers (PMOs), currently confronts major issues in that an antisense drug induces the production of functionally undefined dystrophin and may not be similarly efficacious among patients with different mutations. Accordingly, the applicability of this approach is limited to out-of-frame mutations. Here, using an exon-skipping efficiency predictive tool, we designed three different PMO cocktail sets for exons 45-55 skipping aiming to produce a dystrophin variant with preserved functionality as seen in milder or asymptomatic individuals with an in-frame exons 45-55 deletion. Of them, the most effective set was composed of select PMOs that each efficiently skips an assigned exon in cell-based screening. These combinational PMOs fitted to different deletions of immortalized DMD patient muscle cells significantly induced exons 45-55 skipping with removing 3, 8, or 10 exons and dystrophin restoration as represented by western blotting. In vivo skipping of the maximum 11 human DMD exons was confirmed in humanized mice. The finding indicates that our PMO set can be used to create mutation-tailored cocktails for exons 45-55 skipping and treat over 65% of DMD patients carrying out-of-frame or in-frame deletions.
Collapse
Affiliation(s)
- Yusuke Echigoya
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Dyanna Melo
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Bo Bao
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Nhu Trieu
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Yoshitaka Mizobe
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Kamel Mamchaoui
- UPMC-Sorbonne Universités-University Paris 6, UPMC/INSERM UMRS974, CNRS FRE 3617, Myology Centre for Research, Paris Cedex 13 75651, France
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan; Department of Cell Physiology, The Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Vincent Mouly
- UPMC-Sorbonne Universités-University Paris 6, UPMC/INSERM UMRS974, CNRS FRE 3617, Myology Centre for Research, Paris Cedex 13 75651, France
| | - William Duddy
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry BT47 6SB, UK
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Muscular Dystrophy Canada Research Chair, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
12
|
McInally SG, Hagen KD, Nosala C, Williams J, Nguyen K, Booker J, Jones K, Dawson SC. Robust and stable transcriptional repression in Giardia using CRISPRi. Mol Biol Cell 2018; 30:119-130. [PMID: 30379614 PMCID: PMC6337905 DOI: 10.1091/mbc.e18-09-0605] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Giardia lamblia is a binucleate protistan parasite causing significant diarrheal disease worldwide. An inability to target Cas9 to both nuclei, combined with the lack of nonhomologous end joining and markers for positive selection, has stalled the adaptation of CRISPR/Cas9-mediated genetic tools for this widespread parasite. CRISPR interference (CRISPRi) is a modification of the CRISPR/Cas9 system that directs catalytically inactive Cas9 (dCas9) to target loci for stable transcriptional repression. Using a Giardia nuclear localization signal to target dCas9 to both nuclei, we developed efficient and stable CRISPRi-mediated transcriptional repression of exogenous and endogenous genes in Giardia. Specifically, CRISPRi knockdown of kinesin-2a and kinesin-13 causes severe flagellar length defects that mirror defects with morpholino knockdown. Knockdown of the ventral disk MBP protein also causes severe structural defects that are highly prevalent and persist in the population more than 5 d longer than defects associated with transient morpholino-based knockdown. By expressing two guide RNAs in tandem to simultaneously knock down kinesin-13 and MBP, we created a stable dual knockdown strain with both flagellar length and disk defects. The efficiency and simplicity of CRISPRi in polyploid Giardia allows rapid evaluation of knockdown phenotypes and highlights the utility of CRISPRi for emerging model systems.
Collapse
Affiliation(s)
- S G McInally
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| | - K D Hagen
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| | - C Nosala
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| | - J Williams
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| | - K Nguyen
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| | - J Booker
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| | - K Jones
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| |
Collapse
|
13
|
14-3-3 Regulates Actin Filament Formation in the Deep-Branching Eukaryote Giardia lamblia. mSphere 2017; 2:mSphere00248-17. [PMID: 28932813 PMCID: PMC5597967 DOI: 10.1128/msphere.00248-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/21/2017] [Indexed: 01/30/2023] Open
Abstract
The phosphoserine/phosphothreonine-binding protein 14-3-3 is known to regulate actin; this function has been previously attributed to sequestration of phosphorylated cofilin. 14-3-3 was identified as an actin-associated protein in the deep-branching eukaryote Giardia lamblia; however, Giardia lacks cofilin and all other canonical actin-binding proteins (ABPs). Thus, the role of G. lamblia 14-3-3 (Gl-14-3-3) in actin regulation was unknown. Gl-14-3-3 depletion resulted in an overall disruption of actin organization characterized by ectopically distributed short actin filaments. Using phosphatase and kinase inhibitors, we demonstrated that actin phosphorylation correlated with destabilization of the actin network and increased complex formation with 14-3-3, while blocking actin phosphorylation stabilized actin filaments and attenuated complex formation. Giardia's sole Rho family GTPase, Gl-Rac, modulates Gl-14-3-3's association with actin, providing the first connection between Gl-Rac and the actin cytoskeleton in Giardia. Giardia actin (Gl-actin) contains two putative 14-3-3 binding motifs, one of which (S330) is conserved in mammalian actin. Mutation of these sites reduced, but did not completely disrupt, the association with 14-3-3. Native gels and overlay assays indicate that intermediate proteins are required to support complex formation between 14-3-3 and actin. Overall, our results support a role for 14-3-3 as a regulator of actin; however, the presence of multiple 14-3-3-actin complexes suggests a more complex regulatory relationship than might be expected for a minimalistic parasite. IMPORTANCEGiardia lacks canonical actin-binding proteins. Gl-14-3-3 was identified as an actin interactor, but the significance of this interaction was unknown. Loss of Gl-14-3-3 results in ectopic short actin filaments, indicating that Gl-14-3-3 is an important regulator of the actin cytoskeleton in Giardia. Drug studies indicate that Gl-14-3-3 complex formation is in part phospho-regulated. We demonstrate that complex formation is downstream of Giardia's sole Rho family GTPase, Gl-Rac. This result provides the first mechanistic connection between Gl-Rac and Gl-actin in Giardia. Native gels and overlay assays indicate intermediate proteins are required to support the interaction between Gl-14-3-3 and Gl-actin, suggesting that Gl-14-3-3 is regulating multiple Gl-actin complexes.
Collapse
|
14
|
Myosin-independent cytokinesis in Giardia utilizes flagella to coordinate force generation and direct membrane trafficking. Proc Natl Acad Sci U S A 2017; 114:E5854-E5863. [PMID: 28679631 DOI: 10.1073/pnas.1705096114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Devoid of all known canonical actin-binding proteins, the prevalent parasite Giardia lamblia uses an alternative mechanism for cytokinesis. Unique aspects of this mechanism can potentially be leveraged for therapeutic development. Here, live-cell imaging methods were developed for Giardia to establish division kinetics and the core division machinery. Surprisingly, Giardia cytokinesis occurred with a median time that is ∼60 times faster than mammalian cells. In contrast to cells that use a contractile ring, actin was not concentrated in the furrow and was not directly required for furrow progression. Live-cell imaging and morpholino depletion of axonemal Paralyzed Flagella 16 indicated that flagella-based forces initiated daughter cell separation and provided a source for membrane tension. Inhibition of membrane partitioning blocked furrow progression, indicating a requirement for membrane trafficking to support furrow advancement. Rab11 was found to load onto the intracytoplasmic axonemes late in mitosis and to accumulate near the ends of nascent axonemes. These developing axonemes were positioned to coordinate trafficking into the furrow and mark the center of the cell in lieu of a midbody/phragmoplast. We show that flagella motility, Rab11, and actin coordination are necessary for proper abscission. Organisms representing three of the five eukaryotic supergroups lack myosin II of the actomyosin contractile ring. These results support an emerging view that flagella play a central role in cell division among protists that lack myosin II and additionally implicate the broad use of membrane tension as a mechanism to drive abscission.
Collapse
|
15
|
Activating transcription factor 3 promotes spinal cord regeneration of adult zebrafish. Biochem Biophys Res Commun 2017; 488:522-527. [PMID: 28522294 DOI: 10.1016/j.bbrc.2017.05.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 05/14/2017] [Indexed: 02/05/2023]
Abstract
Zebrafish is an excellent model to study the mechanisms underlying successful central nervous system (CNS) regeneration. Previous study shows that activating transcription factor 3 (ATF3) promotes neurite outgrowth and is involved in optic nerve regeneration in zebrafish. Here, we used zebrafish model to investigate the role of ATF3 in regeneration following spinal cord injury (SCI). Quantitative polymerase chain reaction (qPCR) and in situ hybridization revealed that ATF3 mRNA levels increased at 12 h and 6 d following SCI. Double labeled immunofluorescence showed that ATF3 expressed in motoneurons. Treatment of anti-sense ATF3 morpholino (MO) inhibited locomotor recovery and decreased axon regeneration of spinal cord injured zebrafish. Further, inhibition of ATF3 up-regulated the expression of inflammatory factors tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). These data suggest that ATF3 could promote locomotor recovery and axon regrowth in zebrafish SCI model possibly by regulating inflammatory response.
Collapse
|