1
|
Abbas LF, Barber G, Lu G, Chamseddin B, Vu H, Cai L, Srivastava D, Nijhawan RL, Wang RC, Chong BF. Metabolic profiles of cutaneous lupus have abnormalities in the nicotinamide adenine dinucleotide pathway. Lupus Sci Med 2025; 12:e001401. [PMID: 39863305 PMCID: PMC11784198 DOI: 10.1136/lupus-2024-001401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
OBJECTIVE Metabolic reprogramming plays a critical role in modulating the innate and adaptive immune response, but its role in cutaneous autoimmune diseases, such as cutaneous lupus erythematosus (CLE), is less well studied. An improved understanding of the metabolic pathways dysregulated in CLE may lead to novel treatment options, biomarkers and insights into disease pathogenesis. The objective was to compare metabolomic profiles in the skin and sera of CLE and control patients using liquid chromatography-mass spectrometry (LC-MS). METHODS This was a cross-sectional pilot study comparing metabolomic sera and skin profiles of patients with CLE and normal controls. Patients were recruited from outpatient dermatology clinics at the University of Texas Southwestern and Parkland Health in Dallas, Texas, from January 2019 to October 2020. Skin and serum samples underwent LC-MS analysis. Disease sample metabolite levels were compared with controls, with significance levels adjusted for multiple hypothesis testing. RESULTS 17 serum samples (9 CLE, 8 control) and 11 skin samples (5 CLE, 6 control) were analysed using LC-MS, yielding 313 known unique metabolic structures from CLE samples. Patients with CLE were found to have 11 metabolites of differential abundance in the skin, but only 2 in the sera. CLE skin showed increased levels of citrulline (log2 fold change (FC)=1.15, p=0.02) and uracil (log2FC=1.79, p=0.04), and downregulation of cyclic ADP ribose (cADPr) (log2FC=0.83, p=0.04), nicotinamide mononucleotide (NMN) (log2FC=0.75, p=0.016) and nicotinamide adenine dinucleotide (NAD+) (log2FC=0.86, p=0.016) versus control skin. CLE sera had increased arabinose (log2FC=1.17, p=0.02) and cystine (log2FC=1.04, p=0.03) compared with control sera. CONCLUSIONS Metabolites associated with the NAD+ pathway may be dysregulated in the skin of patients with CLE. Available treatments including nicotinamide supplementation and anti-CD38 biologics that can correct these abnormalities can be further investigated in patients with CLE.
Collapse
Affiliation(s)
- Laila F Abbas
- Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Grant Barber
- Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Grace Lu
- Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bahir Chamseddin
- Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hieu Vu
- Children's Medical Center Research Institute, University of Texas Southwestern, Dallas, Texas, USA
| | - Ling Cai
- Children's Medical Center Research Institute, University of Texas Southwestern, Dallas, Texas, USA
- Population and Data Sciences, University of Texas Southwestern, Dallas, Texas, USA
| | - Divya Srivastava
- Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rajiv L Nijhawan
- Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Richard C Wang
- Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Benjamin F Chong
- Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Pavelescu LA, Enache RM, Roşu OA, Profir M, Creţoiu SM, Gaspar BS. Predictive Biomarkers and Resistance Mechanisms of Checkpoint Inhibitors in Malignant Solid Tumors. Int J Mol Sci 2024; 25:9659. [PMID: 39273605 PMCID: PMC11395316 DOI: 10.3390/ijms25179659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Predictive biomarkers for immune checkpoint inhibitors (ICIs) in solid tumors such as melanoma, hepatocellular carcinoma (HCC), colorectal cancer (CRC), non-small cell lung cancer (NSCLC), endometrial carcinoma, renal cell carcinoma (RCC), or urothelial carcinoma (UC) include programmed cell death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), defective deoxyribonucleic acid (DNA) mismatch repair (dMMR), microsatellite instability (MSI), and the tumor microenvironment (TME). Over the past decade, several types of ICIs, including cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors, anti-programmed cell death 1 (PD-1) antibodies, anti-programmed cell death ligand 1 (PD-L1) antibodies, and anti-lymphocyte activation gene-3 (LAG-3) antibodies have been studied and approved by the Food and Drug Administration (FDA), with ongoing research on others. Recent studies highlight the critical role of the gut microbiome in influencing a positive therapeutic response to ICIs, emphasizing the importance of modeling factors that can maintain a healthy microbiome. However, resistance mechanisms can emerge, such as increased expression of alternative immune checkpoints, T-cell immunoglobulin (Ig), mucin domain-containing protein 3 (TIM-3), LAG-3, impaired antigen presentation, and alterations in the TME. This review aims to synthesize the data regarding the interactions between microbiota and immunotherapy (IT). Understanding these mechanisms is essential for optimizing ICI therapy and developing effective combination strategies.
Collapse
Affiliation(s)
- Luciana Alexandra Pavelescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Robert Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Monica Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
3
|
Cajander S, Kox M, Scicluna BP, Weigand MA, Mora RA, Flohé SB, Martin-Loeches I, Lachmann G, Girardis M, Garcia-Salido A, Brunkhorst FM, Bauer M, Torres A, Cossarizza A, Monneret G, Cavaillon JM, Shankar-Hari M, Giamarellos-Bourboulis EJ, Winkler MS, Skirecki T, Osuchowski M, Rubio I, Bermejo-Martin JF, Schefold JC, Venet F. Profiling the dysregulated immune response in sepsis: overcoming challenges to achieve the goal of precision medicine. THE LANCET. RESPIRATORY MEDICINE 2024; 12:305-322. [PMID: 38142698 DOI: 10.1016/s2213-2600(23)00330-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 12/26/2023]
Abstract
Sepsis is characterised by a dysregulated host immune response to infection. Despite recognition of its significance, immune status monitoring is not implemented in clinical practice due in part to the current absence of direct therapeutic implications. Technological advances in immunological profiling could enhance our understanding of immune dysregulation and facilitate integration into clinical practice. In this Review, we provide an overview of the current state of immune profiling in sepsis, including its use, current challenges, and opportunities for progress. We highlight the important role of immunological biomarkers in facilitating predictive enrichment in current and future treatment scenarios. We propose that multiple immune and non-immune-related parameters, including clinical and microbiological data, be integrated into diagnostic and predictive combitypes, with the aid of machine learning and artificial intelligence techniques. These combitypes could form the basis of workable algorithms to guide clinical decisions that make precision medicine in sepsis a reality and improve patient outcomes.
Collapse
Affiliation(s)
- Sara Cajander
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Brendon P Scicluna
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei hospital, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Raquel Almansa Mora
- Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Stefanie B Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ignacio Martin-Loeches
- St James's Hospital, Dublin, Ireland; Hospital Clinic, Institut D'Investigacions Biomediques August Pi i Sunyer, Universidad de Barcelona, Barcelona, Spain
| | - Gunnar Lachmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Berlin, Germany
| | - Massimo Girardis
- Department of Intensive Care and Anesthesiology, University Hospital of Modena, Modena, Italy
| | - Alberto Garcia-Salido
- Hospital Infantil Universitario Niño Jesús, Pediatric Critical Care Unit, Madrid, Spain
| | - Frank M Brunkhorst
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Antoni Torres
- Pulmonology Department. Hospital Clinic of Barcelona, University of Barcelona, Ciberes, IDIBAPS, ICREA, Barcelona, Spain
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Guillaume Monneret
- Immunology Laboratory, Hôpital E Herriot - Hospices Civils de Lyon, Lyon, France; Université Claude Bernard Lyon-1, Hôpital E Herriot, Lyon, France
| | | | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | | | - Martin Sebastian Winkler
- Department of Anesthesiology and Intensive Care, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marcin Osuchowski
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Jesus F Bermejo-Martin
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain; School of Medicine, Universidad de Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabienne Venet
- Immunology Laboratory, Hôpital E Herriot - Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Ecole Normale Supeérieure de Lyon, Universiteé Claude Bernard-Lyon 1, Lyon, France.
| |
Collapse
|
4
|
Fuchs AL, Costello SM, Schiller SM, Tripet BP, Copié V. Primary Human M2 Macrophage Subtypes Are Distinguishable by Aqueous Metabolite Profiles. Int J Mol Sci 2024; 25:2407. [PMID: 38397084 PMCID: PMC10889249 DOI: 10.3390/ijms25042407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
The complexity of macrophage (MΦ) plasticity and polarization states, which include classically activated pro-inflammatory (M1) and alternatively activated anti-inflammatory (M2) MΦ phenotypes, is becoming increasingly appreciated. Within the M2 MΦ polarization state, M2a, M2b, M2c, and M2d MΦ subcategories have been defined based on their expression of specific cell surface receptors, secreted cytokines, and specialized immune effector functions. The importance of immunometabolic networks in mediating the function and regulation of MΦ immune responses is also being increasingly recognized, although the exact mechanisms and extent of metabolic modulation of MΦ subtype phenotypes and functions remain incompletely understood. In this study, proton (1H) nuclear magnetic resonance (NMR) metabolomics was employed to determine the polar metabolomes of M2 MΦ subtypes and to investigate the relationship between aqueous metabolite profiles and M2 MΦ functional phenotypes. Results from this study demonstrate that M2a MΦs are most distinct from M2b, M2c, and M2d MΦ subtypes, and that M2b MΦs display several metabolic traits associated with an M1-like MΦ phenotype. The significance of metabolome differences for metabolites implicated in glycolysis, the tricarboxylic acid (TCA) cycle, phospholipid metabolism, and creatine-phosphocreatine cycling is discussed. Altogether, this study provides biochemical insights into the role of metabolism in mediating the specialized effector functions of distinct M2 MΦ subtypes and supports the concept of a continuum of macrophage activation states rather than two well-separated and functionally distinct M1/M2 MΦ classes, as originally proposed within a classical M1/M2 MΦ framework.
Collapse
Affiliation(s)
| | | | | | | | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
5
|
Wood AC, Graca G, Gadgil M, Senn MK, Allison MA, Tzoulaki I, Greenland P, Ebbels T, Elliott P, Goodarzi MO, Tracy R, Rotter JI, Herrington D. Untargeted metabolomic analysis investigating links between unprocessed red meat intake and markers of inflammation. Am J Clin Nutr 2023; 118:989-999. [PMID: 37660929 PMCID: PMC10797554 DOI: 10.1016/j.ajcnut.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Whether red meat consumption is associated with higher inflammation or confounded by increased adiposity remains unclear. Plasma metabolites capture the effects of diet after food is processed, digested, and absorbed, and correlate with markers of inflammation, so they can help clarify diet-health relationships. OBJECTIVE To identify whether any metabolites associated with red meat intake are also associated with inflammation. METHODS A cross-sectional analysis of observational data from older adults (52.84% women, mean age 63 ± 0.3 y) participating in the Multi-Ethnic Study of Atherosclerosis (MESA). Dietary intake was assessed by food-frequency questionnaire, alongside C-reactive protein (CRP), interleukin-2, interleukin-6, fibrinogen, homocysteine, and tumor necrosis factor alpha, and untargeted proton nuclear magnetic resonance (1H NMR) metabolomic features. Associations between these variables were examined using linear regression models, adjusted for demographic factors, lifestyle behaviors, and body mass index (BMI). RESULTS In analyses that adjust for BMI, neither processed nor unprocessed forms of red meat were associated with any markers of inflammation (all P > 0.01). However, when adjusting for BMI, unprocessed red meat was inversely associated with spectral features representing the metabolite glutamine (sentinel hit: β = -0.09 ± 0.02, P = 2.0 × 10-5), an amino acid which was also inversely associated with CRP level (β = -0.11 ± 0.01, P = 3.3 × 10-10). CONCLUSIONS Our analyses were unable to support a relationship between either processed or unprocessed red meat and inflammation, over and above any confounding by BMI. Glutamine, a plasma correlate of lower unprocessed red meat intake, was associated with lower CRP levels. The differences in diet-inflammation associations, compared with diet metabolite-inflammation associations, warrant further investigation to understand the extent that these arise from the following: 1) a reduction in measurement error with metabolite measures; 2) the extent that which factors other than unprocessed red meat intake contribute to glutamine levels; and 3) the ability of plasma metabolites to capture individual differences in how food intake is metabolized.
Collapse
Affiliation(s)
- Alexis C Wood
- United States Department of Agriculture (USDA)/ARS Children's Nutrition Research Center, Baylor College of Medicine, TX, United States.
| | - Goncalo Graca
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Meghana Gadgil
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, CA, United States
| | - Mackenzie K Senn
- United States Department of Agriculture (USDA)/ARS Children's Nutrition Research Center, Baylor College of Medicine, TX, United States
| | - Matthew A Allison
- Department of Family Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Ioanna Tzoulaki
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece; Department of Epidemiology and Biostatistics, Imperial College London School of Public Health, London, United Kingdom
| | - Philip Greenland
- Departments of Preventive Medicine and Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Timothy Ebbels
- Biomolecular Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, Imperial College London School of Public Health, London, United Kingdom
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Russell Tracy
- Laboratory for Clinical Biochemistry Research, University of Vermont, Burlington, VT, United States
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - David Herrington
- Section on Cardiovascular Medicine, Department of Internal Medicine, Wake Forest School of Medicine; Medical Center Boulevard, Winston-Salem, NC, United States
| |
Collapse
|
6
|
Vick LV, Canter RJ, Monjazeb AM, Murphy WJ. Multifaceted effects of obesity on cancer immunotherapies: Bridging preclinical models and clinical data. Semin Cancer Biol 2023; 95:88-102. [PMID: 37499846 PMCID: PMC10836337 DOI: 10.1016/j.semcancer.2023.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Obesity, defined by excessive body fat, is a highly complex condition affecting numerous physiological processes, such as metabolism, proliferation, and cellular homeostasis. These multifaceted effects impact cells and tissues throughout the host, including immune cells as well as cancer biology. Because of the multifaceted nature of obesity, common parameters used to define it (such as body mass index in humans) can be problematic, and more nuanced methods are needed to characterize the pleiotropic metabolic effects of obesity. Obesity is well-accepted as an overall negative prognostic factor for cancer incidence, progression, and outcome. This is in part due to the meta-inflammatory and immunosuppressive effects of obesity. Immunotherapy is increasingly used in cancer therapy, and there are many different types of immunotherapy approaches. The effects of obesity on immunotherapy have only recently been studied with the demonstration of an "obesity paradox", in which some immune therapies have been demonstrated to result in greater efficacy in obese subjects despite the direct adverse effects of obesity and excess body fat acting on the cancer itself. The multifactorial characteristics that influence the effects of obesity (age, sex, lean muscle mass, underlying metabolic conditions and drugs) further confound interpretation of clinical data and necessitate the use of more relevant preclinical models mirroring these variables in the human scenario. Such models will allow for more nuanced mechanistic assessment of how obesity can impact, both positively and negatively, cancer biology, host metabolism, immune regulation, and how these intersecting processes impact the delivery and outcome of cancer immunotherapy.
Collapse
Affiliation(s)
- Logan V Vick
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Robert J Canter
- Department of Surgery, Division of Surgical Oncology, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Arta M Monjazeb
- Department of Radiation Oncology, University of California Davis Comprehensive Cancer Center, University of California School of Medicine, Sacramento, CA, USA
| | - William J Murphy
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA; Department of Internal Medicine, Division of Malignant Hematology, Cellular Therapy and Transplantation, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
7
|
Corder ML, Petricoin EF, Li Y, Cleland TP, DeCandia AL, Alonso Aguirre A, Pukazhenthi BS. Metabolomic profiling implicates mitochondrial and immune dysfunction in disease syndromes of the critically endangered black rhinoceros (Diceros bicornis). Sci Rep 2023; 13:15464. [PMID: 37726331 PMCID: PMC10509206 DOI: 10.1038/s41598-023-41508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
The critically endangered black rhinoceros (Diceros bicornis; black rhino) experiences extinction threats from poaching in-situ. The ex-situ population, which serves as a genetic reservoir against impending extinction threats, experiences its own threats to survival related to several disease syndromes not typically observed among their wild counterparts. We performed an untargeted metabolomic analysis of serum from 30 ex-situ housed black rhinos (Eastern black rhino, EBR, n = 14 animals; Southern black rhino, SBR, n = 16 animals) and analyzed differences in metabolite profiles between subspecies, sex, and health status (healthy n = 13 vs. diseased n = 14). Of the 636 metabolites detected, several were differentially (fold change > 1.5; p < 0.05) expressed between EBR vs. SBR (40 metabolites), female vs. male (36 metabolites), and healthy vs. diseased (22 metabolites). Results suggest dysregulation of propanoate, amino acid metabolism, and bile acid biosynthesis in the subspecies and sex comparisons. Assessment of healthy versus diseased rhinos indicates involvement of arachidonic acid metabolism, bile acid biosynthesis, and the pentose phosphate pathway in animals exhibiting inflammatory disease syndromes. This study represents the first systematic characterization of the circulating serum metabolome in the black rhinoceros. Findings further implicate mitochondrial and immune dysfunction as key contributors for the diverse disease syndromes reported in ex-situ managed black rhinos.
Collapse
Affiliation(s)
- Molly L Corder
- Smithsonian's National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, 22630, USA
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, 20900, USA
- Department of Environmental Sciences and Policy, George Mason University, Fairfax, Virginia, 22030, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, 20900, USA
| | - Yue Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | | | - Alexandra L DeCandia
- Department of Biology, Georgetown University, Washington, DC, 20057, USA
- Smithsonian's National Zoo and Conservation Biology Institute, Center for Conservation Genomics, Washington, DC, 20008, USA
| | - A Alonso Aguirre
- Department of Fish, Wildlife, and Conservation Biology, Warner College of Natural Resources, Colorado State University, Fort Collins, 80523, USA
| | - Budhan S Pukazhenthi
- Smithsonian's National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, 22630, USA.
| |
Collapse
|
8
|
Zhu Z, Liao L, Gao M, Liu Q. Garlic-derived exosome-like nanovesicles alleviate dextran sulphate sodium-induced mouse colitis via the TLR4/MyD88/NF-κB pathway and gut microbiota modulation. Food Funct 2023; 14:7520-7534. [PMID: 37523213 DOI: 10.1039/d3fo01094e] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Plant-derived exosome-like nanovesicles play an important role in transferring their biological cargos to recipient cells. The effect of garlic-derived exosome-like nanovesicles (GENs) against inflammatory bowel disease (IBD) remains unknown. This study aimed to investigate the effect of GENs on dextran sulphate sodium (DSS)-induced colitis in mice. A comprehensive analysis of bioactive components in GENs was performed. Data showed that GENs contained 26 lipids, 61 proteins and 127 known microRNAs (miRNAs). Han-miR3630-5p in GENs could bind to the 3' untranslated region of toll-like receptor 4 (TLR4), which led to the inhibition of TLR4 expression. Besides, GENs significantly up-regulated the expression of barrier-related proteins and inhibited the overproduction of pro-inflammatory cytokines in LPS-induced Caco-2 cells. As a result, pretreatment with GENs at 100 mg kg-1 efficiently ameliorated the inflammatory bowel behavior, intestinal histological pathological damage, and tight junction protein dysfunction induced by DSS in the colon tissue. Intake of GENs significantly down-regulated the expressions of TLR4, myeloid differentiation primary response gene 88 (MyD88), and nuclear factor kappa-B (NF-κB), which suppressed the downstream cascades and led to less secretion of pro-inflammatory cytokines induced by DSS. Furthermore, pretreatment with GENs altered the gut microbiota profile of colitis mice by recovering the relative abundance of Lachnospiraceae and reducing the relative abundance of Helicobacter. Totally, GENs had potential to protect the colon against DSS-induced damage through inhibiting the TLR4/MyD88/NF-κB signaling pathway and regulating gut microbiota. This study clarified the role of miRNAs of GENs in anti-colitis and proved that GENs had a potential application for IBD prevention.
Collapse
Affiliation(s)
- Zhenzhu Zhu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China.
| | - Liuyue Liao
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China.
| | - Mingwei Gao
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China.
| | - Qin Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China.
| |
Collapse
|
9
|
Li Z, Song Y, Xu W, Chen J, Zhou R, Yang M, Zhu G, Luo X, Ai Z, Liu Y, Su D. Pulsatilla chinensis saponins improve SCFAs regulating GPR43-NLRP3 signaling pathway in the treatment of ulcerative colitis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116215. [PMID: 36806339 DOI: 10.1016/j.jep.2023.116215] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulsatilla decoction has been extensively used to treat ulcerative colitis (UC) in recent years. Pulsatilla chinensis saponin (PRS), the active ingredient of its monarch medicine Pulsatilla chinensis (Bunge) Regel, plays a crucial role in the treatment of UC, but its specific mechanism of action has not been fully elucidated. AIM OF THE STUDY This study aims to investigate the protective effect and possible mechanism of PRS on DSS-induced ulcerative colitis in rats. MATERIALS AND METHODS In this study, the DSS-induced colitis model was used to explore the metabolism and absorption of PRS under UC, detect the content of short-chain fatty acids (SCFAs) in colon tissue, the expression of receptor G Protein-Coupled Receptor 43 (GPR43) protein and inflammasome NLRP3, and observe the expression level of IL-1β, IL-6 and TNF-α in colon tissue. The protective effect of the PRS was also observed. RESULTS It was found that in the UC group, the absorption rate and extent of drugs increased, and the elimination was accelerated. Compared with the control group, PRS increased the content of short-chain fatty acids (SCFAs) in colon tissue, promoted the expression of SCFAs receptor GPR43 protein, inhibited the activation of the NLRP3 inflammasome, and decreased the content of IL-1β, IL-6 and TNF-α. PRS protects the colon in DSS-induced inflammatory bowel disease by increasing the content of SCFAs, promoting the expression of GPR43 protein, inhibiting the activation of the NLRP3 inflammasome, and reversing the increase in IL-1β, IL-6 and TNF-α levels. CONCLUSIONS PRS can increase the content of colonic SCFAs, activate the GPR43-NLRP3 signaling pathway, and reduce the levels of pro-inflammatory cytokines, thereby improving the symptoms of DSS-induced colitis.
Collapse
Affiliation(s)
- Zexie Li
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Weize Xu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Jingbin Chen
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Rou Zhou
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Ming Yang
- Jiangxi Guxiang Jinyun Comprehensive Health Industry Co., Ltd., Nanchang, China
| | - Genhua Zhu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Xiaoquan Luo
- SPF Exeriment mice and rats Production base in Jiangxi Province, China
| | - Zhifu Ai
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, 1688 Meiling Road, Nanchang, 330006, China; Key Laboratory of Pharmacodynamics and Quality Evaluation on anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine; Nanchang Medical College, 1688 Meiling Road, Nanchang, 330006, China.
| | - Dan Su
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China.
| |
Collapse
|
10
|
Goodin DA, Frieboes HB. Evaluation of innate and adaptive immune system interactions in the tumor microenvironment via a 3D continuum model. J Theor Biol 2023; 559:111383. [PMID: 36539112 DOI: 10.1016/j.jtbi.2022.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Immune cells in the tumor microenvironment (TME) are known to affect tumor growth, vascularization, and extracellular matrix (ECM) deposition. Marked interest in system-scale analysis of immune species interactions within the TME has encouraged progress in modeling tumor-immune interactions in silico. Due to the computational cost of simulating these intricate interactions, models have typically been constrained to representing a limited number of immune species. To expand the capability for system-scale analysis, this study develops a three-dimensional continuum mixture model of tumor-immune interactions to simulate multiple immune species in the TME. Building upon a recent distributed computing implementation that enables efficient solution of such mixture models, major immune species including monocytes, macrophages, natural killer cells, dendritic cells, neutrophils, myeloid-derived suppressor cells (MDSC), cytotoxic, helper, regulatory T-cells, and effector and regulatory B-cells and their interactions are represented in this novel implementation. Immune species extravasate from blood vasculature, undergo chemotaxis toward regions of high chemokine concentration, and influence the TME in proportion to locally defined levels of stimulation. The immune species contribute to the production of angiogenic and tumor growth factors, promotion of myofibroblast deposition of ECM, upregulation of angiogenesis, and elimination of living and dead tumor species. The results show that this modeling approach offers the capability for quantitative insight into the modulation of tumor growth by diverse immune-tumor interactions and immune-driven TME effects. In particular, MDSC-mediated effects on tumor-associated immune species' activation levels, volume fraction, and influence on the TME are explored. Longer term, linking of the model parameters to particular patient tumor information could simulate cancer-specific immune responses and move toward a more comprehensive evaluation of immunotherapeutic strategies.
Collapse
Affiliation(s)
- Dylan A Goodin
- Department of Bioengineering, University of Louisville, KY, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville, KY, USA; Center for Predictive Medicine, University of Louisville, KY, USA.
| |
Collapse
|
11
|
Xu M, Pan L, Wang B, Zou X, Zhang A, Zhou Z, Han Y. Simulated Digestion and Fecal Fermentation Behaviors of Levan and Its Impacts on the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1531-1546. [PMID: 36622938 DOI: 10.1021/acs.jafc.2c06897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Levan is a microbial fructan widely explored in various fields owing to its excellent physical and biochemical properties. However, little is known about its digestion and fermentation characteristics in vitro. This study evaluated the potential prebiotic properties of levan obtained by enzymatic synthesis. Scanning electron microscopy, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy showed that the primary structures of levan remained stable after saliva-gastrointestinal digestion. The microtopography, molecular weight, and functional group of levan were seriously damaged during fecal fermentation. Moreover, the total short-chain fatty acid levels increased significantly, especially for propionic acid, butyric acid, and valeric acid. The 16S rDNA sequencing showed that levan mainly increased the abundance of Firmicutes; in genus levels, certain beneficial bacteria such as Megasphaera and Megamonas genera were remarkably promoted, and the proliferation of harmful genera was inhibited (such as Cedecea and Klebsiella). Overall, this study provided new insights into the potential probiotic mechanism of levan.
Collapse
Affiliation(s)
- Min Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Lei Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Binbin Wang
- School of Life Science, Shanxi Normal University, Taiyuan 030000, China
| | - Xuan Zou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Aihua Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| |
Collapse
|
12
|
Chen X. From immune equilibrium to immunodynamics. Front Microbiol 2022; 13:1018817. [PMID: 36504800 PMCID: PMC9732466 DOI: 10.3389/fmicb.2022.1018817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2022] Open
Abstract
Objective The immunology field has long been short of a universally applicable theoretical model that can quantitatively describe the immune response, and the theory of immune equilibrium (balance) is usually limited to the interpretation of the philosophical significance of immune phenomena. Therefore, it is necessary to establish a new immunological theory, namely, immunodynamic theory, to reanalyze the immune response. Methods By quantifying the immune dynamic equilibrium as the ratio of positive and negative immune power, the immune dynamic equilibrium equation was established. Then, the area under the curve of the positive and negative immune power was assumed to be equal in the whole process of immune response (regardless of correct or not), and through thought experiments based on this key hypothesis, a series of new concepts and expressions were derived, to establish a series of immunodynamic equations. Results New concepts of immune force and immune braking force and their expression equations, namely, the theoretical equations of immunodynamics, were derived through thought experiments, and the theoretical curves of immunodynamics were obtained according to these equations. Via the equivalent transformation of the theoretical equations and practical calculation of functional data, and by the methods of curve comparison and fitting, some practical equations of immunodynamics were established, and these practical equations were used to solve theoretical and practical problems that are related to the immunotherapy of infectious diseases and cancers. Conclusion The traditional theory of immune equilibrium has been mathematized and transformed from a philosophical category into a new concrete scientific theory, namely the theory of immunodynamics, which solves the dilemma that the traditional theory cannot guide individualized medical practice for a long time. This new theory may develop into one of the core theories of immunology in the future.
Collapse
Affiliation(s)
- Xiaoping Chen
- State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Lamvac (Guangzhou) Biomedical Technology Co., Ltd., Guangzhou, China
| |
Collapse
|
13
|
Metabolomics profiling in acute liver transplant rejection in a pediatric population. Sci Rep 2022; 12:18663. [PMID: 36333377 PMCID: PMC9636214 DOI: 10.1038/s41598-022-18957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 08/23/2022] [Indexed: 11/06/2022] Open
Abstract
Pediatric liver transplantation rejection affects 20% of children. Currently, liver biopsy, expensive and invasive, is the best method of diagnosis. Discovery and validation of clinical biomarkers from blood or other biospecimens would improve clinical care. For this study, stored plasma samples were utilized from two cross-sectional cohorts of liver transplant patients at Children's Healthcare of Atlanta. High resolution metabolic profiling was completed using established methods. Children with (n = 18) or without (n = 25) acute cellular rejection were included in the analysis (n = 43 total). The mean age of these racially diverse cohorts ranged from 12.6 years in the rejection group and 13.6 years in the no rejection group. Linear regression provided 510 significantly differentiating metabolites between groups, and OPLS-DA showed 145 metabolites with VIP > 2. A total of 95 overlapping significant metabolites between OPLS-DA and linear regression analyses were detected. Pathway analysis (p < 0.05) showed bile acid biosynthesis and tryptophan metabolism as the top two differentiating pathways. Network analysis also identified tryptophan and clustered with liver enzymes and steroid use. We conclude metabolic profiling of plasma from children with acute liver transplant rejection demonstrates > 500 significant metabolites. This result suggests that development of a non-invasive biomarker-based test is possible for rejection screening.
Collapse
|
14
|
Guo G, Yang W, Fan C, Lan R, Gao Z, Gan S, Yu H, Yin F, Wang Z. The effects of fucoidan as a dairy substitute on diarrhea rate and intestinal barrier function of the large intestine in weaned lambs. Front Vet Sci 2022; 9:1007346. [PMID: 36337209 PMCID: PMC9630570 DOI: 10.3389/fvets.2022.1007346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/29/2022] [Indexed: 08/13/2023] Open
Abstract
This paper explores the effects of fucoidan on the frequency of diarrhea, colon morphology, colon antioxidant status, cytokine content, short-chain fatty acids, and microflora of cecal contents in early weaned lambs in order to provide a reference for the intestinal health of young ruminants. Fucoidan is a natural active polysaccharide extracted from kelp and other large brown algae. It has many biological effects, such as improving immunity, nourishing the stomach and intestines, and anti-tumor properties. This study investigated the effects of fucoidan supplementation in milk replacer on the large intestine's ability to act as an intestinal barrier in weaned lambs. With six duplicate pens and one lamb per pen, a total of 24 weaned lambs (average starting body weight of 7.32 ± 0.37 kg) were randomly assigned to one of four milk replacer treatments. Four concentrations of fucoidan supplementation (0, 0.1, 0.3, and 0.6% dry matter intake) were employed to investigate the effects of fucoidan on cecal fermentation and colon microbial organization. The test period lasted 37 days (1 week before the test and 1 month after the test), and lamb cecal contents and colon organization were collected for examination. In addition, the fecal status of all lambs was observed and recorded daily, allowing us to calculate the incidence of diarrhea in weaned lambs. The findings demonstrated that fucoidan may significantly increase the concentration of short-chain fatty acids (propionic acid and butyric acid) in the cecal digesta of weaned lambs. In weaned lambs, 16S rDNA testing showed that fucoidan at 0.3-0.6% (dry matter intake) was beneficial for boosting the variety of the intestinal bacteria and modifying the relative abundance of a few bacterial strains. In addition, fucoidan enhanced colon antioxidant and immune functions and decreased the diarrhea rate to relieve weaning stress. This result demonstrates that milk replacer supplementation with fucoidan contributes to the improvement in the large intestinal health of weaned lambs.
Collapse
Affiliation(s)
- Guangzhen Guo
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Weiguang Yang
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Chaojie Fan
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Ruixia Lan
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Zhenhua Gao
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Shangquan Gan
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Haibin Yu
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Fuquan Yin
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Zhijing Wang
- Animal Disease Prevention and Control Center, Guangdong Qingyuan Agricultural Bureau, Qingyuan, China
| |
Collapse
|
15
|
Ceballos FC, Virseda-Berdices A, Resino S, Ryan P, Martínez-González O, Peréz-García F, Martin-Vicente M, Brochado-Kith O, Blancas R, Bartolome-Sánchez S, Vidal-Alcántara EJ, Albóniga-Díez OE, Cuadros-González J, Blanca-López N, Martínez I, Martinez-Acitores IR, Barbas C, Fernández-Rodríguez A, Jiménez-Sousa MÁ. Metabolic Profiling at COVID-19 Onset Shows Disease Severity and Sex-Specific Dysregulation. Front Immunol 2022; 13:925558. [PMID: 35844615 PMCID: PMC9280146 DOI: 10.3389/fimmu.2022.925558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Backgroundmetabolic changes through SARS-CoV-2 infection has been reported but not fully comprehended. This metabolic dysregulation affects multiple organs during COVID-19 and its early detection can be used as a prognosis marker of severity. Therefore, we aimed to characterize metabolic and cytokine profile at COVID-19 onset and its relationship with disease severity to identify metabolic profiles predicting disease progression.Material and Methodswe performed a retrospective cross-sectional study in 123 COVID-19 patients which were stratified as asymptomatic/mild, moderate and severe according to the highest COVID-19 severity status, and a group of healthy controls. We performed an untargeted plasma metabolic profiling (gas chromatography and capillary electrophoresis-mass spectrometry (GC and CE-MS)) and cytokine evaluation.ResultsAfter data filtering and identification we observed 105 metabolites dysregulated (66 GC-MS and 40 CE-MS) which shown different expression patterns for each COVID-19 severity status. These metabolites belonged to different metabolic pathways including amino acid, energy, and nitrogen metabolism among others. Severity-specific metabolic dysregulation was observed, as an increased transformation of L-tryptophan into L-kynurenine. Thus, metabolic profiling at hospital admission differentiate between severe and moderate patients in the later phase of worse evolution. Several plasma pro-inflammatory biomarkers showed significant correlation with deregulated metabolites, specially with L-kynurenine and L-tryptophan. Finally, we describe a strong sex-related dysregulation of metabolites, cytokines and chemokines between severe and moderate patients. In conclusion, metabolic profiling of COVID-19 patients at disease onset is a powerful tool to unravel the SARS-CoV-2 molecular pathogenesis.ConclusionsThis technique makes it possible to identify metabolic phenoconversion that predicts disease progression and explains the pronounced pathogenesis differences between sexes.
Collapse
Affiliation(s)
- Francisco C. Ceballos
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Ana Virseda-Berdices
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Salvador Resino
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Ryan
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Oscar Martínez-González
- Critical Care Department, Hospital Universitario del Tajo, Aranjuez, Spain
- Universidad Alfonso X el Sabio, Villanueva de la Cañada, Madrid, Spain
| | - Felipe Peréz-García
- Clinical Microbiology Department, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
- Department of Biomedicine and Biotecnology, Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, Spain
| | - María Martin-Vicente
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Brochado-Kith
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Blancas
- Critical Care Department, Hospital Universitario del Tajo, Aranjuez, Spain
- Universidad Alfonso X el Sabio, Villanueva de la Cañada, Madrid, Spain
| | - Sofía Bartolome-Sánchez
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Erick Joan Vidal-Alcántara
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Oihane Elena Albóniga-Díez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Juan Cuadros-González
- Clinical Microbiology Department, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
- Department of Biomedicine and Biotecnology, Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, Spain
| | | | - Isidoro Martínez
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Amanda Fernández-Rodríguez, ; María Ángeles Jiménez-Sousa,
| | - María Ángeles Jiménez-Sousa
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Amanda Fernández-Rodríguez, ; María Ángeles Jiménez-Sousa,
| |
Collapse
|
16
|
Lazado CC, Breiland MW, Furtado F, Burgerhout E, Strand D. The circulating plasma metabolome of Neoparamoeba perurans-infected Atlantic salmon (Salmo salar). Microb Pathog 2022; 166:105553. [DOI: 10.1016/j.micpath.2022.105553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
17
|
Mediani A, Kamal N, Pantami HA, Saleh MSM, Al-Mekhlafi NA, Ismail NH, Abas F. Phytomolecules and Metabolomics of Immunomodulation: Recent Trends and Advances. PLANTS AND PHYTOMOLECULES FOR IMMUNOMODULATION 2022:115-145. [DOI: 10.1007/978-981-16-8117-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Mondal P, Tiwary N, Sengupta A, Dhang S, Roy S, Das C. Epigenetic Reprogramming of the Glucose Metabolic Pathways by the Chromatin Effectors During Cancer. Subcell Biochem 2022; 100:269-336. [PMID: 36301498 DOI: 10.1007/978-3-031-07634-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glucose metabolism plays a vital role in regulating cellular homeostasis as it acts as the central axis for energy metabolism, alteration in which may lead to serious consequences like metabolic disorders to life-threatening diseases like cancer. Malignant cells, on the other hand, help in tumor progression through abrupt cell proliferation by adapting to the changed metabolic milieu. Metabolic intermediates also vary from normal cells to cancerous ones to help the tumor manifestation. However, metabolic reprogramming is an important phenomenon of cells through which they try to maintain the balance between normal and carcinogenic outcomes. In this process, transcription factors and chromatin modifiers play an essential role to modify the chromatin landscape of important genes related directly or indirectly to metabolism. Our chapter surmises the importance of glucose metabolism and the role of metabolic intermediates in the cell. Also, we summarize the influence of histone effectors in reprogramming the cancer cell metabolism. An interesting aspect of this chapter includes the detailed methods to detect the aberrant metabolic flux, which can be instrumental for the therapeutic regimen of cancer.
Collapse
Affiliation(s)
- Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Niharika Tiwary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Amrita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Sinjini Dhang
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Siddhartha Roy
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.
- Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
19
|
Volpedo G, Pacheco-Fernandez T, Bhattacharya P, Oljuskin T, Dey R, Gannavaram S, Satoskar AR, Nakhasi HL. Determinants of Innate Immunity in Visceral Leishmaniasis and Their Implication in Vaccine Development. Front Immunol 2021; 12:748325. [PMID: 34712235 PMCID: PMC8546207 DOI: 10.3389/fimmu.2021.748325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/24/2021] [Indexed: 12/22/2022] Open
Abstract
Leishmaniasis is endemic to the tropical and subtropical regions of the world and is transmitted by the bite of an infected sand fly. The multifaceted interactions between Leishmania, the host innate immune cells, and the adaptive immunity determine the severity of pathogenesis and disease development. Leishmania parasites establish a chronic infection by subversion and attenuation of the microbicidal functions of phagocytic innate immune cells such as neutrophils, macrophages and dendritic cells (DCs). Other innate cells such as inflammatory monocytes, mast cells and NK cells, also contribute to resistance and/or susceptibility to Leishmania infection. In addition to the cytokine/chemokine signals from the innate immune cells, recent studies identified the subtle shifts in the metabolic pathways of the innate cells that activate distinct immune signal cascades. The nexus between metabolic pathways, epigenetic reprogramming and the immune signaling cascades that drive the divergent innate immune responses, remains to be fully understood in Leishmania pathogenesis. Further, development of safe and efficacious vaccines against Leishmaniasis requires a broader understanding of the early interactions between the parasites and innate immune cells. In this review we focus on the current understanding of the specific role of innate immune cells, the metabolomic and epigenetic reprogramming and immune regulation that occurs during visceral leishmaniasis, and the strategies used by the parasite to evade and modulate host immunity. We highlight how such pathways could be exploited in the development of safe and efficacious Leishmania vaccines.
Collapse
Affiliation(s)
- Greta Volpedo
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Thalia Pacheco-Fernandez
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Parna Bhattacharya
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Timur Oljuskin
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Ranadhir Dey
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Abhay R Satoskar
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Hira L Nakhasi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
20
|
Belanger M, Ball AG, Catterton MA, Kinman AW, Anbaei P, Groff BD, Melchor SJ, Lukens JR, Ross AE, Pompano RR. Acute Lymph Node Slices Are a Functional Model System to Study Immunity Ex Vivo. ACS Pharmacol Transl Sci 2021; 4:128-142. [PMID: 33615167 PMCID: PMC7887751 DOI: 10.1021/acsptsci.0c00143] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 02/07/2023]
Abstract
The lymph node is a highly organized and dynamic structure that is critical for facilitating the intercellular interactions that constitute adaptive immunity. Most ex vivo studies of the lymph node begin by reducing it to a cell suspension, thus losing the spatial organization, or fixing it, thus losing the ability to make repeated measurements. Live murine lymph node tissue slices offer the potential to retain spatial complexity and dynamic accessibility, but their viability, level of immune activation, and retention of antigen-specific functions have not been validated. Here we systematically characterized live murine lymph node slices as a platform to study immunity. Live lymph node slices maintained the expected spatial organization and cell populations while reflecting the 3D spatial complexity of the organ. Slices collected under optimized conditions were comparable to cell suspensions in terms of both 24-h viability and inflammation. Slices responded to T cell receptor cross-linking with increased surface marker expression and cytokine secretion, in some cases more strongly than matched lymphocyte cultures. Furthermore, slices processed protein antigens, and slices from vaccinated animals responded to ex vivo challenge with antigen-specific cytokine secretion. In summary, lymph node slices provide a versatile platform to investigate immune functions in spatially organized tissue, enabling well-defined stimulation, time-course analysis, and parallel read-outs.
Collapse
Affiliation(s)
- Maura
C. Belanger
- Department
of Chemistry, University of Virginia College
of Arts and Sciences, Charlottesville, Virginia 22904, United States
- Carter
Immunology Center, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Alexander G. Ball
- Carter
Immunology Center, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22904, United States
| | - Megan A. Catterton
- Department
of Chemistry, University of Virginia College
of Arts and Sciences, Charlottesville, Virginia 22904, United States
| | - Andrew W.L. Kinman
- Department
of Chemistry, University of Virginia College
of Arts and Sciences, Charlottesville, Virginia 22904, United States
| | - Parastoo Anbaei
- Department
of Chemistry, University of Virginia College
of Arts and Sciences, Charlottesville, Virginia 22904, United States
| | - Benjamin D. Groff
- Department
of Chemistry, University of Virginia College
of Arts and Sciences, Charlottesville, Virginia 22904, United States
| | - Stephanie J. Melchor
- Carter
Immunology Center, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22904, United States
| | - John R. Lukens
- Carter
Immunology Center, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Neuroscience and Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, Virginia 22904, United States
| | - Ashley E. Ross
- Department
of Chemistry, University of Cincinnati, Cincinnati, Ohio 45220, United States
| | - Rebecca R. Pompano
- Department
of Chemistry, University of Virginia College
of Arts and Sciences, Charlottesville, Virginia 22904, United States
- Carter
Immunology Center, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Biomedical Engineering, University of
Virginia School of Engineering and Applied Sciences, Charlottesville, Virginia 22904, United States
| |
Collapse
|
21
|
Karkossa I, Raps S, von Bergen M, Schubert K. Systematic Review of Multi-Omics Approaches to Investigate Toxicological Effects in Macrophages. Int J Mol Sci 2020; 21:E9371. [PMID: 33317022 PMCID: PMC7764599 DOI: 10.3390/ijms21249371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
Insights into the modes of action (MoAs) of xenobiotics are of utmost importance for the definition of adverse outcome pathways (AOPs), which are essential for a mechanism-based risk assessment. A well-established strategy to reveal MoAs of xenobiotics is the use of omics. However, often an even more comprehensive approach is needed, which can be achieved using multi-omics. Since the immune system plays a central role in the defense against foreign substances and pathogens, with the innate immune system building a first barrier, we systematically reviewed multi-omics studies investigating the effects of xenobiotics on macrophages. Surprisingly, only nine publications were identified, combining proteomics with transcriptomics or metabolomics. We summarized pathways and single proteins, transcripts, or metabolites, which were described to be affected upon treatment with xenobiotics in the reviewed studies, thus revealing a broad range of effects. In summary, we show that macrophages are a relevant model system to investigate the toxicological effects induced by xenobiotics. Furthermore, the multi-omics approaches led to a more comprehensive overview compared to only one omics layer with slight advantages for combinations that complement each other directly, e.g., proteome and metabolome.
Collapse
Affiliation(s)
- Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (I.K.); (S.R.); (M.v.B.)
| | - Stefanie Raps
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (I.K.); (S.R.); (M.v.B.)
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (I.K.); (S.R.); (M.v.B.)
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (I.K.); (S.R.); (M.v.B.)
| |
Collapse
|
22
|
Kohut TJ, Barandiaran JF, Keating BJ. Genomics and Liver Transplantation: Genomic Biomarkers for the Diagnosis of Acute Cellular Rejection. Liver Transpl 2020; 26:1337-1350. [PMID: 32506790 DOI: 10.1002/lt.25812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/26/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Acute cellular rejection (ACR) is a common complication in liver transplantation recipients (LTRs), especially within the first 12 months, and it is associated with increased morbidity and mortality. Although abnormalities in standard liver biochemistries may raise the clinical suspicion for ACR, it lacks specificity, and invasive liver biopsies, which are associated with numerous risks, are required for definitive diagnoses. Biomarker discovery for minimally invasive tools for diagnosis and prognostication of ACR after liver transplantation (LT) has become a rapidly evolving field of research with a recent shift in focus to omics-based biomarker discovery. Although none are yet ready to replace the standard of care, there are several promising minimally invasive, blood-derived biomarkers that are under intensive research for the diagnosis of ACR in LTRs. These omics-based biomarkers, encompassing DNA, RNA, proteins, and metabolites, hold tremendous potential. Some are likely to become integrated into ACR diagnostic algorithms to assist clinical decision making with a high degree of accuracy that is cost-effective and reduces or even obviates the need for an invasive liver biopsy.
Collapse
Affiliation(s)
- Taisa J Kohut
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA.,The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jose F Barandiaran
- Department of General Surgery, Main Line Health System, Lankenau Medical Center, Wynnewood, PA
| | - Brendan J Keating
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
23
|
Silverstein AR, Flores MK, Miller B, Kim SJ, Yen K, Mehta HH, Cohen P. Mito-Omics and immune function: Applying novel mitochondrial omic techniques to the context of the aging immune system. TRANSLATIONAL MEDICINE OF AGING 2020; 4:132-140. [PMID: 32844137 PMCID: PMC7441040 DOI: 10.1016/j.tma.2020.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/01/2022] Open
Abstract
Recent advancements in genomic, transcriptomic, proteomic, and metabolomic techniques have prompted fresh inquiry in the field of aging. Here, we outline the application of these techniques in the context of the mitochondrial genome and suggest their potential for use in exploring the biological mechanisms of the aging immune system.
Collapse
Affiliation(s)
- Ana R Silverstein
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Melanie K Flores
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
24
|
Xu X, Lv J, Guo F, Li J, Jia Y, Jiang D, Wang N, Zhang C, Kong L, Liu Y, Zhang Y, Lv J, Li Z. Gut Microbiome Influences the Efficacy of PD-1 Antibody Immunotherapy on MSS-Type Colorectal Cancer via Metabolic Pathway. Front Microbiol 2020; 11:814. [PMID: 32425919 PMCID: PMC7212380 DOI: 10.3389/fmicb.2020.00814] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) appears to be rather refractory to checkpoint blockers except the patient with deficient in mismatch repair (dMMR). Therefore, new advances in the treatment of most mismatch repair proficiency (pMMR) (also known as microsatellite stability, MSS) type of CRC patients are considered to be an important clinical issue associated with programmed death 1 (PD-1) inhibitors. In the present study, we evaluated the effects of gut microbiome of MSS-type CRC tumor-bearing mice treated with different antibiotics on PD-1 antibody immunotherapy response. Our results confirmed that the gut microbiome played a key role in the treatment of CT26 tumor-bearing mice with PD-1 antibody. After PD-1 antibody treatment, the injection of antibiotics counteracted the efficacy of PD-1 antibody in inhibiting tumor growth when compared with the Control group (mice were treated with sterile drinking water). Bacteroides_sp._CAG:927 and Bacteroidales_S24-7 were enriched in Control group. Bacteroides_sp._CAG:927, Prevotella_sp._CAG: 1031 and Bacteroides were enriched in Coli group [mice were treated with colistin (2 mg/ml)], Prevotella_sp._CAG:485 and Akkermansia_muciniphila were enriched in Vanc group [mice were treated with vancomycin alone (0.25 mg/ml)]. The metabolites were enriched in the glycerophospholipid metabolic pathway consistent with the metagenomic prediction pathway in Vanc group, Prevotella_sp._CAG:485 and Akkermansia may maintain the normal efficacy of PD-1 antibody by affecting the metabolism of glycerophospholipid. Changes in gut microbiome leaded to changes in glycerophospholipid metabolism level, which may affect the expression of immune-related cytokines IFN-γ and IL-2 in the tumor microenvironment, resulting in a different therapeutic effect of PD-1 antibody. Our findings show that changes in the gut microbiome affect the glycerophospholipid metabolic pathway, thereby regulating the therapeutic potential of PD-1 antibody in the immunotherapy of MSS-type CRC tumor-bearing mice.
Collapse
Affiliation(s)
- Xinjian Xu
- Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ji Lv
- Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Surgery, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Fang Guo
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Jing Li
- Department of Traditional Chinese Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- College of Combine Traditional Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yitao Jia
- Third Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Da Jiang
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Chao Zhang
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lingyu Kong
- College of Combine Traditional Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yabin Liu
- Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanni Zhang
- Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jian Lv
- Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhongxin Li
- Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
25
|
Skill NJ, Elliott CM, Ceballos B, Saxena R, Pepin R, Bettcher L, Ellensberg M, Raftery D, Malucio MA, Ekser B, Mangus RS, Kubal CA. Metabolomic Characterization of Human Model of Liver Rejection Identifies Aberrancies Linked to Cyclooxygenase (COX) and Nitric Oxide Synthase (NOS). Ann Transplant 2019; 24:341-349. [PMID: 31182705 PMCID: PMC6582681 DOI: 10.12659/aot.913800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acute liver rejection (ALR), a significant complication of liver transplantation, burdens patients, healthcare payers, and the healthcare providers due to an increase in morbidity, cost, and resources. Despite clinical resolution, ALR is associated with an increased risk of graft loss. A unique protocol of delayed immunosuppression used in our institute provided a model to characterize metabolomic profiles in human ALR. MATERIAL AND METHODS Twenty liver allograft biopsies obtained 48 hours after liver transplantation in the absence of immunosuppression were studied. Hepatic metabolites were quantitated in these biopsies by liquid chromatography and mass spectroscopy (LC/MS). Metabolite profiles were compared among: 1) biopsies with reperfusion injury but no histological evidence of rejection (n=7), 2) biopsies with histological evidence of moderate or severe rejection (n=5), and 3) biopsies with histological evidence of mild rejection (n=8). RESULTS There were 133 metabolites consistently detected by LC/MS and these were prioritized using variable importance to projection (VIP) analysis, comparing moderate or severe rejection vs. no rejection or mild rejection using partial least squares discriminant statistical analysis (PLS-DA). Twenty metabolites were identified as progressively different. Further PLS-DA using these metabolites identified 3 metabolites (linoleic acid, γ-linolenic acid, and citrulline) which are associated with either cyclooxygenase or nitric oxide synthase functionality. CONCLUSIONS Hepatic metabolic aberrancies associated with cyclooxygenase and nitric oxide synthase function occur contemporaneous with ALR. Additional studies are required to better characterize the role of these metabolic pathways to enhance utility of the metabolomics approach in diagnosis and outcomes of ALR.
Collapse
Affiliation(s)
- Nicholas J Skill
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Campbell M Elliott
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Brian Ceballos
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Romil Saxena
- Department of Pathology, Indiana University Medical School, Indianapolis, IN, USA
| | - Robert Pepin
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Lisa Bettcher
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Matthew Ellensberg
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Mary A Malucio
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Burcin Ekser
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Richard S Mangus
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | | |
Collapse
|
26
|
Abstract
Sepsis is a major health problem all over the world. Despite its existence since the time of Hippocrates (470 BC), sepsis is still a serious medical problem for physicians working in both pediatric and adult intensive care units. The most current US FDA-approved drug called recombinant human activated protein C or Drotrecogin-α is also failed in clinical trials and showed similar effects as placebo. The epidemiological data and studies have indicated sepsis as a major socioeconomic burden all over the world. Advances in immunology and genomic medicine have established different immunological mechanisms as major regulators of the pathogenesis of the sepsis. These immunological mechanisms come into action upon activation of several components of the immune system including innate and adaptive immunity. The activation of these immune cells in response to the pathogens or pathogen-associated molecular patterns (PAMPs) responsible for the onset of sepsis is regulated by the metabolic stage of the immune cells called immunometabolism. An alternation in the immunometabolism is responsible for the generation of dysregulated immune response during sepsis and plays a very important role in the process. Thus, it becomes vital to understand the immunometabolic reprograming during sepsis to design future target-based therapeutics depending on the severity. The current review is designed to highlight the importance of immune response and associated immunometabolism during sepsis and its targeting as a future therapeutic approach.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, Department of Paediatrics and Child Care, School of Clinical Medicine, Mater Research, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, QLD, 4078, Australia.
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, QLD, 4078, Australia.
| |
Collapse
|