1
|
Gurjar S, Bhat A R, Upadhya R, Shenoy RP. Extracellular vesicle-mediated approaches for the diagnosis and therapy of MASLD: current advances and future prospective. Lipids Health Dis 2025; 24:5. [PMID: 39773634 PMCID: PMC11705780 DOI: 10.1186/s12944-024-02396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an asymptomatic, multifaceted condition often associated with various risk factors, including fatigue, obesity, insulin resistance, metabolic syndrome, and sleep apnea. The increasing burden of MASLD underscores the critical need for early diagnosis and effective therapies. Owing to the lack of efficient therapies for MASLD, early diagnosis is crucial. Consequently, noninvasive biomarkers and imaging techniques are essential for analyzing disease risk and play a pivotal role in the global diagnostic process. The use of extracellular vesicles has emerged as promising for early diagnosis and therapy of various liver ailments. Herein, a comprehensive summary of the current diagnostic modalities for MASLD is presented, highlighting their advantages and limitations while exploring the potential of extracellular vesicles (EVs) as innovative diagnostic and therapeutic tools for MASLD. With this aim, this review emphasizes an in-depth understanding of the origin of EVs and the pathophysiological alterations of these ectosomes and exosomes in various liver diseases. This review also explores the therapeutic potential of EVs as key components in the future management of liver disease. The dual role of EVs as biomarkers and their therapeutic utility in MASLD essentially highlights their clinical integration to improve MASLD diagnosis and treatment. While EV-based therapies are still in their early stages of development and require substantial research to increase their therapeutic value before they can be used clinically, the diagnostic application of EVs has been extensively explored. Moving forward, developing diagnostic devices leveraging EVs will be crucial in advancing MASLD diagnosis. Thus, the literature summarized provides suitable grounds for clinicians and researchers to explore EVs for devising diagnostic and treatment strategies for MASLD.
Collapse
Affiliation(s)
- Swasthika Gurjar
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Ramanarayana Bhat A
- Manipal Centre for Biotherapeutics Research, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Raghavendra Upadhya
- Manipal Centre for Biotherapeutics Research, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| | - Revathi P Shenoy
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| |
Collapse
|
2
|
Beetler DJ, Di Florio DN, Bruno KA, Ikezu T, March KL, Cooper LT, Wolfram J, Fairweather D. Extracellular vesicles as personalized medicine. Mol Aspects Med 2023; 91:101155. [PMID: 36456416 PMCID: PMC10073244 DOI: 10.1016/j.mam.2022.101155] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles (EVs) are released from all cells in the body, forming an important intercellular communication network that contributes to health and disease. The contents of EVs are cell source-specific, inducing distinct signaling responses in recipient cells. The specificity of EVs and their accumulation in fluid spaces that are accessible for liquid biopsies make them highly attractive as potential biomarkers and therapies for disease. The duality of EVs as favorable (therapeutic) or unfavorable (pathological) messengers is context dependent and remains to be fully determined in homeostasis and various disease states. This review describes the use of EVs as biomarkers, drug delivery vehicles, and regenerative therapeutics, highlighting examples involving viral infections, cancer, and neurological diseases. There is growing interest to provide personalized therapy based on individual patient and disease characteristics. Increasing evidence suggests that EV biomarkers and therapeutic approaches are ideal for personalized medicine due to the diversity and multifunctionality of EVs.
Collapse
Affiliation(s)
- Danielle J Beetler
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Damian N Di Florio
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA; Center for Regenerative Medicine, University of Florida, Gainesville, FL, 32611, USA; Division of Cardiology, University of Florida, Gainesville, FL, 32611, USA
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Keith L March
- Center for Regenerative Medicine, University of Florida, Gainesville, FL, 32611, USA; Division of Cardiology, University of Florida, Gainesville, FL, 32611, USA
| | - Leslie T Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - DeLisa Fairweather
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA; Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
3
|
Soni RK, Dimapanat L, Katari MS, Rai AJ. An Optimized Procedure for Proteomic Analysis of Extracellular Vesicles Using In-Stage Tip Digestion and DIA LC-MS/MS: Application to Liquid Biopsy in Cancer. Methods Mol Biol 2022; 2546:401-409. [PMID: 36127607 DOI: 10.1007/978-1-0716-2565-1_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Utilizing biofluids to identify cancer biomarkers has received considerable attention in the past decade. In this regard, serum and urine are convenient biofluids to noninvasively recapitulate information usually indicated by traditional tissue biopsies. In particular, we are interested in exploring the extracellular vesicle (ECV)-containing compartment of these fluids as a targeted source for cancer biomarker discovery. ECVs are membrane-enclosed particles, comprising of various fractions including exosomes, microvesicles, and apoptotic bodies. In both physiological and pathological states such as cancer, ECVs carry a rich load of molecular and protein cargoes, which aid in mediating intercellular communication between cells from various tissue types. Here we successfully enriched ECVs using a simple, low-cost, optimized method that we have developed; it is generalizable for the analysis of ECVs from multiple sample types. Such procedures are necessary as ECVs are nanoparticles that contain a treasure trove of large numbers of biomarkers each present at very low levels. Sample processing procedures can enrich for these vesicles and allow for the enhanced detection of proteins in downstream applications such as comprehensive proteomics methods using data-independent acquisition (DIA) and LC-MS/MS.
Collapse
Affiliation(s)
| | | | | | - Alex J Rai
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA. .,Department of Pathology & Cell Biology, New York, NY, USA. .,Special Chemistry Laboratories, New York, NY, USA.
| |
Collapse
|
4
|
Applications of Exosomes in Diagnosing Muscle Invasive Bladder Cancer. Pharmaceutics 2022; 14:pharmaceutics14102027. [PMID: 36297462 PMCID: PMC9607910 DOI: 10.3390/pharmaceutics14102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Muscle Invasive Bladder Cancer (MIBC) is a subset of bladder cancer with a significant risk for metastases and death. It accounts for nearly 25% of bladder cancer diagnoses. A diagnostic work-up for MIBC is inclusive of urologic evaluation, radiographic imaging with a CT scan, urinalysis, and cystoscopy. These evaluations, especially cystoscopy, are invasive and carry the risk of secondary health concerns. Non-invasive diagnostics such as urine cytology are an attractive alternative currently being investigated to mitigate the requirement for cystoscopy. A pitfall in urine cytology is the lack of available options with high reliability, specificity, and sensitivity to malignant bladder cells. Exosomes are a novel biomarker source which could resolve some of the concerns with urine cytology, due to the high specificity as the surrogates of tumor cells. This review serves to define muscle invasive bladder cancer, current urine cytology methods, the role of exosomes in MIBC, and exosomes application as a diagnostic tool in MIBC. Urinary exosomes as the specific populations of extracellular vesicles could provide additional biomarkers with specificity and sensitivity to bladder malignancies, which are a consistent source of cellular information to direct clinicians for developing treatment strategies. Given its strong presence and differentiation ability between normal and cancerous cells, exosome-based urine cytology is highly promising in providing a perspective of a patient’s bladder cancer.
Collapse
|
5
|
Carnino JM, Hao Kwok Z, Jin Y. Extracellular Vesicles: A Novel Opportunity for Precision Medicine in Respiratory Diseases. Front Med (Lausanne) 2021; 8:661679. [PMID: 34368181 PMCID: PMC8342920 DOI: 10.3389/fmed.2021.661679] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022] Open
Abstract
Extracellular vesicles are membrane-bound nanoparticles secreted by cells which play a well-known role in cell to cell communication. The most update to date nomenclature categorizes extracellular vesicles based on their relative size, protein markers, and/or the cell type of origin. Extracellular vesicles can be isolated from biological fluids using a variety of methods, including but not limited to, ultrafiltration, size-exclusion chromatography, differential ultracentrifugation, density gradient centrifugation, precipitation-based methods, and immunoaffinity capture. These nanovesicles carry distinct “cargo,” made up of biomolecules such as nucleic acids, lipids, and protein, which is delivered to nearby target cells. The “cargo” profile carried by extracellular vesicles is critical in their role of communication and resembles the physiological status of the cell they originated from. For the purpose of this review, we will focus on the miRNA cargo. Extracellular vesicle-miRNA profiles hold the potential to be used in diagnostic panels for a variety of diseases through a novel method known as “liquid biopsy.” In addition to this, extracellular vesicles may serve as a potential method to deliver drugs to specific cells within the body. This mini-review provides background into what extracellular vesicles are, methods of isolating these nanoparticles, their potential use as a biomarker and drug delivery system for precision medicine, and a summary of the current literature covering the role of some extracellular vesicle-cargo's in various pulmonary diseases.
Collapse
Affiliation(s)
- Jonathan M Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA, United States
| | - Zhi Hao Kwok
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA, United States
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA, United States
| |
Collapse
|
6
|
The Mystery of Red Blood Cells Extracellular Vesicles in Sleep Apnea with Metabolic Dysfunction. Int J Mol Sci 2021; 22:ijms22094301. [PMID: 33919065 PMCID: PMC8122484 DOI: 10.3390/ijms22094301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Sleep is very important for overall health and quality of life, while sleep disorder has been associated with several human diseases, namely cardiovascular, metabolic, cognitive, and cancer-related alterations. Obstructive sleep apnea (OSA) is the most common respiratory sleep-disordered breathing, which is caused by the recurrent collapse of the upper airway during sleep. OSA has emerged as a major public health problem and increasing evidence suggests that untreated OSA can lead to the development of various diseases including neurodegenerative diseases. In addition, OSA may lead to decreased blood oxygenation and fragmentation of the sleep cycle. The formation of free radicals or reactive oxygen species (ROS) can emerge and react with nitric oxide (NO) to produce peroxynitrite, thereby diminishing the bioavailability of NO. Hypoxia, the hallmark of OSA, refers to a decline of tissue oxygen saturation and affects several types of cells, playing cell-to-cell communication a vital role in the outcome of this interplay. Red blood cells (RBCs) are considered transporters of oxygen and nutrients to the tissues, and these RBCs are important interorgan communication systems with additional functions, including participation in the control of systemic NO metabolism, redox regulation, blood rheology, and viscosity. RBCs have been shown to induce endothelial dysfunction and increase cardiac injury. The mechanistic links between changes of RBC functional properties and cardiovascular are largely unknown. Extracellular vesicles (EVs) are secreted by most cell types and released in biological fluids both under physiological and pathological conditions. EVs are involved in intercellular communication by transferring complex cargoes including proteins, lipids, and nucleic acids from donor cells to recipient cells. Advancing our knowledge about mechanisms of RBC-EVs formation and their pathophysiological relevance may help to shed light on circulating EVs and to translate their application to clinical practice. We will focus on the potential use of RBC-EVs as valuable diagnostic and prognostic biomarkers and state-specific cargoes, and possibilities as therapeutic vehicles for drug and gene delivery. The use of RBC-EVs as a precision medicine for the diagnosis and treatment of the patient with sleep disorder will improve the prognosis and the quality of life in patients with cardiovascular disease (CVD).
Collapse
|
7
|
Ozensoy Guler O, Supuran CT, Capasso C. Carbonic anhydrase IX as a novel candidate in liquid biopsy. J Enzyme Inhib Med Chem 2020; 35:255-260. [PMID: 31790601 PMCID: PMC6896409 DOI: 10.1080/14756366.2019.1697251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022] Open
Abstract
Among the diagnostic techniques for the identification of tumour biomarkers, the liquid biopsy is considered one that offers future research on precision diagnosis and treatment of tumours in a non-invasive manner. The approach consists of isolating tumor-derived components, such as circulating tumour cells (CTC), tumour cell-free DNA (ctDNA), and extracellular vesicles (EVs), from the patient peripheral blood fluids. These elements constitute a source of genomic and proteomic information for cancer treatment. Within the tumour-derived components of the body fluids, the enzyme indicated with the acronym CA IX and belonging to the superfamily of carbonic anhydrases (CA, EC 4.2.1.1) is a promising aspirant for checking tumours. CA IX is a transmembrane-CA isoform that is strongly overexpressed in many cancers being not much diffused in healthy tissues except the gastrointestinal tract. Here, it is summarised the role of CA IX as tumour-associated protein and its putative relationship in liquid biopsyfor diagnosing and monitoring cancer progression.
Collapse
Affiliation(s)
- Ozen Ozensoy Guler
- Department of Medical Biology, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Claudiu. T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| |
Collapse
|
8
|
Exosomes and Extracellular Vesicles as Emerging Theranostic Platforms in Cancer Research. Cells 2020; 9:cells9122569. [PMID: 33271820 PMCID: PMC7761021 DOI: 10.3390/cells9122569] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Exosomes are endosome-derived nanovesicles produced by healthy as well as diseased cells. Their proteic, lipidic and nucleic acid composition is related to the cell of origin, and by vehiculating bioactive molecules they are involved in cell-to-cell signaling, both in healthy and pathologic conditions. Being nano-sized, non-toxic, biocompatible, scarcely immunogenic, and possessing targeting ability and organotropism, exosomes have been proposed as nanocarriers for their potential application in diagnosis and therapy. Among the different techniques exploited for exosome isolation, the sequential ultracentrifugation/ultrafiltration method seems to be the gold standard; alternatively, commercially available kits for exosome selective precipitation from cell culture media are frequently employed. To load a drug or a detectable agent into exosomes, endogenous or exogenous loading approaches have been developed, while surface engineering procedures, such as click chemistry, hydrophobic insertion and exosome display technology, allow for obtaining actively targeted exosomes. This review reports on diagnostic or theranostic platforms based on exosomes or exosome-mimetic vesicles, highlighting the diverse preparation, loading and surface modification methods applied, and the results achieved so far.
Collapse
|
9
|
Li Y, He X, Li Q, Lai H, Zhang H, Hu Z, Li Y, Huang S. EV-origin: Enumerating the tissue-cellular origin of circulating extracellular vesicles using exLR profile. Comput Struct Biotechnol J 2020; 18:2851-2859. [PMID: 33133426 PMCID: PMC7588739 DOI: 10.1016/j.csbj.2020.10.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are complex ecosystems that can be derived from all body cells and circulated in the body fluids. Characterizing the tissue-cellular source contributing to circulating EVs provides biological information about the cell or tissue of origin and their functional states. However, the relative proportion of tissue-cellular origin of circulating EVs in body fluid has not been thoroughly characterized. Here, we developed an approach for digital EVs quantification, called EV-origin, that enables enumerating of EVs tissue-cellular source contribution from plasma extracellular vesicles long RNA sequencing profiles. EV-origin was constructed by the input matrix of gene expression signatures and robust deconvolution algorithm, collectively used to separate the relative proportions of each tissue or cell type of interest. EV-origin respectively predicted the relative enrichment of seven types of hemopoietic cells and sixteen solid tissue subsets from exLR-seq profile. Using the EV-origin approach, we depicted an integrated landscape of the traceability system of plasma EVs for healthy individuals. We also compared the heterogenous tissue-cellular source components from plasma EVs samples with diverse disease status. Notably, the aberrant liver fraction could reflect the development and progression of hepatic disease. The liver fraction could also serve as a diagnostic indicator and effectively separate HCC patients from normal individuals. The EV-origin provides an approach to decipher the complex heterogeneity of tissue-cellular origin in circulating EVs. Our approach could inform the development of exLR-based applications for liquid biopsy.
Collapse
Affiliation(s)
- Yuchen Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xigan He
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qin Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyan Lai
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hena Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhixiang Hu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglin Huang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Bernardi S, Balbi C. Extracellular Vesicles: From Biomarkers to Therapeutic Tools. BIOLOGY 2020; 9:biology9090258. [PMID: 32878063 PMCID: PMC7564466 DOI: 10.3390/biology9090258] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
Intercellular communication is an essential hallmark of multicellular organisms and can be mediated through direct cell–cell contact or transfer of secreted molecules. In the last two decades, a third mechanism for intercellular communication has emerged that involves intercellular transfer of extracellular vesicles (EVs). EVs are membranous vesicles of 30–5000 nm in size. Based on their dimension and biogenesis, EVs can be divided into different categories, such as microvesicles, apoptotic bodies, ectosomes, and exosomes. It has already been demonstrated that protein changes, expressed on the surfaces or in the content of these vesicles, may reflect the status of producing cells. For this reason, EVs, and exosomes in particular, are considered ideal biomarkers in several types of disease—from cancer diagnosis to heart rejection. This aspect opens different opportunities in EVs clinical application, considering the importance given to liquid biopsy in the recent years. Furthermore, extracellular vesicles can be natural or engineered carriers of cytoprotective or cytotoxic factors and applied, as a therapeutic tool, from regenerative medicine to target cancer therapy. This is of pivotal importance in the so called “era of the 4P medicine”. This Editorial focuses on recent findings pertaining to EVs in different medical areas, from biomarkers to therapeutic applications.
Collapse
Affiliation(s)
- Simona Bernardi
- Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-003-9030-399-8464
| | - Carolina Balbi
- Cellular & Molecular Cardiology Laboratory, Cardiocentro Ticino, Associated Institute of University of Zurich, 6900 Lugano, Switzerland;
| |
Collapse
|
11
|
Mu W, Provaznik J, Hackert T, Zöller M. Tspan8-Tumor Extracellular Vesicle-Induced Endothelial Cell and Fibroblast Remodeling Relies on the Target Cell-Selective Response. Cells 2020; 9:cells9020319. [PMID: 32013145 PMCID: PMC7072212 DOI: 10.3390/cells9020319] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor cell-derived extracellular vesicles (TEX) expressing tetraspanin Tspan8-alpha4/beta1 support angiogenesis. Tspan8-alpha6/beta4 facilitates lung premetastatic niche establishment. TEX-promoted target reprogramming is still being disputed, we explored rat endothelial cell (EC) and lung fibroblast (Fb) mRNA and miRNA profile changes after coculture with TEX. TEX were derived from non-metastatic BSp73AS (AS) or metastatic BSp73ASML (ASML) rat tumor lines transfected with Tspan8 (AS-Tspan8) or Tspan8-shRNA (ASML-Tspan8kd). mRNA was analyzed by deep sequencing and miRNA by array analysis of EC and Fb before and after coculture with TEX. EC and Fb responded more vigorously to AS-Tspan8- than AS-TEX. Though EC and Fb responses differed, both cell lines predominantly responded to membrane receptor activation with upregulation and activation of signaling molecules and transcription factors. Minor TEX-initiated changes in the miRNA profile relied, at least partly, on long noncoding RNA (lncRNA) that also affected chromosome organization and mRNA processing. These analyses uncovered three important points. TEX activate target cell autonomous programs. Responses are initiated by TEX targeting units and are target cell-specific. The strong TEX-promoted lncRNA impact reflects lncRNA shuttling and location-dependent distinct activities. These informations urge for an in depth exploration on the mode of TEX-initiated target cell-specific remodeling including, as a major factor, lncRNA.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of General, Visceral and Transplantation Surgery, Pancreas Section, University of Heidelberg, 69120 Heidelberg, Germany
- Correspondence: (W.M.); (M.Z.); Tel.: +86-021-6384-6590 (W.M.); +49-6221-484-730 (M.Z.)
| | - Jan Provaznik
- EMBL Genomics Core Facility, 69117 Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Pancreas Section, University of Heidelberg, 69120 Heidelberg, Germany
| | - Margot Zöller
- Department of General, Visceral and Transplantation Surgery, Pancreas Section, University of Heidelberg, 69120 Heidelberg, Germany
- Correspondence: (W.M.); (M.Z.); Tel.: +86-021-6384-6590 (W.M.); +49-6221-484-730 (M.Z.)
| |
Collapse
|
12
|
Piontek MC, Lira RB, Roos WH. Active probing of the mechanical properties of biological and synthetic vesicles. Biochim Biophys Acta Gen Subj 2019; 1865:129486. [PMID: 31734458 DOI: 10.1016/j.bbagen.2019.129486] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The interest in mechanics of synthetic and biological vesicles has been continuously growing during the last decades. Liposomes serve as model systems for investigating fundamental membrane processes and properties. More recently, extracellular vesicles (EVs) have been investigated mechanically as well. EVs are widely studied in fundamental and applied sciences, but their material properties remained elusive until recently. Elucidating the mechanical properties of vesicles is essential to unveil the mechanisms behind a variety of biological processes, e.g. budding, vesiculation and cellular uptake mechanisms. SCOPE OF REVIEW The importance of mechanobiology for studies of vesicles and membranes is discussed, as well as the different available techniques to probe their mechanical properties. In particular, the mechanics of vesicles and membranes as obtained by nanoindentation, micropipette aspiration, optical tweezers, electrodeformation and electroporation experiments is addressed. MAJOR CONCLUSIONS EVs and liposomes possess an astonishing rich, diverse behavior. To better understand their properties, and for optimization of their applications in nanotechnology, an improved understanding of their mechanical properties is needed. Depending on the size of the vesicles and the specific scientific question, different techniques can be chosen for their mechanical characterization. GENERAL SIGNIFICANCE Understanding the mechanical properties of vesicles is necessary to gain deeper insight in the fundamental biological mechanisms involved in vesicle generation and cellular uptake. This furthermore facilitates technological applications such as using vesicles as targeted drug delivery vehicles. Liposome studies provide insight into fundamental membrane processes and properties, whereas the role and functioning of EVs in biology and medicine are increasingly elucidated.
Collapse
Affiliation(s)
- Melissa C Piontek
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Rafael B Lira
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
13
|
Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem Rev 2018; 118:9152-9232. [PMID: 30204432 DOI: 10.1021/acs.chemrev.8b00354] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini 47100, Italy
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Laboratoire SiRMa, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, CNRS, UMR 5246, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne 69622, France
| | - Ralph D. Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| |
Collapse
|