1
|
Teune M, Döhler T, Bartosik D, Schweder T, Bornscheuer UT. Biochemical Characterization of Multimodular Xylanolytic Carbohydrate Esterases from the Marine Bacterium Flavimarina sp. Hel_I_48. Chembiochem 2025:e2500058. [PMID: 40200722 DOI: 10.1002/cbic.202500058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/16/2025] [Indexed: 04/10/2025]
Abstract
Carbohydrate-active enzymes (CAZymes) are critical for sustainable biomass utilization due to their ability to degrade complex polysaccharides. Frequently, a multimodularity can be observed combining several CAZyme domains and activities in close proximity which can benefit this degradation process. In this study, three multimodular xylanolytic carbohydrate esterases (CEs), named Fl6, Fll1, and Fll4, originating from Flavimarina sp. Hel_I_48 that represent a novel arrangement of catalytic and/or binding domains, are investigated. While Fl6 acts as a glucuronyl esterase, it also contains a carbohydrate binding module which is normally associated with xylanase activity. Fll1 combines xylosidase with acetylxylan esterase (AXE) activity mediated by a CE3 domain. The third enzyme, Fll4, is the first enzyme that comprises three distinct CE domains and shows bifunctional activity as an AXE and a feruloyl esterase (FAE). Investigation of the single domains reveals that the CE6 domain of Fll4 mediates its AXE activity while one of the putative CE1 domains, CE1a, mediates the FAE activity. This investigation of multimodularity of marine CAZymes not only enhances our understanding of these enzymes but may provide a promising route toward more efficient algal biomass utilization for biotechnological applications.
Collapse
Affiliation(s)
- Michelle Teune
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany
| | - Thorben Döhler
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany
| | - Daniel Bartosik
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489, Greifswald, Germany
| | - Thomas Schweder
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany
| |
Collapse
|
2
|
Chen B, Liu G, Chen Q, Wang H, Liu L, Tang K. Discovery of a novel marine Bacteroidetes with a rich repertoire of carbohydrate-active enzymes. Comput Struct Biotechnol J 2024; 23:406-416. [PMID: 38235362 PMCID: PMC10792170 DOI: 10.1016/j.csbj.2023.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/19/2024] Open
Abstract
Members of the phylum Bacteroidetes play a key role in the marine carbon cycle through their degradation of polysaccharides via carbohydrate-active enzymes (CAZymes) and polysaccharide utilization loci (PULs). The discovery of novel CAZymes and PULs is important for our understanding of the marine carbon cycle. In this study, we isolated and identified a potential new genus of the family Catalimonadaceae, in the phylum Bacteroidetes, from the southwest Indian Ocean. Strain TK19036, the type strain of the new genus, is predicted to encode CAZymes that are relatively abundant in marine Bacteroidetes genomes. Tunicatimonas pelagia NBRC 107804T, Porifericola rhodea NBRC 107748T and Catalinimonas niigatensis NBRC 109829T, which exhibit 16 S rRNA similarities exceeding 90% with strain TK19036, and belong to the same family, were selected as reference strains. These organisms possess a highly diverse repertoire of CAZymes and PULs, which may enable them to degrade a wide range of polysaccharides, especially pectin and alginate. In addition, some secretory CAZymes in strain TK19036 and its relatives were predicted to be transported by type IX secretion system (T9SS). Further, to the best of our knowledge, we propose the first reported "hybrid" PUL targeting alginates in T. pelagia NBRC 107804T. Our findings provide new insights into the polysaccharide degradation capacity of marine Bacteroidetes, and suggest that T9SS may play a more important role in this process than previously believed.
Collapse
Affiliation(s)
- Beihan Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Guohua Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Quanrui Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Huanyu Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Le Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Salgado JFM, Hervé V, Vera MAG, Tokuda G, Brune A. Unveiling lignocellulolytic potential: a genomic exploration of bacterial lineages within the termite gut. MICROBIOME 2024; 12:201. [PMID: 39407345 PMCID: PMC11481507 DOI: 10.1186/s40168-024-01917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND The microbial landscape within termite guts varies across termite families. The gut microbiota of lower termites (LT) is dominated by cellulolytic flagellates that sequester wood particles in their digestive vacuoles, whereas in the flagellate-free higher termites (HT), cellulolytic activity has been attributed to fiber-associated bacteria. However, little is known about the role of individual lineages in fiber digestion, particularly in LT. RESULTS We investigated the lignocellulolytic potential of 2223 metagenome-assembled genomes (MAGs) recovered from the gut metagenomes of 51 termite species. In the flagellate-dependent LT, cellulolytic enzymes are restricted to MAGs of Bacteroidota (Dysgonomonadaceae, Tannerellaceae, Bacteroidaceae, Azobacteroidaceae) and Spirochaetota (Breznakiellaceae) and reflect a specialization on cellodextrins, whereas their hemicellulolytic arsenal features activities on xylans and diverse heteropolymers. By contrast, the MAGs derived from flagellate-free HT possess a comprehensive arsenal of exo- and endoglucanases that resembles that of termite gut flagellates, underlining that Fibrobacterota and Spirochaetota occupy the cellulolytic niche that became vacant after the loss of the flagellates. Furthermore, we detected directly or indirectly oxygen-dependent enzymes that oxidize cellulose or modify lignin in MAGs of Pseudomonadota (Burkholderiales, Pseudomonadales) and Actinomycetota (Actinomycetales, Mycobacteriales), representing lineages located at the hindgut wall. CONCLUSIONS The results of this study refine our concept of symbiotic digestion of lignocellulose in termite guts, emphasizing the differential roles of specific bacterial lineages in both flagellate-dependent and flagellate-independent breakdown of cellulose and hemicelluloses, as well as a so far unappreciated role of oxygen in the depolymerization of plant fiber and lignin in the microoxic periphery during gut passage in HT. Video Abstract.
Collapse
Affiliation(s)
- João Felipe M Salgado
- RG Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Vincent Hervé
- RG Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Manuel A G Vera
- RG Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Gaku Tokuda
- Tropical Biosphere Research Center, Center of Molecular Biosciences, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Andreas Brune
- RG Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.
| |
Collapse
|
4
|
Xiao Y, Dong M, Yang B, Wang S, Liang S, Liu D, Zhang H. Strengthening bioremediation potential: Enterobacter ludwigii ES2 for combined nicosulfuron and Cd contamination through whole genome and microbial diversity community analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135476. [PMID: 39137549 DOI: 10.1016/j.jhazmat.2024.135476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/11/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Nicosulfuron and Cd are common pollutants that pose significant threats to the environment and human health, particularly under combined stress. This study is the first to remediate environmental nicosulfuron and Cd under combined stress using microbiological techniques. Enterobacter ludwigii ES2 was isolated, characterized, and demonstrated to degrade 93.80 % of nicosulfuron and remove 59.64 % of Cd within 4 d. Potential functional genes, including nicosulfuron degradation genes gstA, gstB, glnQ, glnP, mreB, and sixA, and Cd tolerance/removal-related genes mntA, mntB, mntH, dnaK, znuA, and zupt, were predicted by sequencing the whole genome of strain ES2, and their expression was verified by qRT-PCR. Strain ES2 managed oxidative stress induced by Cd through superoxide dismutase, glutathione, catalase, peroxidase, and malondialdehyde. Furthermore, to repair compound stress, up to 90.48 % of nicosulfuron and 67.74 % of Cd were removed. The community structure analysis indicated that Enterobacteriaceae, Sphingomonadaceae, and Gemmatimonadaceae were dominant populations, with ES2 stably colonizing and becoming the dominant bacterium. In summary, ES2 demonstrated significant potential in remediating nicosulfuron and Cd pollution from various perspectives, providing a solid theoretical foundation.
Collapse
Affiliation(s)
- Yufeng Xiao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Meiqi Dong
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Bingbing Yang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Siya Wang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Shuang Liang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, China.
| | - Hao Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
5
|
Wang L, Wang Z, Zhang H, Jin Q, Fan S, Liu Y, Huang X, Guo J, Cai C, Zhang JR, Wu H. A novel esterase regulates Klebsiella pneumoniae hypermucoviscosity and virulence. PLoS Pathog 2024; 20:e1012675. [PMID: 39480904 PMCID: PMC11556721 DOI: 10.1371/journal.ppat.1012675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/12/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Klebsiella pneumoniae, an emerging multidrug-resistant pathogen, exhibits hypermucoviscosity (HMV) as a critical virulence trait mediated by its capsular polysaccharide (CPS). Recent discoveries have determined acetylation as a significant modification for CPS, although its impact on HMV and virulence was previously unknown. This study elucidates the roles of two enzymes: Klebsiella pneumoniae Acetylated CPS Esterase (KpACE), an esterase that removes acetyl groups from CPS, and WcsU, an acetyltransferase that adds acetyl groups to CPS. KpACE is highly upregulated in an ompR-deficient mutant lacking HMV, and its overexpression consistently reduces HMV and diminishes virulence in a mouse model of pneumonia. The esterase domain-containing KpACE effectively deacetylates model sugar substrates and CPS-K2. Site-directed mutagenesis of the conserved catalytic histidine residue at position 370 significantly reduces its enzymatic activity. This reduction correlates with decreased HMV, affecting key virulence traits including biofilm formation and serum resistance. Similarly, a deficiency in the wcsU gene abolishes CPS acetylation, and reduces HMV and virulence. These results highlight the importance of the delicate balance between CPS acetylation by WcsU and deacetylation by KpACE in regulating the pathogenicity of K. pneumoniae. Understanding this balance provides new insights into the modulation of virulence traits and potential therapeutic targets for combating K. pneumoniae infections.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital, Beijing, China
- Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Zhe Wang
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Hua Zhang
- Oregon Health and Science University School of Dentistry, Portland, Oregon, United States of America
| | - Qian Jin
- Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Shuaihua Fan
- Tsinghua Medicine, Tsinghua University, Department of Respiratory and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Yanni Liu
- Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Xueting Huang
- Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Jun Guo
- Department of Geriatric Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Chao Cai
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Hui Wu
- Oregon Health and Science University School of Dentistry, Portland, Oregon, United States of America
| |
Collapse
|
6
|
Huang Y, Lin Y, Lan W, Huang C, Zhong C. GloEC: a hierarchical-aware global model for predicting enzyme function. Brief Bioinform 2024; 25:bbae365. [PMID: 39073830 DOI: 10.1093/bib/bbae365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
The annotation of enzyme function is a fundamental challenge in industrial biotechnology and pathologies. Numerous computational methods have been proposed to predict enzyme function by annotating enzyme labels with Enzyme Commission number. However, the existing methods face difficulties in modelling the hierarchical structure of enzyme label in a global view. Moreover, they haven't gone entirely to leverage the mutual interactions between different levels of enzyme label. In this paper, we formulate the hierarchy of enzyme label as a directed enzyme graph and propose a hierarchy-GCN (Graph Convolutional Network) encoder to globally model enzyme label dependency on the enzyme graph. Based on the enzyme hierarchy encoder, we develop an end-to-end hierarchical-aware global model named GloEC to predict enzyme function. GloEC learns hierarchical-aware enzyme label embeddings via the hierarchy-GCN encoder and conducts deductive fusion of label-aware enzyme features to predict enzyme labels. Meanwhile, our hierarchy-GCN encoder is designed to bidirectionally compute to investigate the enzyme label correlation information in both bottom-up and top-down manners, which has not been explored in enzyme function prediction. Comparative experiments on three benchmark datasets show that GloEC achieves better predictive performance as compared to the existing methods. The case studies also demonstrate that GloEC is capable of effectively predicting the function of isoenzyme. GloEC is available at: https://github.com/hyr0771/GloEC.
Collapse
Affiliation(s)
- Yiran Huang
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China
- Key Laboratory of Parallel, Distributed and Intelligent Computing in Guangxi Universities and Colleges, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, China
| | - Yufu Lin
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China
| | - Wei Lan
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China
- Key Laboratory of Parallel, Distributed and Intelligent Computing in Guangxi Universities and Colleges, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, China
| | - Cuiyu Huang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Cheng Zhong
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China
- Key Laboratory of Parallel, Distributed and Intelligent Computing in Guangxi Universities and Colleges, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
Tian F, Guo G, Fu W, Li S, Ding K, Yang F, Liang C. Decolorization and detoxification of Brilliant Crocein GR by a newly enriched thermophilic consortium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120623. [PMID: 38518494 DOI: 10.1016/j.jenvman.2024.120623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/08/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
The environmental pollution caused by azo dyes at high temperatures has become an urgent problem. However, little attention has been paid to decolorizing azo dyes by thermophilic consortiums. In this study, a thermophilic bacterial consortium (BCGR-T) mainly composed of two genera, namely, Caldibacillus (70.90%) and Aeribacillus (17.63%) was first enriched, which can decolorize Brilliant Crocein GR (BCGR) at high temperatures (50-75 °C), pH values of 6∼8, dye concentrations (100-400 mg/L) and salinities (1-5%, w/v). The enzyme activity results showed that the azoreductase activity was nearly 8.8 times that of the control (p < 0.01), and the intracellular lignin peroxidase was also highly expressed with enzyme activity of 5.64 U (min-1 mg-1 protein) (p < 0.05), indicated that both azoreductase and intracellular lignin peroxidase played an important part in the decolorization process. Furthermore, seven new intermediate metabolic products, including aniline, phthalic acid, 2-carboxy benzaldehyde, phenylacetic acid, benzoic acid, toluene, and 4-methyl-hexanoic acid, were identified. In addition, functional genes related with the azo dye decolorization, such as those encoding the azoreductase, laccase, FMN reductase, NADPH-/NADH-quinone oxidoreductases and NADPH-/NADH dehydrogenases, catechol dioxygenase, homogentisate 1,2-dioxygenase, protocatechuate 3,4-dioxygenase, gentisate 1,2-dioxygenase, azobenzene reductase, naphthalene 1,2-dioxygenase, benzoate/toluate 1,2-dioxygenase, and anthranilate 1,2-dioxygenase and so on were found in the metagenome of the consortium BCGR-T. Finally, a new decolorization pathway of the thermophilic consortium BCGR-T was proposed. In addition, the phototoxicity of BCGR decreased after decolorization. Overall, the thermophilic consortium BCGR-T could be a promising candidate in the treatment of high concentration azo dye wastewater at high temperatures.
Collapse
Affiliation(s)
- Fang Tian
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Guang Guo
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Weilian Fu
- School of Energy and Environmental Science, Yunnan Normal University, Kunming, 650500, China
| | - Shiji Li
- School of Energy and Environmental Science, Yunnan Normal University, Kunming, 650500, China
| | - Keqiang Ding
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Feng Yang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Chengyue Liang
- School of Energy and Environmental Science, Yunnan Normal University, Kunming, 650500, China.
| |
Collapse
|
8
|
Yu X, Wang S, Tang J, Zhang Y, Zhou X, Peng C, Chen X, Zhang Q. Microbial Fermentation as an Efficient Method for Eliminating Pyrethroid Pesticide Residues in Food: A Case Study on Cyfluthrin and Aneurinibacillus aneurinilyticus D-21. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4393-4404. [PMID: 38359781 DOI: 10.1021/acs.jafc.3c09024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The microbial fermentation of food has emerged as an efficient means to eliminate pesticide residues in agricultural products; however, the specific degradation characteristics and mechanisms remain unclear. In this study, a Gram-positive bacterium, Aneurinibacillus aneurinilyticus D-21, isolated from fermented Pixian Douban samples exhibited the capability to degrade 45 mg/L of cyfluthrin with an efficiency of 90.37%. Product analysis unveiled a novel cyfluthrin degradation pathway, involving the removal of the cyanide group and ammoniation of the ester bond into an amide. Whole genome analysis discovered the enzymes linked to cyfluthrin degradation, including nitrilase, esterase, carbon-nitrogen ligases, and enzymes associated with aromatic degradation. Additionally, metabolome analysis identified 140 benzenoids distributed across various aromatic metabolic pathways, further substantiating D-21's catabolic capability toward aromatics. This study underscores the exceptional pyrethroid degradation prowess of A. aneurinilyticus D-21, positioning it as a promising candidate for the biotreatment of pesticide residues in food systems.
Collapse
Affiliation(s)
- Xuan Yu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China
| | - Su Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Jie Tang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, Sichuan, China
| | - Yingyue Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Xuerui Zhou
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Chuanning Peng
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Xuejiao Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China
| | - Qing Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China
| |
Collapse
|
9
|
Xi W, Zhang X, Zhu X, Wang J, Xue H, Pan H. Distribution patterns and influential factors of pathogenic bacteria in freshwater aquaculture sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16028-16047. [PMID: 38308166 DOI: 10.1007/s11356-024-31897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Pathogenic bacteria, the major causative agents of aquaculture diseases, are a serious impediment to the aquaculture industry. However, the bioinformatics of pathogenic bacteria and virulence factors (VFs) in sediments, an important component of freshwater aquaculture ecosystems, are not well characterized. In this study, 20 sediment samples were collected from fish pond sediments (FPS), shrimp field sediments (SFS), fish pond sediment control (FPSC), and shrimp field sediment control (SFSC). Molecular biological information was obtained on a total of 173 pathogenic bacteria, 1093 virulence factors (VFs), and 8475 mobile genetic elements (MGEs) from these samples. The results indicated that (1) aquaculture patterns and sediment characteristics can affect the distribution of pathogenic bacteria. According to the results of the Kruskal-Wallis H test, except for Mycobacterium gilvum, there were significant differences (P < 0.05) among the four sediment types in the average abundance of major pathogenic bacteria (top 30 in abundance), and the average abundance of major pathogenic bacteria in the four sediment types followed the following pattern: FPS > SFS > FPSC > SFSC. (2) Pathogenic bacteria are able to implement a variety of complex pathogenic mechanisms such as adhesion, invasion, immune evasion, and metabolic regulation in the host because they carry a variety of VFs such as type IV pili, HSI-I, Alginate, Colibactin, and Capsule. According to the primary classification of the Virulence Factor Database (VFDB), the abundance of VFs in all four types of sediments showed the following pattern: offensive VFs > non-specific VFs > defensive VFs > regulation of virulence-related genes. (3) Total organic carbon (TOC), total phosphorus (TP), available phosphorus (AP), nitrite, and nitrate were mostly only weakly positively correlated with the major pathogenic bacteria and could promote the growth of pathogenic bacteria to some extent, whereas ammonia was significantly positively correlated with most of the major pathogenic bacteria and could play an important role in promoting the growth and reproduction of pathogenic bacteria. (4) Meanwhile, there was also a significant positive correlation between CAZyme genes and major pathogenic bacteria (0.62 ≤ R ≤ 0.89, P < 0.05). This suggests that these pathogenic bacteria could be the main carriers of CAZyme genes and, to some extent, gained a higher level of metabolic activity by degrading organic matter in the sediments to maintain their competitive advantage. (5) Worryingly, the results of correlation analyses indicated that MGEs in aquaculture sediments could play an important role in the spread of VFs (R = 0.82, P < 0.01), and in particular, plasmids (R = 0.75, P < 0.01) and integrative and conjugative elements (ICEs, R = 0.65, P < 0.05) could be these major vectors of VFs. The results of this study contribute to a comprehensive understanding of the health of freshwater aquaculture sediments and provide a scientific basis for aquaculture management and conservation.
Collapse
Affiliation(s)
- Wenxiang Xi
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Xun Zhang
- China Coal Mine Construction Group Co., LTD, Hefei, 230071, Anhui, China
| | - Xianbin Zhu
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Jiaming Wang
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Han Xue
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Hongzhong Pan
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China.
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China.
| |
Collapse
|
10
|
Ma JX, Wang H, Jin C, Ye YF, Tang LX, Si J, Song J. Whole genome sequencing and annotation of Daedaleopsis sinensis, a wood-decaying fungus significantly degrading lignocellulose. Front Bioeng Biotechnol 2024; 11:1325088. [PMID: 38292304 PMCID: PMC10826855 DOI: 10.3389/fbioe.2023.1325088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024] Open
Abstract
Daedaleopsis sinensis is a fungus that grows on wood and secretes a series of enzymes to degrade cellulose, hemicellulose, and lignin and cause wood rot decay. Wood-decaying fungi have ecological, economic, edible, and medicinal functions. Furthermore, the use of microorganisms to biodegrade lignocellulose has high application value. Genome sequencing has allowed microorganisms to be analyzed from the aspects of genome characteristics, genome function annotation, metabolic pathways, and comparative genomics. Subsequently, the relevant information regarding lignocellulosic degradation has been mined by bioinformatics. Here, we sequenced and analyzed the genome of D. sinensis for the first time. A 51.67-Mb genome sequence was assembled to 24 contigs, which led to the prediction of 12,153 protein-coding genes. Kyoto Encyclopedia of Genes and Genomes database analysis of the D. sinensis data revealed that 3,831 genes are involved in almost 120 metabolic pathways. According to the Carbohydrate-Active Enzyme database, 481 enzymes are found in D. sinensis, of which glycoside hydrolases are the most abundant. The genome sequence of D. sinensis provides insights into its lignocellulosic degradation and subsequent applications.
Collapse
Affiliation(s)
- Jin-Xin Ma
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Hao Wang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Can Jin
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yi-Fan Ye
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Lu-Xin Tang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jie Song
- Department of Horticulture and Food, Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| |
Collapse
|
11
|
Ren J, Yu D, Li N, Liu S, Xu H, Li J, He F, Zou L, Cao Z, Wen J. Biological Characterization and Whole-Genome Analysis of Bacillus subtilis MG-1 Isolated from Mink Fecal Samples. Microorganisms 2023; 11:2821. [PMID: 38137965 PMCID: PMC10745379 DOI: 10.3390/microorganisms11122821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
Bacillus subtilis is an important part of the gut microbiota and a commonly used probiotic. In the present study, to assess the biological characteristics and probiotic properties of B. subtilis derived from mink, we isolated B. subtilis MG-1 isolate from mink fecal samples, characterized its biological characteristics, optimized the hydrolysis of casein by its crude extract, and comprehensively analyzed its potential as a probiotic in combination with whole-genome sequencing. Biological characteristics indicate that, under low-pH conditions (pH 2), B. subtilis MG-1 can still maintain a survival rate of 64.75%; under the conditions of intestinal fluid, gastric acid, and a temperature of 70 °C, the survival rate was increased by 3, 1.15 and 1.17 times compared with the control group, respectively. This shows that it can tolerate severe environments. The results of hydrolyzed casein in vitro showed that the crude bacterial extract of isolate MG-1 exhibited casein hydrolyzing activity (21.56 U/mL); the enzyme activity increased to 32.04 U/mL under optimized reaction conditions. The complete genome sequencing of B. subtilis MG-1 was performed using the PacBio third-generation sequencing platform. Gene annotation analysis results revealed that B. subtilis MG-1 was enriched in several Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways, and most genes were related to Brite hierarchy pathways (1485-35.31%) and metabolism pathways (1395-33.17%). The egg-NOG annotation revealed that most genes were related to energy production and conversion (185-4.10%), amino acid transport and metabolism (288-6.38%), carbohydrate transport and metabolism (269-5.96%), transcription (294-6.52%), and cell wall/membrane/envelope biogenesis (231-5.12%). Gene Ontology (GO) annotation elucidated that most genes were related to biological processes (8230-45.62%), cellular processes (3582-19.86%), and molecular processes (6228-34.52%). Moreover, the genome of B. subtilis MG-1 was predicted to possess 77 transporter-related genes. This study demonstrates that B. subtilis MG-1 has potential for use as a probiotic, and further studies should be performed to develop it as a probiotic additive in animal feed to promote animal health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jianxin Wen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (J.R.); (D.Y.); (N.L.); (S.L.); (H.X.); (J.L.); (F.H.); (L.Z.); (Z.C.)
| |
Collapse
|
12
|
Bai Z, Zhang N, Jin Y, Chen L, Mao Y, Sun L, Fang F, Liu Y, Han M, Li G. Comprehensive analysis of 84 Faecalibacterium prausnitzii strains uncovers their genetic diversity, functional characteristics, and potential risks. Front Cell Infect Microbiol 2023; 12:919701. [PMID: 36683686 PMCID: PMC9846645 DOI: 10.3389/fcimb.2022.919701] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Faecalibacterium prausnitzii is a beneficial human gut microbe and a candidate for next-generation probiotics. With probiotics now being used in clinical treatments, concerns about their safety and side effects need to be considered. Therefore, it is essential to obtain a comprehensive understanding of the genetic diversity, functional characteristics, and potential risks of different F. prausnitzii strains. In this study, we collected the genetic information of 84 F . prausnitzii strains to conduct a pan-genome analysis with multiple perspectives. Based on single-copy genes and the sequences of 16S rRNA and the compositions of the pan-genome, different phylogenetic analyses of F. prausnitzii strains were performed, which showed the genetic diversity among them. Among the proteins of the pan-genome, we found that the accessory clusters made a greater contribution to the primary genetic functions of F. prausnitzii strains than the core and specific clusters. The functional annotations of F. prausnitzii showed that only a very small number of proteins were related to human diseases and there were no secondary metabolic gene clusters encoding harmful products. At the same time, complete fatty acid metabolism was detected in F. prausnitzii. In addition, we detected harmful elements, including antibiotic resistance genes, virulence factors, and pathogenic genes, and proposed the probiotic potential risk index (PPRI) and probiotic potential risk score (PPRS) to classify these 84 strains into low-, medium-, and high-risk groups. Finally, 15 strains were identified as low-risk strains and prioritized for clinical application. Undoubtedly, our results provide a comprehensive understanding and insight into F. prausnitzii, and PPRI and PPRS can be applied to evaluate the potential risks of probiotics in general and to guide the application of probiotics in clinical application.
Collapse
Affiliation(s)
- Zipeng Bai
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Na Zhang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yu Jin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Chen
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yujie Mao
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lingna Sun
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Feifei Fang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maozhen Han
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Gangping Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Yu S, Li L, Zhao H, Zhang S, Tu Y, Liu M, Zhao Y, Jiang L. Dietary citrus flavonoid extract improves lactational performance through modulating rumen microbiome and metabolites in dairy cows. Food Funct 2023; 14:94-111. [PMID: 36484332 DOI: 10.1039/d2fo02751h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of dietary supplementation with citrus flavonoid extract (CFE) on milk performance, rumen fermentation, rumen microbiome, rumen metabolome, and serum antioxidant indexes were evaluated. Eight multiparous lactating cows were allocated to a replicated 4 × 4 Latin square with 25-d periods consisting of 20 d of adaptation and 5 d of sampling. Experimental treatments included a control diet (CON) and CON supplemented with 50 g d-1 (CFE50), 100 g d-1 (CFE100), and 150 g d-1 (CFE150). Feeding CFE to dairy cows increased milk production and milk lactose. Milk somatic cell count linearly reduced with increasing CFE amount. Supplementing CFE linearly increased the ruminal concentrations of total volatile fatty acids, acetate, propionate, butyrate, and microbial crude protein. Ruminal lipopolysaccharide linearly decreased with increasing CFE amount. Compared with CON, CFE150 cows exhibited a greater abundance of Firmicutes and a low abundance of Bacteroidetes. Cellulolytic bacteria (genera Ruminococcus, Clostridium, and Butyrivibrio) and carbohydrate metabolism were enriched in the CFE150 cows. For archaea and viruses, major methanogens (genera Methanobacterium and Methanosarcina) and phylum Uroviricota were inhibited in the CFE150 cows. Compared with CON, the ruminal concentrations of tyrosine, proline, pyruvate, glucose, and glucose-6-phosphate were higher in the CFE150 cows. The metabolites of citrus flavonoids, such as hippuric acid, hesperetin, and naringenin, were increased in the CFE150 cows. Supplementing CFE significantly improved the antioxidant capacity of the dairy cows. This study highlighted that dietary supplementation with CFE led to significant changes in the rumen microbial composition and metabolites, and consequently resulted in an improved lactational performance of dairy cows.
Collapse
Affiliation(s)
- Shiqiang Yu
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| | - Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| | - Huiying Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| | - Shuyue Zhang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| | - Yan Tu
- Beijing Key Laboratory of Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ming Liu
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China. .,Beijing Beinong Enterprise Management Co., Ltd, Beijing 102206, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
14
|
Pilot-scale nanofiltration vibratory shear enhanced processing (NF-VSEP) for the improvement of the separation and concentration of compounds of biotechnological interest from tortilla industry wastewater (nejayote). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Wardman JF, Bains RK, Rahfeld P, Withers SG. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat Rev Microbiol 2022; 20:542-556. [PMID: 35347288 DOI: 10.1038/s41579-022-00712-1] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
Abstract
The 1013-1014 microorganisms present in the human gut (collectively known as the human gut microbiota) dedicate substantial percentages of their genomes to the degradation and uptake of carbohydrates, indicating the importance of this class of molecules. Carbohydrates function not only as a carbon source for these bacteria but also as a means of attachment to the host, and a barrier to infection of the host. In this Review, we focus on the diversity of carbohydrate-active enzymes (CAZymes), how gut microorganisms use them for carbohydrate degradation, the different chemical mechanisms of these CAZymes and the roles that these microorganisms and their CAZymes have in human health and disease. We also highlight examples of how enzymes from this treasure trove have been used in manipulation of the microbiota for improved health and treatment of disease, in remodelling the glycans on biopharmaceuticals and in the potential production of universal O-type donor blood.
Collapse
Affiliation(s)
- Jacob F Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rajneesh K Bains
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Rahfeld
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada. .,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada. .,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
16
|
Integrated metagenomics-metabolomics analysis reveals the cecal microbial composition, function, and metabolites of pigs fed diets with different starch sources. Food Res Int 2022; 154:110951. [DOI: 10.1016/j.foodres.2022.110951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 01/09/2022] [Indexed: 01/10/2023]
|
17
|
Cheng JT, Cao F, Chen XA, Li YQ, Mao XM. Genomic and transcriptomic survey of an endophytic fungus Calcarisporium arbuscula NRRL 3705 and potential overview of its secondary metabolites. BMC Genomics 2020; 21:424. [PMID: 32580753 PMCID: PMC7315530 DOI: 10.1186/s12864-020-06813-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/09/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Secondary metabolites as natural products from endophytic fungi are important sources of pharmaceuticals. However, there is currently little understanding of endophytic fungi at the omics levels about their potential in secondary metabolites. Calcarisporium arbuscula, an endophytic fungus from the fruit bodies of Russulaceae, produces a variety of secondary metabolites with anti-cancer, anti-nematode and antibiotic activities. A comprehensive survey of the genome and transcriptome of this endophytic fungus will help to understand its capacity to biosynthesize secondary metabolites and will lay the foundation for the development of this precious resource. RESULTS In this study, we reported the high-quality genome sequence of C. arbuscula NRRL 3705 based on Single Molecule Real-Time sequencing technology. The genome of this fungus is over 45 Mb in size, larger than other typical filamentous fungi, and comprises 10,001 predicted genes, encoding at least 762 secretory-proteins, 386 carbohydrate-active enzymes and 177 P450 enzymes. 398 virulence factors and 228 genes related to pathogen-host interactions were also predicted in this fungus. Moreover, 65 secondary metabolite biosynthetic gene clusters were revealed, including the gene cluster for the mycotoxin aurovertins. In addition, several gene clusters were predicted to produce mycotoxins, including aflatoxin, alternariol, destruxin, citrinin and isoflavipucine. Notably, two independent gene clusters were shown that are potentially involved in the biosynthesis of alternariol. Furthermore, RNA-Seq assays showed that only expression of the aurovertin gene cluster is much stronger than expression of the housekeeping genes under laboratory conditions, consistent with the observation that aurovertins are the predominant metabolites. Gene expression of the remaining 64 gene clusters for compound backbone biosynthesis was all lower than expression of the housekeeping genes, which partially explained poor production of other secondary metabolites in this fungus. CONCLUSIONS Our omics data, along with bioinformatics analysis, indicated that C. arbuscula NRRL 3705 contains a large number of biosynthetic gene clusters and has a huge potential to produce a profound number of secondary metabolites. This work also provides the basis for development of endophytic fungi as a new resource of natural products with promising biological activities.
Collapse
Affiliation(s)
- Jin-Tao Cheng
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Fei Cao
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Xin-Ai Chen
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, 310058, China. .,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China.
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, 310058, China. .,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China.
| |
Collapse
|