1
|
Zhang HL, Guo YQ, Liu S, Ye ZP, Li LC, Hu BX, Li ZL, Chen YH, Feng GK, Shen HQ, Deng R, Zhu XF. Galectin-13 reduces membrane localization of SLC7A11 for ferroptosis propagation. Nat Chem Biol 2025:10.1038/s41589-025-01888-2. [PMID: 40246981 DOI: 10.1038/s41589-025-01888-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 03/14/2025] [Indexed: 04/19/2025]
Abstract
The mechanism of ferroptosis propagation is still unclear. Here our results indicate that the cells undergoing ferroptosis secrete Galectin-13, which binds to CD44 and inhibits the plasma membrane localization of SLC7A11 in neighboring cells, thereby accelerating neighboring cell death and promoting ferroptosis propagation. FOXK1 was phosphorylated by PKCβII and then facilitated the expression and secretion of Galectin-13 during ferroptotic cell death. Correlation analysis and functional analysis revealed that ferroptosis propagation ability was a previously unrecognized determinant of ferroptosis sensitivity in human cancer cells. A synthetic Galectin-13 mimetic peptide was shown to strongly enhance the sensitivity of tumors to the imidazole ketone erastin, radiotherapy and immunotherapy by boosting ferroptosis. In particular, cancer stem cells were vulnerable to the combination of Galectin-13 mimetic peptide and ferroptosis inducers. Our study provides new insights into ferroptosis propagation and highlights novel strategies for targeting ferroptosis to treat tumors.
Collapse
Affiliation(s)
- Hai-Liang Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Yi-Qing Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shan Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhi-Peng Ye
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Hepatology Unit, Departments of Infectious Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li-Chao Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bing-Xin Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Ling Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Hong Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gong-Kan Feng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui-Qi Shen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Xiao-Feng Zhu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
2
|
Yan H, Abdulla A, Wang A, Ding S, Zhang M, Zhang Y, Zhuang TY, Wu L, Wang Y, Ren R, Jiang L, Ding X. Time-Lapse Acquisition of Both Freely Secreted Proteome and Exosome Encapsulated Proteome in Live Organoids' Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406509. [PMID: 39573935 PMCID: PMC11727246 DOI: 10.1002/advs.202406509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/24/2024] [Indexed: 01/14/2025]
Abstract
Proteomic communications in neighboring microenvironments during early organ development is a dynamic process that continuously reshapes human embryonic stem cells (hESCs) developmental fate. Such dynamic proteomic alteration in the microenvironment consists of both freely secreted proteome and exosome-encapsulated proteome. Simultaneous monitoring of the time-lapse shift of both proteomes with live organoids remains technically challenging. Here, a continuous organoid secretion/encapsulation proteome tandem LC-MS/MS (COSEP-LCM) is introduced, which permits time-lapse monitoring of proteomic alterations both in free secretion form and in exosome encapsulated form at live organoids' microenvironment. Continuous growth of human cerebral organoids (COs) and free-secretion/exosome-encapsulation proteomics acquisition with COSEP-LCM for 60 days is demonstrated. SERPINF1, F5, and EFNB1 are initially enriched inside exosomes as encapsulated excretion and then gradually enriched outside exosomes as freely secreted excretion, while C3 is initially enriched outside exosomes as freely secreted excretion and gradually enriched inside exosomes as encapsulated excretion. Such dynamic excretion pattern paradigm shift may imply critical developmental strategy evolution during early human cerebral development. COSEP-LCM offers a platform technique for continuous inside/outside exosome proteomics co-analysis in live organoids' microenvironment.
Collapse
Affiliation(s)
- Haoni Yan
- Department of Anesthesiology and Surgical Intensive Care UnitXinhua HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Aynur Abdulla
- Department of Anesthesiology and Surgical Intensive Care UnitXinhua HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Aiting Wang
- Department of Anesthesiology and Surgical Intensive Care UnitXinhua HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Shuyu Ding
- Department of Anesthesiology and Surgical Intensive Care UnitXinhua HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Manlin Zhang
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Yizhi Zhang
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Tsz Yui Zhuang
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Leqi Wu
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Yan Wang
- Department of Anesthesiology and Surgical Intensive Care UnitXinhua HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Rongrong Ren
- Department of Anesthesiology and Surgical Intensive Care UnitXinhua HospitalShanghai Jiaotong University School of MedicineShanghai200092P. R. China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care UnitXinhua HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care UnitXinhua HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| |
Collapse
|
3
|
Mohamedali A, Heng B, Amirkhani A, Krishnamurthy S, Cantor D, Lee PJM, Shin JS, Solomon M, Guillemin GJ, Baker MS, Ahn SB. A Proteomic Examination of Plasma Extracellular Vesicles Across Colorectal Cancer Stages Uncovers Biological Insights That Potentially Improve Prognosis. Cancers (Basel) 2024; 16:4259. [PMID: 39766158 PMCID: PMC11674649 DOI: 10.3390/cancers16244259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Recent advancements in understanding plasma extracellular vesicles (EVs) and their role in disease biology have provided additional unique insights into the study of Colorectal Cancer (CRC). METHODS This study aimed to gain biological insights into disease progression from plasma-derived extracellular vesicle proteomic profiles of 80 patients (20 from each CRC stage I-IV) against 20 healthy age- and sex-matched controls using a high-resolution SWATH-MS proteomics with a reproducible centrifugation method to isolate plasma EVs. RESULTS We applied the High-Stringency Human Proteome Project (HPP) guidelines for SWATH-MS analysis, which refined our initial EV protein identification from 1362 proteins (10,993 peptides) to a more reliable and confident subset of 853 proteins (6231 peptides). In early-stage CRC, we identified 11 plasma EV proteins with differential expression between patients and healthy controls (three up-regulated and eight down-regulated), many of which are involved in key cancer hallmarks. Additionally, within the same cohort, we analysed EV proteins associated with tumour recurrence to identify potential prognostic indicators for CRC. A subset of up-regulated proteins associated with extracellular vesicle formation (GDI1, NSF, and TMED9) and the down-regulation of TSG101 suggest that micro-metastasis may have occurred earlier than previously anticipated. DISCUSSION By employing stringent proteomic analysis and a robust SWATH-MS approach, we identified dysregulated EV proteins that potentially indicate early-stage CRC and predict recurrence risk, including proteins involved in metabolism, cytoskeletal remodelling, and immune response. While our findings underline discrepancies with other studies due to differing isolation and stringency parameters, they provide valuable insights into the complexity of the EV proteome, emphasising the need for standardised protocols and larger, well-controlled studies to validate potential biomarkers.
Collapse
Affiliation(s)
- Abidali Mohamedali
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (A.M.); (B.H.); (S.K.); (M.S.B.)
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (A.M.); (B.H.); (S.K.); (M.S.B.)
| | - Ardeshir Amirkhani
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia; (A.A.); (D.C.)
| | - Shivani Krishnamurthy
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (A.M.); (B.H.); (S.K.); (M.S.B.)
| | - David Cantor
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia; (A.A.); (D.C.)
| | - Peter Jun Myung Lee
- Department of Colorectal Surgery RPAH & Institute of Academic Surgery, Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia; (P.J.M.L.); (M.S.)
| | - Joo-Shik Shin
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW 2050, Australia;
| | - Michael Solomon
- Department of Colorectal Surgery RPAH & Institute of Academic Surgery, Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia; (P.J.M.L.); (M.S.)
| | - Gilles J. Guillemin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor University, Bogor 16680, Indonesia;
| | - Mark S. Baker
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (A.M.); (B.H.); (S.K.); (M.S.B.)
| | - Seong Beom Ahn
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (A.M.); (B.H.); (S.K.); (M.S.B.)
| |
Collapse
|
4
|
Gwam C, Mohammed N, Ma X. Stem cell secretome, regeneration, and clinical translation: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:70. [PMID: 33553363 PMCID: PMC7859812 DOI: 10.21037/atm-20-5030] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Regenerative medicine is a field growing in popularity due to high hopes for stimulating in situ tissue restoration. Stem cell therapy remain at the center of regenerative medicine, due to early reports on its pluripotent differentiating capability. However, more recent reports suggest the paracrine activity of stem cells, and not direct differentiation, as the cause of its therapeutic effects. This paracrine activity can be harnessed in the form of conditioned media. Despite these capabilities, the clinical translation of stem cell conditioned media (i.e., secretome) is precluded by a variety of factors. These limitations include standardization of stem cell-conditioned media formulation, characterization of bioactive factors in conditioned media and dosing, optimizing modes of delivery, and uncovering of mechanisms of action of stem cell conditioned media. The purpose of this review is to provide a focused narration on the aforementioned preclusions pertaining to the clinical translation of stem cell conditioned media. Specifically, we will report on commonly use methodologies for the development of stem cell conditioned media, modalities for conditioned media characterization, modes of delivery, and postulated mechanisms of action for stem cell conditioned media in regenerative medicine.
Collapse
Affiliation(s)
- Chukwuweike Gwam
- Department of Orthopedic Surgery, Wake Forest School of Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Nequesha Mohammed
- Department of Orthopedic Surgery, Wake Forest School of Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Xue Ma
- Department of Orthopedic Surgery, Wake Forest School of Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|
5
|
Oxidative Phosphorylation Dysfunction Modifies the Cell Secretome. Int J Mol Sci 2020; 21:ijms21093374. [PMID: 32397676 PMCID: PMC7246988 DOI: 10.3390/ijms21093374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/29/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial oxidative phosphorylation disorders are extremely heterogeneous conditions. Their clinical and genetic variability makes the identification of reliable and specific biomarkers very challenging. Until now, only a few studies have focused on the effect of a defective oxidative phosphorylation functioning on the cell’s secretome, although it could be a promising approach for the identification and pre-selection of potential circulating biomarkers for mitochondrial diseases. Here, we review the insights obtained from secretome studies with regard to oxidative phosphorylation dysfunction, and the biomarkers that appear, so far, to be promising to identify mitochondrial diseases. We propose two new biomarkers to be taken into account in future diagnostic trials.
Collapse
|
6
|
Ahn SB, Mohamedali A, Pascovici D, Adhikari S, Sharma S, Nice EC, Baker MS. Proteomics Reveals Cell‐Surface Urokinase Plasminogen Activator Receptor Expression Impacts Most Hallmarks of Cancer. Proteomics 2019; 19:e1900026. [DOI: 10.1002/pmic.201900026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/25/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Seong Beom Ahn
- Department of Biomedical Sciences Faculty of Medicine and Health Science Sydney NSW 2109 Australia
| | - Abidali Mohamedali
- Department of Molecular Sciences Faculty of Science and Engineering Sydney NSW 2109 Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility Macquarie University Sydney NSW 2109 Australia
| | - Subash Adhikari
- Department of Biomedical Sciences Faculty of Medicine and Health Science Sydney NSW 2109 Australia
| | - Samridhi Sharma
- Department of Biomedical Sciences Faculty of Medicine and Health Science Sydney NSW 2109 Australia
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology Monash University Melbourne VIC 3800 Australia
| | - Mark S. Baker
- Department of Biomedical Sciences Faculty of Medicine and Health Science Sydney NSW 2109 Australia
| |
Collapse
|
7
|
Song P, Kwon Y, Joo JY, Kim DG, Yoon JH. Secretomics to Discover Regulators in Diseases. Int J Mol Sci 2019; 20:ijms20163893. [PMID: 31405033 PMCID: PMC6720857 DOI: 10.3390/ijms20163893] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 01/03/2023] Open
Abstract
Secretory proteins play important roles in the cross-talk of individual functional units, including cells. Since secretory proteins are essential for signal transduction, they are closely related with disease development, including metabolic and neural diseases. In metabolic diseases, adipokines, myokines, and hepatokines are secreted from respective organs under specific environmental conditions, and play roles in glucose homeostasis, angiogenesis, and inflammation. In neural diseases, astrocytes and microglia cells secrete cytokines and chemokines that play roles in neurotoxic and neuroprotective responses. Mass spectrometry-based secretome profiling is a powerful strategy to identify and characterize secretory proteins. This strategy involves stepwise processes such as the collection of conditioned medium (CM) containing secretome proteins and concentration of the CM, peptide preparation, mass analysis, database search, and filtering of secretory proteins; each step requires certain conditions to obtain reliable results. Proteomic analysis of extracellular vesicles has become a new research focus for understanding the additional extracellular functions of intracellular proteins. Here, we provide a review of the insights obtained from secretome analyses with regard to disease mechanisms, and highlight the future prospects of this technology. Continued research in this field is expected to provide valuable information on cell-to-cell communication and uncover new pathological mechanisms.
Collapse
Affiliation(s)
- Parkyong Song
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Yonghoon Kwon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jae-Yeol Joo
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Do-Geun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, Korea.
| |
Collapse
|