1
|
Kohoutek J, Sánchez-Avila JI, Smutná M, Janků P, Klánová J, Hilscherová K. Determination of Thyroid Hormones and 11 Metabolites in the Human Serum Using a Simple Derivatization Strategy and Analysis by Isotope-Dilution Liquid Chromatography Tandem Mass Spectrometry. Anal Chem 2025; 97:9438-9446. [PMID: 40267502 PMCID: PMC12060091 DOI: 10.1021/acs.analchem.5c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Many analytical methods for thyroid hormone (TH) determination lack sensitivity and/or specificity. The thyroid hormone metabolites (THMs) are usually not measured at all. This study describes the development of sensitive high-throughput analytical methods for determining the total concentration and free fraction of TH and THM in the human serum. For the analysis of the TOTAL fraction, we employed protein precipitation and anionic exchanger solid-phase extraction. For the FREE fraction, ultrafiltration and salt-out liquid partitioning were used. Derivatization using dansyl chloride was employed to enhance the sensitivity of HPLC-ESI-MS/MS analysis. Both protocols were validated according to the European Analytical Guidelines (2002/657/EC). We obtained very good recoveries (73-115%) and precision. Interday coefficients of variation (CVs) for most of the analytes ranged from 1.2 to 16.4%. The sensitivity was excellent with detection limits in the sub ppt range for the majority of TH and THM. A significant enhancement in sensitivity (>10 fold) was achieved through derivatization. The applicability was proved on a set of samples from pregnant women enrolled in the CELSPAC cohort (n = 120). Our TH reference ranges are in good agreement with those reported in the literature. The methods also allowed us to quantify the levels of 11 THM, including some previously undetected THM in total and free fractions, and proved to be suitable for high-throughput routine TH and THM analyses. Our approach offers an important advancement in thyroid hormone analysis. To the best of our knowledge, it is for the first time that data for T1A and T2A as well as for free THM levels in the human serum are published in the literature. Moreover, our study also brings the first information about the levels of most of the THM in pregnant women.
Collapse
Affiliation(s)
- Jiří Kohoutek
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech
Republic
| | - Juan I. Sánchez-Avila
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech
Republic
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, Lazarettgasse
14, AKH BT 25.3, 1090 Vienna, Austria
| | - Marie Smutná
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech
Republic
| | - Petr Janků
- Clinic
of Gynecology and Obstetrics, University
Hospital Brno, Jihlavska
20, 625 00 Brno, Czech Republic
- Department
of Health Sciences, Faculty of Medicine, Masaryk University, Kamenice 126/3, 625 00 Brno, Czech Republic
| | - Jana Klánová
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech
Republic
| | - Klára Hilscherová
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech
Republic
| |
Collapse
|
2
|
Ma RX. A detective story of intermittent fasting effect on immunity. Immunology 2024; 173:227-247. [PMID: 38922825 DOI: 10.1111/imm.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Intermittent fasting (IF) refers to periodic fasting routines, that caloric intake is minimized not by meal portion size reduction but by intermittently eliminating ingestion of one or several consecutive meals. IF can instigate comprehensive and multifaceted alterations in energy metabolism, these metabolic channels may aboundingly function as primordial mechanisms that interface with the immune system, instigating intricate immune transformations. This review delivers a comprehensive understanding of IF, paying particular attention to its influence on the immune system, thus seeking to bridge these two research domains. We explore how IF effects lipid metabolism, hormonal levels, circadian rhythm, autophagy, oxidative stress, gut microbiota, and intestinal barrier integrity, and conjecture about the mechanisms orchestrating the intersect between these factors and the immune system. Moreover, the review includes research findings on the implications of IF on the immune system and patients burdened with autoimmune diseases.
Collapse
Affiliation(s)
- Ru-Xue Ma
- School of Medical, Qinghai University, Xining, China
| |
Collapse
|
3
|
Martínez Brito D, Leogrande P, de la Torre X, Romanelli F, Botrè F. Characterization of the thyroid hormones level in urine by liquid chromatography coupled to mass spectrometry focus in the antidoping field. Drug Test Anal 2024. [PMID: 39180509 DOI: 10.1002/dta.3788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
This paper aims to study the metabolism of thyroid hormones (TH) in urine by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The method was applied to samples collected before and after the administration of sodium triiodothyronine (T3) and sodium levothyroxine (T4) to a euthyroid volunteer and to samples of athletes declaring and not declaring thyroid supplementation. Samples were analyzed by LC-MS/MS after enzymatic hydrolysis, liquid-liquid, and solid-phase extractions. Ratios between T3/thyronine and T4/3,3'-T2 may be used for the detection of the administration of exogenous T3 in urine. Meanwhile, 3-T1 concentrations may be used to detect exogenous T4 administration. Nevertheless, these markers may not work properly in hypothyroid population, as athletes seem to be. The levels of T3 and T4 of athletes were lower than those of a euthyroid state even when they are under administration of TH supplements. The HTP axis high efficiency does not allow observing differences between athletes who do not declare and those who declare having used TH supplementation by direct measurements of T3 and T4 in urine. The detection of TH administration in urine (triiodothyronine and levothyroxine) may work when dealing with euthyroid individuals. Nevertheless, in individuals with hypothyroidism where the tendency is toward the maintenance of homeostasis, and it may be not possible to detect their consumption by applying cut-off values.
Collapse
Affiliation(s)
| | - Patrizia Leogrande
- Laboratorio Antidoping FMSI, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Xavier de la Torre
- Laboratorio Antidoping FMSI, Federazione Medico Sportiva Italiana, Rome, Italy
| | | | - Francesco Botrè
- Laboratorio Antidoping FMSI, Federazione Medico Sportiva Italiana, Rome, Italy
- REDs - Research and Expertise on Anti-Doping Sciences, Institute of Sport Science, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Alotayk LI, Aldubayan MA, Alenezi SK, Anwar MJ, Alhowail AH. Comparative evaluation of doxorubicin, cyclophosphamide, 5-fluorouracil, and cisplatin on cognitive dysfunction in rats: Delineating the role of inflammation of hippocampal neurons and hypothyroidism. Biomed Pharmacother 2023; 165:115245. [PMID: 37523981 DOI: 10.1016/j.biopha.2023.115245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
Chemotherapeutic agents such as doxorubicin, cyclophosphamide, fluorouracil, and cisplatin are commonly used to treat a variety of cancers and often result in chemobrain, which manifests as difficulties in learning and memory processes that can persist in the years following treatment. The current study aims to evaluate the cognitive function following treatment with these agents and the underlying mechanisms using a rat model of neuroinflammation and possible implication of thyroid toxicity in chemotherapy induced cognitive dysfunction. Wistar female rats were treated with a single dose of doxorubicin (DOX, 25 mg/kg), 5-fluorouracil (5-FU, 100 mg/kg), cisplatin (8 mg/kg), and cyclophosphamide (CYP, 200 mg/kg) by intraperitoneal injection. The cognitive performance of rats was then evaluated in spatial memory tasks using the Y-maze, novel object recognition (NOR), and elevated plus maze (EPM) tests. Serum levels of thyroid hormones (T3, T4, FT3, and FT4) and thyroid stimulating hormone (TSH) were measured, followed by estimation of TNFα, IL-6, and IL-1β in the hippocampal tissue. Results revealed that all the chemotherapeutic agents produced impairment of cognitive function, and significant increase of pro-inflammatory cytokines such as TNFα, IL-6 and IL-1β in the hippocampal tissues. There was a significant reduction in thyroid hormones (T3, FT3, and T4) and an increase in thyroid stimulating hormone (TSH) in serum, which may also have contributed to the decline in cognitive function. In conclusion, DOX, 5-FU, CYP, and cisplatin produces impairment of spatial memory possibly by inflammation of hippocampal neurons and endocrine disruption (hypothyroidism) in rats.
Collapse
Affiliation(s)
- Lamis I Alotayk
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, Buraydah 51452, Saudi Arabia
| | - Maha A Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, Buraydah 51452, Saudi Arabia
| | - Sattam K Alenezi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Unaizah 51911, Saudi Arabia
| | - Md Jamir Anwar
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Unaizah 51911, Saudi Arabia
| | - Ahmad H Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, Buraydah 51452, Saudi Arabia.
| |
Collapse
|
5
|
Taylor E, Wynen H, Heyland A. Thyroid hormone membrane receptor binding and transcriptional regulation in the sea urchin Strongylocentrotus purpuratus. Front Endocrinol (Lausanne) 2023; 14:1195733. [PMID: 37305042 PMCID: PMC10250714 DOI: 10.3389/fendo.2023.1195733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Thyroid hormones (THs) are small amino acid derived signaling molecules with broad physiological and developmental functions in animals. Specifically, their function in metamorphic development, ion regulation, angiogenesis and many others have been studied in detail in mammals and some other vertebrates. Despite extensive reports showing pharmacological responses of invertebrate species to THs, little is known about TH signaling mechanisms outside of vertebrates. Previous work in sea urchins suggests that non-genomic mechanisms are activated by TH ligands. Here we show that several THs bind to sea urchin (Strongylocentrotus purpuratus) cell membrane extracts and are displaced by ligands of RGD-binding integrins. A transcriptional analysis across sea urchin developmental stages shows activation of genomic and non-genomic pathways in response to TH exposure, suggesting that both pathways are activated by THs in sea urchin embryos and larvae. We also provide evidence associating TH regulation of gene expression with TH response elements in the genome. In ontogeny, we found more differentially expressed genes in older larvae compared to gastrula stages. In contrast to gastrula stages, the acceleration of skeletogenesis by thyroxine in older larvae is not fully inhibited by competitive ligands or inhibitors of the integrin membrane receptor pathway, suggesting that THs likely activate multiple pathways. Our data confirms a signaling function of THs in sea urchin development and suggests that both genomic and non-genomic mechanisms play a role, with genomic signaling being more prominent during later stages of larval development.
Collapse
Affiliation(s)
| | | | - Andreas Heyland
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Hegazy W, Abdul-Hamid M, Abdel-Rehiem ES, Abdel-Moneim A, Salah M. The protective impact of hesperidin against carbimazole-induced hypothyroidism, via enhancement of inflammatory cytokines, histopathological alterations, and Nrf2/HO-1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53589-53604. [PMID: 36862292 DOI: 10.1007/s11356-023-26103-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to evaluate the anti-inflammatory, antioxidant, and antiproliferative effects of hesperidin (HSP) and eltroxin (ELT) on hypothyroidism (HPO) induced by carbimazole (CBZ) in white male albino rats. Thirty-two adult rats were categorized into four groups: Group 1, no treatment (control); Group II, treated with CBZ (20 mg/kg); Group III, treated with HSP (200 mg/kg) + CBZ; and Group IV, treated with ELT (0.045 mg/kg) + CBZ. All treatments were provided as oral daily doses for 90 days. Thyroid hypofunction was significantly manifested in Group II. However, increased levels of thyroid hormones, antioxidant enzymes, nuclear factor erythroid 2-related factor 2, heme oxygenase 1, and interleukin (IL)-10, and a decrease in the level of the thyroid-stimulating hormone were observed in Groups III and IV. On the contrary, decreased levels of lipid peroxidation, inducible nitric oxide synthase, tumor necrosis factor α, IL-17, and cyclooxygenase 2 were detected in groups III and IV. The histopathological and ultrastructural findings were ameliorated in Groups III and IV; on the contrary, Group II presented with significant increases in the height and number of layers of the follicular cells. Immunohistochemistry demonstrated a marked increase in thyroglobulin and significant decreases in the levels of nuclear factor kappa B and proliferating cell nuclear antigen in Groups III and IV. These results confirmed the effectiveness of HSP as an anti-inflammatory, antioxidant, and antiproliferative agent in rats with hypothyroidism. Additional studies are required to assess its potential as a novel agent against HPO.
Collapse
Affiliation(s)
- Walaa Hegazy
- Histology Division, Basic Science Department, Faculty of physical therapy, Nahda University, Beni-Suef, Egypt
| | - Manal Abdul-Hamid
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, Salah Salem St, P.O. Box 62521, Beni-Suef, Egypt.
| | - Eman S Abdel-Rehiem
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Salah Salem St, Box, Beni-Suef, 62521, Egypt
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Salah Salem St, Box, Beni-Suef, 62521, Egypt
| | - Marwa Salah
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, Salah Salem St, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
7
|
FT3 to FT4 Conversion Ratio May Be an Independent Prognostic Factor in Pancreatic Cancer Patients. Biomedicines 2022; 11:biomedicines11010077. [PMID: 36672585 PMCID: PMC9856112 DOI: 10.3390/biomedicines11010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
Preclinical evidence suggests that T4 can promote tumor growth while T3 can act conversely; therefore, the fT3 and fT4 concentrations should affect overall survival (OS) in cancer patients. The objective of the study was to look for an association between thyroid hormone concentrations in peripheral blood and OS in the pancreatic adenocarcinoma (PDAC) patients group. We included, retrospectively, 15 PDAC patients, without thyroid dysfunction under treatment, who underwent radical surgery, with no prior history of anticancer therapy. TSH, fT3, and fT4 concentrations were determined in blood samples taken preoperatively. We found that the fT3/fT4 ratio categorized into two groups (<0.22 vs. ≥0.22) dichotomized the study population into poor and good prognosis subgroups (log-rank p = 0.03; OS medians, respectively: 3 and 14 months), being a statistically significant predictor both in uni- and multivariate Cox regression analysis. We conclude that the importance of fT4 into fT3 conversion means not just its standard metabolic effects as the final products of thyroid gland activity. We hypothesize that it is linked to the progression of pancreatic malignancies, either via thyroid hormone receptors or indirectly, by interaction with cancer cells product.
Collapse
|
8
|
Yadav P, Sarode LP, Gaddam RR, Kumar P, Bhatti JS, Khurana A, Navik U. Zebrafish as an emerging tool for drug discovery and development for thyroid diseases. FISH & SHELLFISH IMMUNOLOGY 2022; 130:53-60. [PMID: 36084888 DOI: 10.1016/j.fsi.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/06/2022]
Abstract
Zebrafish is a useful model for understanding human genetics and diseases and has evolved into a prominent scientific research model. The genetic structure of zebrafish is 70% identical to that of humans. Its small size, low cost, and transparent embryo make it a valuable tool in experimentation. Zebrafish and mammals possess the same molecular mechanism of thyroid organogenesis and development. Thus, thyroid hormone signaling, embryonic development, thyroid-related disorders, and novel genes involved in early thyroid development can all be studied using zebrafish as a model. Here in this review, we emphasize the evolving role of zebrafish as a possible tool for studying the thyroid gland in the context of physiology and pathology. The transcription factors nkx2.1a, pax2a, and hhex which contribute a pivotal role in the differentiation of thyroid primordium are discussed. Further, we have described the role of zebrafish as a model for thyroid cancer, evaluation of defects in thyroid hormone transport, thyroid hormone (TH) metabolism, and as a screening tool to study thyrotoxins. Hence, the present review highlights the role of zebrafish as a novel approach to understand thyroid development and organogenesis.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, Maharashtra, India
| | - Ravinder Reddy Gaddam
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, IA, USA
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Amit Khurana
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074, Aachen, Germany.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India.
| |
Collapse
|
9
|
Association between sitting/lying down, standing, walking time and number of steps per day with the hormonal profile and resting energy expenditure of women with obesity living in a low-income region. Br J Nutr 2022; 128:646-652. [PMID: 34526156 DOI: 10.1017/s0007114521003615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reducing sedentary behaviour (SB) and increasing physical activity (PA) by sitting less and standing/walking more is advised to prevent chronic diseases. However, the mechanisms underlying this recommendation are not well established, especially in individuals with obesity living in low-income regions. The present study evaluated whether there are associations between PA indicators (PAI - standing time, walking time and the number of steps/d) and SB indicators (SBI - sitting/lying down time) with the hormonal profile and resting energy expenditure (REE) of adult women living in a low-income region. This is a cross-sectional study. We collected data on hormones (insulin resistance, leptin and thyroid axis), body composition (tetrapolar bioimpedance), REE (indirect calorimetry), and PAI and SBI (triaxial accelerometers, ActivPAL). Multivariable linear models adjusting for age and fat-free mass were performed. Fifty-eight women (mean age of 31 years and BMI of 33 kg/m2) were included. The mean sitting/lying down time and standing time were 16·08 and 5·52 h/d, respectively. Sitting/lying down time showed a direct association with free thyroxine (FT4) (β = 0·56 ng/dl; 95 % CI = -1·10, -0·02). Standing time showed a direct association with FT4 (β = 0·75 ng/dl; 95 % CI = 0·01; 1·48) and inverse association with free triiodothyronine (β = -2·83 pg/ml 95 % CI = -5·56, -0·10). There were no associations between PAI and SBI with the REE, insulin resistance, leptin and thyroid-stimulating hormone. Thus, decreased SB is associated with thyroid hormones levels but not with REE, insulin resistance or leptin in women with obesity living in low-income regions.
Collapse
|
10
|
Müller P, Leow MKS, Dietrich JW. Minor perturbations of thyroid homeostasis and major cardiovascular endpoints—Physiological mechanisms and clinical evidence. Front Cardiovasc Med 2022; 9:942971. [PMID: 36046184 PMCID: PMC9420854 DOI: 10.3389/fcvm.2022.942971] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
It is well established that thyroid dysfunction is linked to an increased risk of cardiovascular morbidity and mortality. The pleiotropic action of thyroid hormones strongly impacts the cardiovascular system and affects both the generation of the normal heart rhythm and arrhythmia. A meta-analysis of published evidence suggests a positive association of FT4 concentration with major adverse cardiovascular end points (MACE), but this association only partially extends to TSH. The risk for cardiovascular death is increased in both subclinical hypothyroidism and subclinical thyrotoxicosis. Several published studies found associations of TSH and FT4 concentrations, respectively, with major cardiovascular endpoints. Both reduced and elevated TSH concentrations predict the cardiovascular risk, and this association extends to TSH gradients within the reference range. Likewise, increased FT4 concentrations, but high-normal FT4 within its reference range as well, herald a poor outcome. These observations translate to a monotonic and sensitive effect of FT4 and a U-shaped relationship between TSH and cardiovascular risk. Up to now, the pathophysiological mechanism of this complex pattern of association is poorly understood. Integrating the available evidence suggests a dual etiology of elevated FT4 concentration, comprising both ensuing primary hypothyroidism and a raised set point of thyroid function, e. g. in the context of psychiatric disease, chronic stress and type 2 allostatic load. Addressing the association between thyroid homeostasis and cardiovascular diseases from a systems perspective could pave the way to new directions of research and a more personalized approach to the treatment of patients with cardiovascular risk.
Collapse
Affiliation(s)
- Patrick Müller
- Department for Electrophysiology, Medical Hospital I, Klinikum Vest, Recklinghausen, NRW, Germany
| | - Melvin Khee-Shing Leow
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Metabolic Disorders Research Programme, Lee Kong Chian School of Medicine, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Johannes W. Dietrich
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef Hospital, Ruhr University Bochum, Bochum, NRW, Germany
- Diabetes Centre Bochum/Hattingen, St. Elisabeth-Hospital Blankenstein, Hattingen, NRW, Germany
- Centre for Rare Endocrine Diseases, Ruhr Centre for Rare Diseases (CeSER), Ruhr University Bochum and Witten/Herdecke University, Bochum, NRW, Germany
- Centre for Diabetes Technology, Catholic Hospitals Bochum, Ruhr University Bochum, Bochum, NRW, Germany
- *Correspondence: Johannes W. Dietrich
| |
Collapse
|
11
|
Bouazza A, Favier R, Fontaine E, Leverve X, Koceir EA. Potential Applications of Thyroid Hormone Derivatives in Obesity and Type 2 Diabetes: Focus on 3,5-Diiodothyronine (3,5-T2) in Psammomys obesus (Fat Sand Rat) Model. Nutrients 2022; 14:nu14153044. [PMID: 35893898 PMCID: PMC9329750 DOI: 10.3390/nu14153044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
3,5-Diiodothyronine (3,5-T2) has been shown to exert pleiotropic beneficial effects. In this study we investigated whether 3,5-T2 prevent several energy metabolism disorders related to type 2 diabetes mellitus (T2DM) in gerbils diabetes-prone P. obesus. 157 male gerbils were randomly to Natural Diet (ND-controlled) or a HED (High-Energy Diet) divided in: HED- controlled, HED-3,5-T2 and HED- Placebo groups. 3,5-T2 has been tested at 25 µg dose and was administered under subcutaneous pellet implant during 10 weeks. Isolated hepatocytes were shortly incubated with 3,5-T2 at 10−6 M and 10−9 M dose in the presence energetic substrates. 3,5-T2 treatment reduce visceral adipose tissue, prevent the insulin resistance, attenuated hyperglycemia, dyslipidemia, and reversed liver steatosis in diabetes P. obesus. 3,5-T2 decreased gluconeogenesis, increased ketogenesis and enhanced respiration capacity. 3,5-T2 potentiates redox and phosphate potential both in cytosol and mitochondrial compartment. The use of 3,5-T2 as a natural therapeutic means to regulate cellular energy metabolism. We suggest that 3,5-T2 may help improve the deleterious course of obesity and T2DM, but cannot replace medical treatment.
Collapse
Affiliation(s)
- Asma Bouazza
- Biology and Organisms Physiology Laboratory, Bioenergetics and Intermediary Metabolism Team, Nutrition and Dietetics in Human Pathologies Post Graduate School, University of Sciences and Technology Houari Boumediene, El Alia, Bab Ezzouar, Algiers 16123, Algeria;
| | - Roland Favier
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U1055, Univ. Grenoble Alpes, 16042 Grenoble, France; (R.F.); (E.F.); (X.L.)
| | - Eric Fontaine
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U1055, Univ. Grenoble Alpes, 16042 Grenoble, France; (R.F.); (E.F.); (X.L.)
| | - Xavier Leverve
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U1055, Univ. Grenoble Alpes, 16042 Grenoble, France; (R.F.); (E.F.); (X.L.)
| | - Elhadj-Ahmed Koceir
- Biology and Organisms Physiology Laboratory, Bioenergetics and Intermediary Metabolism Team, Nutrition and Dietetics in Human Pathologies Post Graduate School, University of Sciences and Technology Houari Boumediene, El Alia, Bab Ezzouar, Algiers 16123, Algeria;
- Correspondence: ; Tel.: +213-(0)6-6674-2770 or +213-(0)2124-7217; Fax: +213-(0)2124-7217
| |
Collapse
|
12
|
3,5-T2-an Endogenous Thyroid Hormone Metabolite as Promising Lead Substance in Anti-Steatotic Drug Development? Metabolites 2022; 12:metabo12070582. [PMID: 35888706 PMCID: PMC9322486 DOI: 10.3390/metabo12070582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
Thyroid hormones, their metabolites, and synthetic analogues are potential anti-steatotic drug candidates considering that subclinical and manifest hypothyroidism is associated with hepatic lipid accumulation, non-alcoholic fatty liver disease, and its pandemic sequelae. Thyromimetically active compounds stimulate hepatic lipogenesis, fatty acid beta-oxidation, cholesterol metabolism, and metabolic pathways of glucose homeostasis. Many of these effects are mediated by T3 receptor β1-dependent modulation of transcription. However, rapid non-canonical mitochondrial effects have also been reported, especially for the metabolite 3,5-diiodothyronine (3,5-T2), which does not elicit the full spectrum of “thyromimetic” actions inherent to T3. Most preclinical studies in rodent models of obesity and first human clinical trials are promising with respect to the antisteatotic hepatic effects, but potent agents exhibit unwanted thyromimetic effects on the heart and/or suppress feedback regulation of the hypothalamus-pituitary-thyroid-periphery axis and the fine-tuned thyroid hormone system. This narrative review focuses on 3,5-T2 effects on hepatic lipid and glucose metabolism and (non-)canonical mechanisms of action including its mitochondrial targets. Various high fat diet animal models with distinct thyroid hormone status indicate species- and dose-dependent efficiency of 3,5-T2 and its synthetic analogue TRC150094. No convincing evidence has been presented for their clinical use in the prevention or treatment of obesity and related metabolic conditions.
Collapse
|
13
|
Bringuier CM, Hatat B, Boularand R, Chabbert C, Tighilet B. Characterization of Thyroid Hormones Antivertigo Effects in a Rat Model of Excitotoxically-Induced Vestibulopathy. Front Neurol 2022; 13:877319. [PMID: 35693004 PMCID: PMC9175002 DOI: 10.3389/fneur.2022.877319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/12/2022] [Indexed: 11/20/2022] Open
Abstract
Impaired vestibular function induces disabling symptoms such as postural imbalance, impaired locomotion, vestibulo-ocular reflex alteration, impaired cognitive functions such as spatial disorientation, and vegetative deficits. These symptoms show up in sudden attacks in patients with Ménière or neuritis and may lead to emergency hospitalizations. To date, however, there is no curative solution to these pathologies and the effectiveness of treatments used to reduce symptoms in the management of patients is discussed. Thus, elucidating the biological mechanisms correlated to the expression kinetics of the vestibular syndrome is useful for the development of potential therapeutic candidates with a view to relieving patients and limiting emergency hospitalizations. Recently, a robust antivertigo effect of thyroxine (T4) was demonstrated in a rodent model of impaired vestibular function induced by unilateral surgical section of the vestibular nerve. The aim of the present study was to assess thyroid hormones L-T4 and triiodothyronine (T3) as well as the bioactive thyroid hormone metabolite TRIAC on a rodent model of acute unilateral vestibulopathy more representative of clinical vestibular pathology. To this end, a partial and transient unilateral suppression of peripheral vestibular inputs was induced by an excitotoxic lesion caused by transtympanic injection of kainic acid (TTK) into the inner ear of adult rats. Vestibular syndrome and functional recovery were studied by semi-quantitative and quantitative assessments of relevant posturo-locomotor parameters. In contrast to the effect previously demonstrated in the complete and irreversible vestibular injury model, administration of thyroxine in the TTK rodent model did not display significant antivertigo effect. However, it is noteworthy that administration of thyroxine showed trends to prevent posturo-locomotor alterations. Furthermore, the results of the current study suggested that a single dose of thyroxine is sufficient to induce the same effects on vestibular syndrome observed with sub-chronic administration, and that reducing the T4 dose may more efficiently prevent the appearance of vestibular deficits induced by the excitotoxic type lesion. Finally, comparison of the antivertigo effect of T4 in different vestibulopathy models enables us to determine the therapeutic indication in which thyroxine could be a potential therapeutic candidate.
Collapse
Affiliation(s)
| | | | | | - Christian Chabbert
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, France
| | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, France
- *Correspondence: Brahim Tighilet
| |
Collapse
|
14
|
Abstract
Hypothyroidism is the common clinical condition of thyroid hormone deficiency and, if left untreated, can lead to serious adverse health effects on multiple organ systems, with the cardiovascular system as the most robustly studied target. Overt primary hypothyroidism is defined as elevated thyroid-stimulating hormone (TSH) concentration in combination with free thyroxine (fT4) concentration below the reference range. Subclinical hypothyroidism, commonly considered an early sign of thyroid failure, is defined by elevated TSH concentrations but fT4 concentrations within the reference range. Hypothyroidism is classified as primary, central or peripheral based on pathology in the thyroid, the pituitary or hypothalamus, or peripheral tissue, respectively. Acquired primary hypothyroidism is the most prevalent form and can be caused by severe iodine deficiency but is more frequently caused by chronic autoimmune thyroiditis in iodine-replete areas. The onset of hypothyroidism is insidious in most cases and symptoms may present relatively late in the disease process. There is a large variation in clinical presentation and the presence of hypothyroid symptoms, especially in pregnancy and in children. Levothyroxine (LT4) is the mainstay of treatment and is one of the most commonly prescribed drugs worldwide. After normalization of TSH and fT4 concentrations, a considerable proportion of patients treated with LT4 continue to have persistent complaints, compromising quality of life. Further research is needed regarding the appropriateness of currently applied reference ranges and treatment thresholds, particularly in pregnancy, and the potential benefit of LT4/liothyronine combination therapy for thyroid-related symptom relief, patient satisfaction and long-term adverse effects.
Collapse
|
15
|
Martínez Brito D, Botrè F, Romanelli F, de la Torre X. Thyroid metabolism and supplementation. A review framed in sports environment. Drug Test Anal 2022; 14:1176-1186. [PMID: 35315230 DOI: 10.1002/dta.3257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES This paper aimed to consider those features that may suggest a link between thyroid hormones pharmacology and athletes' health based on current consumption trends in a population of athletes. METHODS Methods used were observation, description, and synthesis, mainly. Among the documents reviewed were: books, scientific articles, and review articles peer-reviewed. The review covered sources published in the period 1961 to 2021. Only references with a traceable origin were accepted (DOI numbering, ISSN and ISBN, as well as peer-reviewed journals). The data on the consumption of thyroid hormones derivatives were extracted from the Doping Control Forms of athlete samples received at Laboratorio Antidoping FMSI of Rome from 2017 to 2021. RESULTS An overview of the biosynthesis, pharmacology, and metabolism of thyroid hormones, including thyronamines and thyronacetic acids, was presented. Likewise, a summary is presented on the relationship between thyroid hormones and ethnic and gender differences, their physiology in sport, and the reasons why their use could be considered attractive for athletes. CONCLUSION Today, thyroid hormones are not listed as a prohibited substance by the World Anti-Doping Agency. However, several requests to include levothyroxine on the prohibited list are documented. The observation that the number of athletes taking thyroid hormones is growing, particularly in sports such as cycling, triathlons, and skating, should prompt an update on this topic.
Collapse
Affiliation(s)
| | - Francesco Botrè
- Laboratorio Antidoping FMSI, Federazione Medico Sportiva Italiana, Rome, Italy.,REDs - Research and Expertise on Anti-Doping Sciences, Institute of Sport Science, University of Lausanne, Lausanne, Switzerland
| | - Francesco Romanelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Roma, Italy
| | - Xavier de la Torre
- Laboratorio Antidoping FMSI, Federazione Medico Sportiva Italiana, Rome, Italy
| |
Collapse
|
16
|
Strzałka A, Hogendorf P, Skulimowski A, Spychalski M, Strzelczyk J, Durczynski A. Thyroid hormones concentration in portal and peripheral blood in patients with pancreatic cancer: Preliminary study. Cancer Biomark 2021; 29:301-306. [PMID: 32568183 DOI: 10.3233/cbm-201595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The prognostic value of D-dimers concentration in portal blood in patients with pancreatic cancer has been established in several studies. Thyroid hormones and their receptors, especially T3 also seems to have a specific role in process of neoplasia and metastatic spread. OBJECTIVE The aim of the study was to look for changes of thyroid hormones concentration between portal and peripheral blood. METHODS We included prospectively 8 patients with pancreatic cancer, without liver dysfunction, qualified to surgical treatment. D-dimers, THS, fT3, fT4 concentration was determined in blood samples from portal and peripheral vein taken intraoperatively. RESULTS The difference and quotient of portal and peripheral concentration of D-dimers, THS, fT3 and fT4 was calculated (D-dimer-; THS-; fT3-; fT4-d and -q). The level of D-dimers measured in portal blood was > 2700 ng/mL in 3 patients. The peripheral fT3 level was significantly higher In high portal D-dimers group. FT3 change coefficients showed strong statistically significant negative correlation with portal D-dimer concentration level. CONCLUSIONS We suggest that fT3 or its receptors can influence progression of pancreatic malignancies. The results of this study are also a new evidence that both fT3 and portal D-dimers are biologically linked to intensity of local neoplastic process. Nevertheless, deeper knowledge about portal circulation probably constitute missing part in understanding nature of pancreatic neoplasia. Investigations both on larger group and in the field of basic sciences are needed.
Collapse
Affiliation(s)
- Alicja Strzałka
- General and Transplant Surgery Department, Medical University of Lodz, Lodz, Poland
| | - Piotr Hogendorf
- General and Transplant Surgery Department, Medical University of Lodz, Lodz, Poland
| | - Aleksander Skulimowski
- Department of Plastic and Hand Surgery, University of Freiburg Medical Centre, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Michał Spychalski
- Centre for Bowel Treatment, Specialized Hospital Brzeziny, Brzeziny, Poland
| | - Janusz Strzelczyk
- General and Transplant Surgery Department, Medical University of Lodz, Lodz, Poland
| | - Adam Durczynski
- General and Transplant Surgery Department, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
17
|
Deng F, Yang ZY, Zhang YP, Wang YL, Hu JY, Zhang F. TSH adenoma and syndrome of resistance to thyroid hormones-Two cases report of syndrome of inappropriate secretion of thyrotropin. Brain Behav 2021; 11:e02081. [PMID: 33751836 PMCID: PMC8119795 DOI: 10.1002/brb3.2081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/20/2020] [Accepted: 01/31/2021] [Indexed: 12/28/2022] Open
Abstract
SITSH (syndrome of inappropriate secretion of thyrotropin) is a rare clinical state defined as uninhibited serum thyroid stimulating hormone in the presence of elevated thyroid hormone. This state is complicated and mainly caused by the abnormal feedback of hypothalamus-pituitary thyroid axis. The TSH adenoma (TSH-oma) and resistance to thyroid hormones (RTH) are the main etiologies of SITSH. As is well known that the treatment strategies of RTH and TSH-oma are apparently different, thus identifying the difference between RTH and TSH-oma is of great significance for the diagnosis and treatment of SITSH. CASE DESCRIPTION: A 62-year-old man with a state of elevated thyroid hormones and inappropriate elevated serum TSH level was hospitalized in 2016. Results of the pituitary enhanced magnetic resonance imaging and the somatostatin test respectively demonstrated a space-occupying lesion of pituitary and an elevated serum sex hormone binding globulin (SHBG) and inhibited TSH secretion, which indicated the occurrence of TSH-oma. In 2019, a 23-year-old girl with a state of elevated thyroid hormones and inappropriate normal serum TSH was hospitalized. Interestingly, whole exome sequencing detection suggested a pathogenic mutation in thyroid hormone receptor β (THRB) gene, which has been shown to be associated with RTH. CONCLUSIONS: The difference between TSH-oma and RTH ought to be clarified for their accurate diagnose and treatment. The clinical experiences of the two cases reported here suggest that more detail information such as family medical history, serum SHBG level, and THRB gene test is helpful for the diagnose and treatment of TSH-oma and RTH. Additionally, we also summarized the identification points, diagnosis process, and treatment strategies for these two rare diseases.
Collapse
Affiliation(s)
- Fang Deng
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ze-Yu Yang
- Breast and Thyroid Surgical Department, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yu-Ping Zhang
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu-Lin Wang
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiong-Yu Hu
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fan Zhang
- Breast and Thyroid Surgical Department, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
18
|
Contribution of Glycation and Oxidative Stress to Thyroid Gland Pathology-A Pilot Study. Biomolecules 2021; 11:biom11040557. [PMID: 33920190 PMCID: PMC8069218 DOI: 10.3390/biom11040557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/15/2022] Open
Abstract
The patho-mechanism of changes in the thyroid gland, including carcinogenesis, is a complex process, which involves oxidative stress. The goal of our investigation was to verify the extent of stress in the thyroid gland related to glycation. The study samples were comprised of blood sera, thyroid, and adipose tissue sections probed from 37 patients diagnosed with thyroid cancers and goiter. Using immuno-enzymatic and fluorometric assays we analyzed the content of advanced glycation end-products (AGEs), pentosidine, receptors for advanced glycation end-products (RAGE), scavenger receptor class (SR)-A, SR-B, glutathione, malondialdehyde and nitric oxide synthase. In addition to classic AGEs, a recent study detected the melibiose-derived glycation (MAGE) product. We demonstrated the presence of AGEs, MAGE and their receptors of the RAGE and SR-A. In addition, in the control samples of thyroid glands SR-B groups were detected as well as of pathological groups without noticeable tendency to antigen concentration in the area of carcinogenesis. Fluorescent AGEs correlate positively with glutathione, which supports the assumption that glycation stress leads to augmentation of oxidative stress and increase of the intensity of antioxidant mechanisms.
Collapse
|
19
|
Synergistic Anticancer Activity of N-Hydroxy-7-(2-Naphthylthio) Heptanomide, Sorafenib, and Radiation Therapy in Patient-Derived Anaplastic Thyroid Cancer Models. Int J Mol Sci 2021; 22:ijms22020536. [PMID: 33430361 PMCID: PMC7825761 DOI: 10.3390/ijms22020536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is an undifferentiated and advanced form of thyroid cancer, accompanied with a high ratio of epigenetic adjustment, which occurs more than genetic mutations. In this study, we aimed to evaluate the synergistic anticancer effect (in vitro and in vivo) of the new combination of N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA) and sorafenib with radiation therapy in pre-clinical models of ATC. The ATC cell lines, YUMC-A1 and YUMC-A2, were isolated from the current patients who were treated with HNHA and sorafenib, either as monotherapy or combination therapy. Synergistic anticancer effect of the combination therapy on the intracellular signaling pathways and cell cycle was assessed via flow cytometry and immunoblot analysis. To examine tumor shrinkage activity in vivo, an ATC cell line-derived mouse xenograft model was used. Results showed that the combination therapy of HNHA and sorafenib with radiation promoted tumor suppression via caspase cleavage and cell cycle arrest in patient-derived ATC. In addition, the combination therapy of HNHA and sorafenib with radiation was more effective against ATC than therapy with HNHA or sorafenib with radiation. Thus, the combination of HNHA and sorafenib with radiation may be used as a novel curative approach for the treatment of ATC.
Collapse
|
20
|
Crist SB, Ghajar CM. When a House Is Not a Home: A Survey of Antimetastatic Niches and Potential Mechanisms of Disseminated Tumor Cell Suppression. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:409-432. [PMID: 33276706 DOI: 10.1146/annurev-pathmechdis-012419-032647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the last four decades, the cancer biology field has concentrated on cellular and microenvironmental drivers of metastasis. Despite this focus, mortality rates upon diagnosis of metastatic disease remain essentially unchanged. Would a small change in perspective help? Knowing what constitutes an inhospitable, rather than hospitable, microenvironment could provide the inspiration necessary to develop better therapies and preventative strategies. In this review, we canvas the literature for hints about what characteristics four common antimetastatic niches-skeletal muscle, spleen, thyroid, and yellow bone marrow-have in common. We posit that thorough molecular and mechanistic characterization of antimetastatic tissues may inspire reimagined therapies that inhibit metastatic development and/or progression in an enduring manner.
Collapse
Affiliation(s)
- Sarah B Crist
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; , .,Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington 98105, USA
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; ,
| |
Collapse
|
21
|
Mariani G, Tonacchera M, Grosso M, Orsolini F, Vitti P, Strauss HW. The Role of Nuclear Medicine in the Clinical Management of Benign Thyroid Disorders, Part 1: Hyperthyroidism. J Nucl Med 2020; 62:304-312. [PMID: 33008929 DOI: 10.2967/jnumed.120.243170] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Benign thyroid disorders, especially hyper- and hypothyroidism, are the most prevalent endocrine disorders. The most common etiologies of hyperthyroidism are autoimmune hyperthyroidism (Graves disease, GD), toxic multinodular goiter (TMNG), and toxic thyroid adenoma (TA). Less common etiologies include destructive thyroiditis (e.g., amiodarone-induced thyroid dysfunction) and factitious hyperthyroidism. GD is caused by autoantibodies against the thyroid-stimulating hormone (TSH) receptor. TMNG and TA are caused by a somatic activating gain-of-function mutation. Typical laboratory findings in patients with hyperthyroidism are low TSH, elevated free-thyroxine and free-triiodothyronine levels, and TSH-receptor autoantibodies in patients with GD. Ultrasound imaging is used to determine the size and vascularity of the thyroid gland and the location, size, number, and characteristics of thyroid nodules. Combined with lab tests, these features constitute the first-line diagnostic approach to distinguishing different forms of hyperthyroidism. Thyroid scintigraphy with either radioiodine or 99mTc-pertechnetate is useful to characterize different forms of hyperthyroidism and provides information for planning radioiodine therapy. There are specific scintigraphic patterns for GD, TMNG, TA, and destructive thyroiditis. Scintigraphy with 99mTc-sestamibi allows differentiation of type 1 from type 2 amiodarone-induced hyperthyroidism. The radioiodine uptake test provides information for planning radioiodine therapy of hyperthyroidism. Hyperthyroidism can be treated with oral antithyroid drugs, surgical thyroidectomy, or 131I-iodide. Radioiodine therapy is generally considered after failure of treatment with antithyroid drugs, or when surgery is contraindicated or refused by the patient. In patients with TA or TMNG, the goal of radioiodine therapy is to achieve euthyroid status. In GD, the goal of radioiodine therapy is to induce hypothyroidism, a status that is readily treatable with oral thyroid hormone replacement therapy. Dosimetric estimates based on the thyroid volume to be treated and on radioiodine uptake should guide selection of the 131I-activity to be administered. Early side effects of radioiodine therapy (typically mild pain in the thyroid) can be handled by nonsteroidal antiinflammatory drugs. Delayed side effects after radioiodine therapy for hyperthyroidism are hypothyroidism and a minimal risk of radiation-induced malignancies.
Collapse
Affiliation(s)
- Giuliano Mariani
- Department of Translational Research and Advanced Technologies in Medicine and Surgery, Regional Center of Nuclear Medicine, University of Pisa, Pisa, Italy
| | - Massimo Tonacchera
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mariano Grosso
- Regional Center of Nuclear Medicine, University Hospital of Pisa, Pisa, Italy; and
| | - Francesca Orsolini
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo Vitti
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - H William Strauss
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
22
|
Ovariectomized rodents as a menopausal metabolic syndrome model. A minireview. Mol Cell Biochem 2020; 475:261-276. [PMID: 32852713 DOI: 10.1007/s11010-020-03879-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Bilateral ovariectomy is the best characterized and the most reported animal model of human menopause. Ovariectomized rodents develop insulin resistance (IR) and visceral obesity, the main risk factors in the pathophysiology of metabolic syndrome (MS). These alterations are a consequence of hypoestrogenic status, which produces an augment of visceral fat, high testosterone levels (hyperandrogenism), as well as inflammation, oxidative stress, and metabolic complications, such as dyslipidemia, hepatic steatosis, and endothelial dysfunction, among others. Clinical trials have reported that menopause per se increases the severity and incidence of MS, and causes the highest mortality due to cardiovascular disease in women. Despite all the evidence, there are no reports that clarify the influence of estrogenic deficiency as a cause of MS. In this review, we provide evidence that ovariectomized rodents can be used as a menopausal metabolic syndrome model for evaluating and discovering new, safe, and effective therapeutic approaches in the treatment of cardiometabolic complications associated to MS during menopause.
Collapse
|
23
|
Saponaro F, Sestito S, Runfola M, Rapposelli S, Chiellini G. Selective Thyroid Hormone Receptor-Beta (TRβ) Agonists: New Perspectives for the Treatment of Metabolic and Neurodegenerative Disorders. Front Med (Lausanne) 2020; 7:331. [PMID: 32733906 PMCID: PMC7363807 DOI: 10.3389/fmed.2020.00331] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Thyroid hormones (THs) elicit significant effects on numerous physiological processes, such as growth, development, and metabolism. A lack of thyroid hormones is not compatible with normal health. Most THs effects are mediated by two different thyroid hormone receptor (TR) isoforms, namely TRα and TRβ, with the TRβ isoform known to be responsible for the main beneficial effects of TH on liver. In brain, despite the crucial role of TRα isoform in neuronal development, TRβ has been proposed to play a role in the remyelination processes. Consequently, over the past two decades, much effort has been applied in developing thyroid hormone analogs capable of uncoupling beneficial actions on liver (triglyceride and cholesterol lowering) and central nervous system (CNS) (oligodendrocyte proliferation) from deleterious effects on the heart, muscle and bone. Sobetirome (GC-1) and subsequently Eprotirome (KB2115) were the first examples of TRβ selective thyromimetics, with Sobetirome differing from the structure of thyronines because of the absence of halogens, biaryl ether oxygen, and amino-acidic side chain. Even though both thyromimetics showed encouraging actions against hypercholesterolemia, non-alcoholic steatohepatitis (NASH) and in the stimulation of hepatocytes proliferation, they were stopped after Phase 1 and Phase 2–3 clinical trials, respectively. In recent years, advances in molecular and structural biology have facilitated the design of new selective thyroid hormone mimetics that exhibit TR isoform-selective binding, and/or liver- and tissue-selective uptake, with Resmetirom (MGL-3196) and Hep-Direct prodrug VK2809 (MB07811) probably representing two of the most promising lipid lowering agents, currently under phase 2–3 clinical trials. More recently the application of a comprehensive panel of ADME-Toxicity assays enabled the selection of novel thyromimetic IS25 and its prodrug TG68, as very powerful lipid lowering agents both in vitro and in vivo. In addition to dyslipidemia and other liver pathologies, THs analogs could also be of value for the treatment of neurodegenerative diseases, such as multiple sclerosis (MS). Sob-AM2, a CNS- selective prodrug of Sobetirome has been shown to promote significant myelin repair in the brain and spinal cord of mouse demyelinating models and it is rapidly moving into clinical trials in humans. Taken together all these findings support the great potential of selective thyromimetics in targeting a large variety of human pathologies characterized by altered metabolism and/or cellular differentiation.
Collapse
Affiliation(s)
| | - Simona Sestito
- Department of Pathology, University of Pisa, Pisa, Italy
| | | | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre for Biology and Pathology of Aging, University of Pisa, Pisa, Italy
| | | |
Collapse
|
24
|
Aleskndrany A, Sahin I. The effects of Levothyroxine on the structure and dynamics of DPPC liposome: FTIR and DSC studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183245. [DOI: 10.1016/j.bbamem.2020.183245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022]
|
25
|
Köhrle J, Lehmphul I, Pietzner M, Renko K, Rijntjes E, Richards K, Anselmo J, Danielsen M, Jonklaas J. 3,5-T2-A Janus-Faced Thyroid Hormone Metabolite Exerts Both Canonical T3-Mimetic Endocrine and Intracrine Hepatic Action. Front Endocrinol (Lausanne) 2020; 10:787. [PMID: 31969860 PMCID: PMC6960127 DOI: 10.3389/fendo.2019.00787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Over the last decades, thyroid hormone metabolites (THMs) received marked attention as it has been demonstrated that they are bioactive compounds. Their concentrations were determined by immunoassay or mass-spectrometry methods. Among those metabolites, 3,5-diiodothyronine (3,5-T2), occurs at low nanomolar concentrations in human serum, but might reach tissue concentrations similar to those of T4 and T3, at least based on data from rodent models. However, the immunoassay-based measurements in human sera revealed remarkable variations depending on antibodies used in the assays and thus need to be interpreted with caution. In clinical experimental approaches in euthyroid volunteers and hypothyroid patients using the immunoassay as the analytical tool no evidence of formation of 3,5-T2 from its putative precursors T4 or T3 was found, nor was any support found for the assumption that 3,5-T2 might represent a direct precursor for serum 3-T1-AM generated by combined deiodination and decarboxylation from 3,5-T2, as previously documented for mouse intestinal mucosa. We hypothesized that lowered endogenous production of 3,5-T2 in patients requiring T4 replacement therapy after thyroidectomy or for treatment of autoimmune thyroid disease, compared to production of 3,5-T2 in individuals with intact thyroid glands might contribute to the discontent seen in a subset of patients with this therapeutic regimen. So far, our observations do not support this assumption. However, the unexpected association between high serum 3,5-T2 and elevated urinary concentrations of metabolites related to coffee consumption requires further studies for an explanation. Elevated 3,5-T2 serum concentrations were found in several situations including impaired renal function, chronic dialysis, sepsis, non-survival in the ICU as well as post-operative atrial fibrillation (POAF) in studies using a monoclonal antibody-based chemoluminescence immunoassay. Pilot analysis of human sera using LC-linear-ion-trap-mass-spectrometry yielded 3,5-T2 concentrations below the limit of quantification in the majority of cases, thus the divergent results of both methods need to be reconciliated by further studies. Although positive anti-steatotic effects have been observed in rodent models, use of 3,5-T2 as a muscle anabolic, slimming or fitness drug, easily obtained without medical prescription, must be advised against, considering its potency in suppressing the HPT axis and causing adverse cardiac side effects. 3,5-T2 escapes regular detection by commercially available clinical routine assays used for thyroid function tests, which may be seriously disrupted in individuals self-administering 3,5-T2 obtained over-the counter or from other sources.
Collapse
Affiliation(s)
- Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ina Lehmphul
- Institut für Experimentelle Endokrinologie, Charité Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Maik Pietzner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Kostja Renko
- Institut für Experimentelle Endokrinologie, Charité Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie, Charité Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Keith Richards
- Institut für Experimentelle Endokrinologie, Charité Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - João Anselmo
- Endocrinology Department, Hospital Divino Espirito Santo, Ponta Delgada, Portugal
| | - Mark Danielsen
- Division of Endocrinology, Georgetown University, Washington, DC, United States
| | - Jacqueline Jonklaas
- Division of Endocrinology, Georgetown University, Washington, DC, United States
| |
Collapse
|
26
|
Otênio JK, Souza KD, Alberton O, Alberton LR, Moreno KGT, Gasparotto Junior A, Palozi RAC, Lourenço ELB, Jacomassi E. Thyroid-disrupting effects of chlorpyrifos in female Wistar rats. Drug Chem Toxicol 2019; 45:387-392. [DOI: 10.1080/01480545.2019.1701487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Joice Karina Otênio
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil
| | - Karine Delgado Souza
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil
| | - Odair Alberton
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil
| | - Luiz Rômulo Alberton
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil
| | - Karyne Garcia Tafarelo Moreno
- Laboratory of Electrophysiology and Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratory of Electrophysiology and Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Rhanany Alan Calloi Palozi
- Laboratory of Electrophysiology and Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | | | - Ezilda Jacomassi
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil
| |
Collapse
|
27
|
Leemans M, Couderq S, Demeneix B, Fini JB. Pesticides With Potential Thyroid Hormone-Disrupting Effects: A Review of Recent Data. Front Endocrinol (Lausanne) 2019; 10:743. [PMID: 31920955 PMCID: PMC6915086 DOI: 10.3389/fendo.2019.00743] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/14/2019] [Indexed: 12/26/2022] Open
Abstract
Plant Protection Products, more commonly referred to as pesticides and biocides, are used to control a wide range of yield-reducing pests including insects, fungi, nematodes, and weeds. Concern has been raised that some pesticides may act as endocrine disrupting chemicals (EDCs) with the potential to interfere with the hormone systems of non-target invertebrates and vertebrates, including humans. EDCs act at low doses and particularly vulnerable periods of exposure include pre- and perinatal development. Of critical concern is the number of pesticides with the potential to interfere with the developing nervous system and brain, notably with thyroid hormone signaling. Across vertebrates, thyroid hormone orchestrates metamorphosis, brain development, and metabolism. Pesticide action on thyroid homeostasis can involve interference with TH production and its control, displacement from distributor proteins and liver metabolism. Here we focused on thyroid endpoints for each of the different classes of pesticides reviewing epidemiological and experimental studies carried out both in in vivo and in vitro. We conclude first, that many pesticides were placed on the market with insufficient testing, other than acute or chronic toxicity, and second, that thyroid-specific endpoints for neurodevelopmental effects and mixture assessment are largely absent from regulatory directives.
Collapse
Affiliation(s)
- Michelle Leemans
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Laboratoire Physiologie moléculaire de l'adaptation, Paris, France
| | | | | | - Jean-Baptiste Fini
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Laboratoire Physiologie moléculaire de l'adaptation, Paris, France
| |
Collapse
|
28
|
Pietzner M, Köhrle J, Lehmphul I, Budde K, Kastenmüller G, Brabant G, Völzke H, Artati A, Adamski J, Völker U, Nauck M, Friedrich N, Homuth G. A Thyroid Hormone-Independent Molecular Fingerprint of 3,5-Diiodothyronine Suggests a Strong Relationship with Coffee Metabolism in Humans. Thyroid 2019; 29:1743-1754. [PMID: 31571530 PMCID: PMC6918876 DOI: 10.1089/thy.2018.0549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: In numerous studies based predominantly on rodent models, administration of 3,5-diiodo-L-thyronine (3,5-T2), a metabolite of the thyroid hormones (TH) thyroxine (T4) and triiodo-L-thyronine (T3), was reported to cause beneficial health effects, including reversal of steatohepatosis and prevention of insulin resistance, in most instances without adverse thyrotoxic side effects. However, the empirical evidence concerning the physiological relevance of endogenously produced 3,5-T2 in humans is comparatively poor. Therefore, to improve the understanding of 3,5-T2-related metabolic processes, we performed a comprehensive metabolomic study relating serum 3,5-T2 concentrations to plasma and urine metabolite levels within a large general population sample. Methods: Serum 3,5-T2 concentrations were determined for 856 participants of the population-based Study of Health in Pomerania-TREND (SHIP-TREND). Plasma and urine metabolome data were generated using mass spectrometry and nuclear magnetic resonance spectroscopy, allowing quantification of 613 and 578 metabolites in plasma and urine, respectively. To detect thyroid function-independent significant 3,5-T2-metabolite associations, linear regression analyses controlling for major confounders, including thyrotropin and free T4, were performed. The same analyses were carried out using a sample of 16 male healthy volunteers treated for 8 weeks with 250 μg/day levothyroxine to induce thyrotoxicosis. Results: The specific molecular fingerprint of 3,5-T2 comprised 15 and 73 significantly associated metabolites in plasma and urine, respectively. Serum 3,5-T2 concentrations were neither associated with classical thyroid function parameters nor altered during experimental thyrotoxicosis. Strikingly, many metabolites related to coffee metabolism, including caffeine and paraxanthine, formed the clearest positively associated molecular signature. Importantly, these associations were replicated in the experimental human thyrotoxicosis model. Conclusion: The molecular fingerprint of 3,5-T2 demonstrates a clear and strong positive association of the serum levels of this TH metabolite with plasma levels of compounds indicating coffee consumption, therefore pointing to the liver as an organ, the metabolism of which is strongly affected by coffee. Furthermore, 3,5-T2 serum concentrations were found not to be directly TH dependent. Considering the beneficial health effects of 3,5-T2 administration observed in animal models and those of coffee consumption demonstrated in large epidemiological studies, one might speculate that coffee-stimulated hepatic 3,5-T2 production or accumulation represents an important molecular link in this connection.
Collapse
Affiliation(s)
- Maik Pietzner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Address correspondence to: Maik Pietzner, PhD, MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Box 285, Cambridge Biomedical Campus, CB2 0QQ Cambridge, United Kingdom
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ina Lehmphul
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kathrin Budde
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Georg Brabant
- Medical Clinic I, University of Lübeck, Lübeck, Germany
| | - Henry Völzke
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- DZD (German Center for Diabetes Research), Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anna Artati
- Research Unit of Experimental Genetics, Genome Analysis Center, Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jerzy Adamski
- Research Unit of Experimental Genetics, Genome Analysis Center, Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
- DZD (German Center for Diabetes Research), München-Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Uwe Völker
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- Georg Homuth, PhD, Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University of Greifswald, Felix-Hausdorff-Straße 8, D-17475 Greifswald, Germany
| |
Collapse
|
29
|
Biebermann H, Kleinau G. 3-Iodothyronamine Induces Diverse Signaling Effects at Different Aminergic and Non-Aminergic G-Protein Coupled Receptors. Exp Clin Endocrinol Diabetes 2019; 128:395-400. [PMID: 31698479 DOI: 10.1055/a-1022-1554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The thyroid hormone metabolite 3-iodothyronamine (3-T1AM) exerts diverse physiological reactions such as a decrease of body temperature, and negative inotropic and chronotropic effects. This observed pleomorphic effect in physiology can be barely explained by interaction with only one target protein such as the trace-amine receptor 1 (TAAR1), a class A G-protein coupled receptor (GPCR). Moreover, Taar1 knock-out mice still react to 3-T1AM through physiological responses with a rapid decrease in body temperature. These facts propelled our group and others to search for further targets for this molecule.The group of TAARs evolved early in evolution and, according to sequence similarities, they are closely related to adrenoceptors and other aminergic receptors. Therefore, several of these receptors were characterized by their potential to interplay with 3-T1AM. Indeed, 3-T1AM acts as a positive allosteric modulator on the beta2-adrenoceptor (ADRB2) and as a biased agonist on the serotonin receptor 1B (5HT1b) and the alpha2-adrenoceptor (ADRA2A). In addition, 3-T1AM was reported to be a weak antagonist at a non-aminergic muscarinic receptor (M3).These findings impressively reflect that such trace amines can unselectively and simultaneously function at different receptors expressed by one cell or at different tissues. In conclusion, the role of 3-T1AM is hypothesized to concert the fine-tuning of specific cell reactions by the accentuation of certain pathways dependent on distinct receptors. 3-T1AM acts as a regulator of signals by blocking, modulating, or inducing simultaneously distinct intracellular signaling cascades via different GPCRs.
Collapse
Affiliation(s)
- Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gunnar Kleinau
- Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
30
|
Abstract
In humans, the thyroid hormones T3 and T4 are synthesized in the thyroid gland in a process that crucially involves the iodoglycoprotein thyroglobulin. The overall structure of thyroglobulin is conserved in all vertebrates. Upon thyroglobulin delivery from thyrocytes to the follicular lumen of the thyroid gland via the secretory pathway, multiple tyrosine residues can become iodinated to form mono-iodotyrosine (MIT) and/or di-iodotyrosine (DIT); however, selective tyrosine residues lead to preferential formation of T4 and T3 at distinct sites. T4 formation involves oxidative coupling between two DIT side chains, and de novo T3 formation involves coupling between an MIT donor and a DIT acceptor. Thyroid hormone synthesis is stimulated by TSH activating its receptor (TSHR), which upregulates the activity of many thyroid gene products involved in hormonogenesis. Additionally, TSH regulates post-translational changes in thyroglobulin that selectively enhance its capacity for T3 formation - this process is important in iodide deficiency and in Graves disease. 167 different mutations, many of which are newly discovered, are now known to exist in TG (encoding human thyroglobulin) that can lead to defective thyroid hormone synthesis, resulting in congenital hypothyroidism.
Collapse
Affiliation(s)
- Cintia E Citterio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología/Cátedra de Genética, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología/Cátedra de Genética, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Köhrle J. The Colorful Diversity of Thyroid Hormone Metabolites. Eur Thyroid J 2019; 8:115-129. [PMID: 31259154 PMCID: PMC6587369 DOI: 10.1159/000497141] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of L-thyroxine, the main secretory product of the thyroid gland, and its major metabolite T3, which exerts the majority of thyroid hormone action via ligand-dependent modulation of the function of T3 receptors in nuclei, mitochondria, and other subcellular compartments, various other T4-derived endogenous metabolites have been identified in blood and tissues of humans, animals, and early protochordates. This review addresses major historical milestones and experimental findings resulting in the discovery of the key enzymes of thyroid hormone metabolism, the three selenoprotein deiodinases, as well as the decarboxylases and amine oxidases involved in formation and degradation of recently identified endogenous thyroid hormone metabolites, i.e. 3-iodothyronamine and 3-thyroacetic acid. The concerted action of deiodinases 2 and 3 in regulation of local T3 availability is discussed. Special attention is given to the role of the thyromimetic "hot" metabolite 3,5-T2 and the "cool" 3-iodothyronamine, especially after administration of pharmacological doses of these endogenous thyroid hormone metabolites in various animal experimental models. In addition, available information on the biological roles of the two major acetic acid derivatives of thyroid hormones, i.e. Tetrac and Triac, as well as sulfated metabolites of thyroid hormones is reviewed. This review addresses the consequences of the existence of this broad spectrum of endogenous thyroid hormone metabolites, the "thyronome," beyond the classical thyroid hormone profile comprising T4, T3, and rT3 for appropriate analytical coverage and clinical diagnostics using mass spectrometry versus immunoassays for determination of total and free concentrations of thyroid hormone metabolites in blood and tissues.
Collapse
Affiliation(s)
- Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité Campus Virchow-Klinikum (CVK), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
32
|
Transcription, Processing, and Decay of Mitochondrial RNA in Health and Disease. Int J Mol Sci 2019; 20:ijms20092221. [PMID: 31064115 PMCID: PMC6540609 DOI: 10.3390/ijms20092221] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Although the large majority of mitochondrial proteins are nuclear encoded, for their correct functioning mitochondria require the expression of 13 proteins, two rRNA, and 22 tRNA codified by mitochondrial DNA (mtDNA). Once transcribed, mitochondrial RNA (mtRNA) is processed, mito-ribosomes are assembled, and mtDNA-encoded proteins belonging to the respiratory chain are synthesized. These processes require the coordinated spatio-temporal action of several enzymes, and many different factors are involved in the regulation and control of protein synthesis and in the stability and turnover of mitochondrial RNA. In this review, we describe the essential steps of mitochondrial RNA synthesis, maturation, and degradation, the factors controlling these processes, and how the alteration of these processes is associated with human pathologies.
Collapse
|
33
|
Köhrle J, Biebermann H. 3-Iodothyronamine-A Thyroid Hormone Metabolite With Distinct Target Profiles and Mode of Action. Endocr Rev 2019; 40:602-630. [PMID: 30649231 DOI: 10.1210/er.2018-00182] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
The rediscovery of the group of thyronamines (TAMs), especially the first detailed description of their most prominent congener 3-iodothyronamine (3T1AM) 14 years ago, boosted research on this thyroid hormone metabolite tremendously. TAMs exert actions partly opposite to and distinct from known functions of thyroid hormones. These fascinating metabolic, anapyrexic, cytoprotective, and brain effects quickly evoked the hope to use hormone-derived TAMs as a therapeutic option. The G protein-coupled receptor (GPCR) TAAR1, a member of the trace amine-associated receptor (TAAR) family, was identified as the first target and effector of TAM action. The initial enthusiasm on pharmacological actions of exogenous TAMs elicited many questions, such as sites of biosynthesis, analytics, modes of action, inactivation, and role of TAMs in (patho)physiology. Meanwhile, it became clear that TAMs not only interact with TAAR1 or other TAAR family members but also with several aminergic receptors and non-GPCR targets such as transient receptor potential channels, mitochondrial proteins, and the serum TAM-binding protein apolipoprotein B100, thus classifying 3T1AM as a multitarget ligand. The physiological mode of action of TAMs is still controversial because regulation of endogenous TAM production and the sites of its biosynthesis are not fully elucidated. Methods for 3T1AM analytics need further validation, as they revealed different blood and tissue concentrations depending on detection principles used such as monoclonal antibody-based immunoassay vs liquid chromatography- matrix-assisted laser desorption/ionization mass spectrometry or time-of-flight mass spectrometry. In this review, we comprehensively summarize and critically evaluate current basic, translational, and clinical knowledge on 3T1AM and its main metabolite 3-iodothyroacetic acid, focusing on endocrine-relevant aspects and open but highly challenging issues.
Collapse
Affiliation(s)
- Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
34
|
Rabah SA, Gowan IL, Pagnin M, Osman N, Richardson SJ. Thyroid Hormone Distributor Proteins During Development in Vertebrates. Front Endocrinol (Lausanne) 2019; 10:506. [PMID: 31440205 PMCID: PMC6694296 DOI: 10.3389/fendo.2019.00506] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
Thyroid hormones (THs) are ancient hormones that not only influence the growth, development and metabolism of vertebrates but also affect the metabolism of (at least some) bacteria. Synthesized in the thyroid gland (or follicular cells in fish not having a discrete thyroid gland), THs can act on target cells by genomic or non-genomic mechanisms. Either way, THs need to get from their site of synthesis to their target cells throughout the body. Despite being amphipathic in structure, THs are lipophilic and hence do not freely diffuse in the aqueous environments of blood or cerebrospinal fluid (in contrast to hydrophilic hormones). TH Distributor Proteins (THDPs) have evolved to enable the efficient distribution of THs in the blood and cerebrospinal fluid. In humans, the THDPs are albumin, transthyretin (TTR), and thyroxine-binding globulin (TBG). These three proteins have distinct patterns of regulation in both ontogeny and phylogeny. During development, an additional THDP with higher affinity than those in the adult, is present during the stage of peak TH concentrations in blood. Although TTR is the only THDP synthesized in the central nervous system (CNS), all THDPs from blood are present in the CSF (for each species). However, the ratio of albumin to TTR differs in the CSF compared to the blood. Humans lacking albumin or TBG have been reported and can be asymptomatic, however a human lacking TTR has not been documented. Conversely, there are many diseases either caused by TTR or that have altered levels of TTR in the blood or CSF associated with them. The first world-wide RNAi therapy has just been approved for TTR amyloidosis.
Collapse
|