1
|
Hatakeyama H, Oshima T, Ono S, Morimoto Y, Takahashi N. Single-molecule analysis of intracellular insulin granule behavior and its application to analyzing cytoskeletal dependence and pathophysiological implications. Front Physiol 2023; 14:1287275. [PMID: 38124716 PMCID: PMC10731264 DOI: 10.3389/fphys.2023.1287275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction: Mobilization of intracellular insulin granules to the plasma membrane plays a crucial role in regulating insulin secretion. However, the regulatory mechanisms of this mobilization process have been poorly understood due to technical limitations. In this study, we propose a convenient approach for assessing intracellular insulin granule behavior based on single-molecule analysis of insulin granule membrane proteins labeled with Quantum dot fluorescent nanocrystals. Methods: This approach allows us to analyze intracellular insulin granule movement with subpixel accuracy at 33 fps. We tracked two insulin granule membrane proteins, phogrin and zinc transporter 8, fused to HaloTag in rat insulinoma INS-1 cells and, by evaluating the tracks with mean-square displacement, demonstrated the characteristic behavior of insulin granules. Results and discussion: Pharmacological perturbations of microtubules and F-actin affected insulin granule behavior on distinct modalities. Specifically, microtubule dynamics and F-actin positively and negatively regulate insulin granule behavior, respectively, presumably by modulating each different behavioral mode. Furthermore, we observed impaired insulin granule behavior and cytoskeletal architecture under chronic treatment of high concentrations of glucose and palmitate. Our approach provides detailed information regarding intracellular insulin granule mobilization and its pathophysiological implications. This study sheds new light on the regulatory mechanisms of intracellular insulin granule mobilization and has important implications for understanding the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Hiroyasu Hatakeyama
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Tomomi Oshima
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shinichiro Ono
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yuichi Morimoto
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institute for Advanced Study (UTIAS), The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Noriko Takahashi
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
2
|
Gardini L, Vignolini T, Curcio V, Pavone FS, Capitanio M. Optimization of highly inclined illumination for diffraction-limited and super-resolution microscopy. OPTICS EXPRESS 2023; 31:26208-26225. [PMID: 37710487 DOI: 10.1364/oe.492152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/12/2023] [Indexed: 09/16/2023]
Abstract
In HILO microscopy, a highly inclined and laminated light sheet is used to illuminate the sample, thus drastically reducing background fluorescence in wide-field microscopy, but maintaining the simplicity of the use of a single objective for both illumination and detection. Although the technique has become widely popular, particularly in single molecule and super-resolution microscopy, a limited understanding of how to finely shape the illumination beam and of how this impacts on the image quality complicates the setting of HILO to fit the experimental needs. In this work, we build up a simple and comprehensive guide to optimize the beam shape and alignment in HILO and to predict its performance in conventional fluorescence and super-resolution microscopy. We model the beam propagation through Gaussian optics and validate the model through far- and near-field experiments, thus characterizing the main geometrical features of the beam. Further, we fully quantify the effects of a progressive reduction of the inclined beam thickness on the image quality of both diffraction-limited and super-resolution images and we show that the most relevant impact is obtained by reducing the beam thickness to sub-cellular dimensions (< 3 µm). Based on this, we present a simple optical solution that exploits a rectangular slit to reduce the inclined beam thickness down to 2.6 µm while keeping a field-of-view dimension suited for cell imaging and allowing an increase in the number of localizations in super-resolution imaging of up to 2.6 folds.
Collapse
|
3
|
Capitini C, Bigi A, Parenti N, Emanuele M, Bianchi N, Cascella R, Cecchi C, Maggi L, Annunziato F, Pavone FS, Calamai M. APP and Bace1: Differential effect of cholesterol enrichment on processing and plasma membrane mobility. iScience 2023; 26:106611. [PMID: 37128606 PMCID: PMC10148118 DOI: 10.1016/j.isci.2023.106611] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023] Open
Abstract
High cholesterol levels are a risk factor for the development of Alzheimer's disease. Experiments investigating the influence of cholesterol on the proteolytic processing of the amyloid precursor protein (APP) by the β-secretase Bace1 and on their proximity in cells have led to conflicting results. By using a fluorescence bioassay coupled with flow cytometry we found a direct correlation between the increase in membrane cholesterol amount and the degree of APP shedding in living human neuroblastoma cells. Analogue results were obtained for cells overexpressing an APP mutant that cannot be processed by α-secretase, highlighting the major influence of cholesterol enrichment on the cleavage of APP carried out by Bace1. By contrast, the cholesterol content was not correlated with changes in membrane dynamics of APP and Bace1 analyzed with single molecule tracking, indicating that the effect of cholesterol enrichment on APP processing by Bace1 is uncoupled from changes in their lateral diffusion.
Collapse
Affiliation(s)
- Claudia Capitini
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, 50019 Florence, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, 50019Florence, Italy
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Niccolò Parenti
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, 50019Florence, Italy
| | - Marco Emanuele
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, 50019Florence, Italy
| | - Niccolò Bianchi
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, 50019Florence, Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence 50134 Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence 50134 Florence, Italy
| | - Francesco Saverio Pavone
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, 50019 Florence, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, 50019Florence, Italy
- National Institute of Optics, National Research Council of Italy (CNR), Largo Fermi 6, 50125Florence, Italy
| | - Martino Calamai
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, 50019Florence, Italy
- National Institute of Optics, National Research Council of Italy (CNR), Largo Fermi 6, 50125Florence, Italy
- Corresponding author
| |
Collapse
|
4
|
Three live-imaging techniques for comprehensively understanding the initial trigger for insulin-responsive intracellular GLUT4 trafficking. iScience 2022; 25:104164. [PMID: 35434546 PMCID: PMC9010770 DOI: 10.1016/j.isci.2022.104164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/16/2021] [Accepted: 03/24/2022] [Indexed: 01/31/2023] Open
Abstract
Quantitative features of GLUT4 glucose transporter's behavior deep inside cells remain largely unknown. Our previous analyses with live-cell imaging of intracellular GLUT4 trafficking demonstrated two crucial early events responsible for triggering insulin-responsive translocation processes, namely, heterotypic fusion and liberation. To quantify the regulation, interrelationships, and dynamics of the initial events more accurately and comprehensively, we herein applied three analyses, each based on our distinct dual-color live-cell imaging approaches. With these approaches, heterotypic fusion was found to be the first trigger for insulin-responsive GLUT4 redistributions, preceding liberation, and to be critically regulated by Akt substrate of 160 kDa (AS160) and actin dynamics. In addition, demonstrating the subcellular regional dependence of GLUT4 dynamics revealed that liberated GLUT4 molecules are promptly incorporated into the trafficking itinerary of transferrin receptors. Our approaches highlight the physiological significance of endosomal "GLUT4 molecule trafficking" rather than "GLUT4 vesicle delivery" to the plasma membrane in response to insulin.
Collapse
|
5
|
Casalone E, Vignolini T, Braconi L, Gardini L, Capitanio M, Pavone FS, Dei S, Teodori E. 1-benzyl-1,4-diazepane reduces the efflux of resistance-nodulation-cell division pumps in Escherichia coli. Future Microbiol 2020; 15:987-999. [PMID: 32840130 DOI: 10.2217/fmb-2019-0296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the action mechanism of 1-benzyl-1,4-diazepane (1-BD) as efflux pump inhibitor (EPI) in Escherichia coli mutants: ΔacrAB or overexpressing AcrAB and AcrEF efflux pumps. Materials & methods: Effect of 1-BD on: antibiotic potentiation, by microdilution method; membrane functionality, by fluorimetric assays; ethidium bromide accumulation, by fluorometric real-time efflux assay; AcrB expression, by quantitative photoactivated localization microscopy. Results: 1-BD decreases the minimal inhibitory concentration of levofloxacin and other antibiotics and increase ethidium bromide accumulation in E. coli overexpressing efflux pumps but not in the ΔacrAB strain. 1-BD increases membranes permeability, without sensibly affecting inner membrane polarity and decreases acrAB transcription. Conclusion: 1-BD acts as an EPI in E. coli with a mixed mechanism, different from that of major reference EPIs.
Collapse
Affiliation(s)
- Enrico Casalone
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Tiziano Vignolini
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research & Child Health (NEUROFARBA), Via U. Schiff, 6 - 50019 Sesto Fiorentino, Italy
| | - Lucia Gardini
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.,National Institute of Optics-National Research Council, Largo Fermi 6, 50125 Florence, Italy
| | - Marco Capitanio
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.,Department of Physics & Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Francesco S Pavone
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.,National Institute of Optics-National Research Council, Largo Fermi 6, 50125 Florence, Italy.,Department of Physics & Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research & Child Health (NEUROFARBA), Via U. Schiff, 6 - 50019 Sesto Fiorentino, Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research & Child Health (NEUROFARBA), Via U. Schiff, 6 - 50019 Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Gardini L, Arbore C, Capitanio M, Pavone FS. A protocol for single molecule imaging and tracking of processive myosin motors. MethodsX 2019; 6:1854-1862. [PMID: 31508322 PMCID: PMC6726715 DOI: 10.1016/j.mex.2019.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/13/2019] [Indexed: 10/31/2022] Open
Abstract
Myosin is a large family of actin-based molecular motors, which includes efficient intracellular transporters that move cargoes and material essential for cell's life. Here, we describe protocols for labelling single myosin motors with quantum dots, tracking them in an in vitro reconstituted single-molecule motility assay, acquiring image stacks and analyzing them. We describe the required steps to obtain trajectories of single myosin motors from which fundamental biophysical parameters such as the motor velocity, run length and step size can be derived. We also describe protocols for an ensemble actin gliding assay, which is valuable to test the motor viability and its ensemble properties. The protocols allow probing the effect of changes in nucleotides, ions, and buffer composition on the motor properties and are easily generalizable to track the movements of different motor proteins.
Collapse
Affiliation(s)
- Lucia Gardini
- LENS - European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy.,National Institute of Optics-National Research Council, Largo Fermi 6, 50125, Florence, Italy
| | - Claudia Arbore
- LENS - European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - Marco Capitanio
- LENS - European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- LENS - European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy.,National Institute of Optics-National Research Council, Largo Fermi 6, 50125, Florence, Italy.,Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Gardini L, Arbore C, Pavone FS, Capitanio M. Myosin V fluorescence imaging dataset for single-molecule localization and tracking. Data Brief 2019; 25:103973. [PMID: 31194150 PMCID: PMC6552026 DOI: 10.1016/j.dib.2019.103973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 11/11/2022] Open
Abstract
Myosin-5B is one of three members of the myosin-5 family of actin-based molecular motors fundamental in recycling endosome trafficking and collective actin network dynamics. Through single-molecule motility assays, we recently demonstrated that myosin-5B can proceed in 36-nm steps along actin filaments as single motor. By analyzing trajectories of single myosin-5B along actin filaments we showed that its velocity is dependent on ATP concentration, while its run length is independent on ATP concentration, as a landmark of processivity. Here, we share image stacks acquired under total internal reflection fluorescence (TIRF) microscopy and representative trajectories of single myosin-5B molecules labelled with Quantum Dots (QD-myo-5B) moving along actin filaments at different ATP concentrations (0.3–1000 μM). Localization of QD-myo-5B was performed with the PROOF software, which is freely available [1]. The data can be valuable for researchers interested in molecular motors motility, both from an experimental and modeling point of view, as well as to researchers developing single particle tracking algorithms. The data is related to the research article “Dissecting myosin-5B mechanosensitivity and calcium regulation at the single molecule level” Gardini et al., 2015.
Collapse
Affiliation(s)
- Lucia Gardini
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.,National Institute of Optics-National Research Council, Largo Fermi 6, 50125 Florence, Italy
| | - Claudia Arbore
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.,National Institute of Optics-National Research Council, Largo Fermi 6, 50125 Florence, Italy.,Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Marco Capitanio
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| |
Collapse
|