1
|
Kim J, Ravichandran H, Yoffe L, Bhinder B, Finos K, Singh A, Pua BB, Bates S, Huang BE, Rendeiro AF, Mittal V, Altorki NK, McGraw TE, Elemento O. Simultaneous immunomodulation and epithelial-to-mesenchymal transition drives lung adenocarcinoma progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.637138. [PMID: 40027685 PMCID: PMC11870609 DOI: 10.1101/2025.02.19.637138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Lung cancer remains the deadliest cancer in the United States, with lung adenocarcinoma (LUAD) as its most prevalent subtype. While computed tomography (CT)-based screening has improved early detection and enabled curative surgeries, the molecular and cellular dynamics driving early-stage LUAD progression remain poorly understood, limiting non-surgical treatment options. To address this gap, we profiled 2.24 million cells from 122 early-stage LUAD patients using multiplexed imaging mass cytometry (IMC). This analysis revealed the molecular, spatial, and temporal dynamics of LUAD development. Our findings uncover a binary progression model. LUAD advances through either inflammation, driven by a balance of cytotoxic and regulatory immune activity, or fibrosis, characterized by stromal activation. Surprisingly, tumor cell populations did not increase significantly. Instead, they displayed a mixed phenotypic profile consistent with epithelial-to-mesenchymal transition (EMT), effectively masking the expansion of malignant cells. Furthermore, we addressed discrepancies between CT-based and histology-based subtyping. CT scans, while non-invasive, often mischaracterize invasive fibrotic tumors-which account for 20.5% of LUAD cases-as mild, non-solid ground glass opacities (GGOs). Using high-content IMC imaging, we demonstrate that these tumors harbor significant risks and advocate for improved diagnostic strategies. These strategies should integrate molecular profiling to refine patient stratification and therapeutic decision-making. Altogether, our study provides a high-resolution, systems-level view of the tumor microenvironment in early-stage LUAD. We characterize key transitions in oncogenesis and propose a precision-driven framework to enhance the detection and management of aggressive disease subtypes.
Collapse
Affiliation(s)
- Junbum Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Hiranmayi Ravichandran
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Liron Yoffe
- Institute for Computational Biomedicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Bhavneet Bhinder
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Kyle Finos
- Institute for Computational Biomedicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Arshdeep Singh
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Bradley B Pua
- Department of Interventional Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Stewart Bates
- Interventional Oncology, Johnson and Johnson, High Wycombe, HP12 4DP, UK
| | - Bevan Emma Huang
- Interventional Oncology, Johnson and Johnson, High Wycombe, HP12 4DP, UK
| | - Andre F. Rendeiro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences
- Ludwig Boltzmann Institute for Network Medicine at the University of Vienna Lazarettgasse 14 AKH BT 25.3, 1090, Vienna, Austria
| | - Vivek Mittal
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nasser K. Altorki
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Timothy E. McGraw
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
2
|
Wang B, Liu J, Han Y, Deng Y, Li J, Jiang Y. The Presence of Tertiary Lymphoid Structures Provides New Insight Into the Clinicopathological Features and Prognosis of Patients With Breast Cancer. Front Immunol 2022; 13:868155. [PMID: 35664009 PMCID: PMC9161084 DOI: 10.3389/fimmu.2022.868155] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Background Tertiary lymphoid structures (TLSs) have been proven to be predictive biomarkers of favorable clinical outcomes and response to immunotherapies in several solid malignancies. Nevertheless, the effect of TLSs in patients with breast cancer (BC) remains controversial. The objective of the current study is to investigate the clinicopathological and prognostic significance of TLSs in BC. Given the unique difficulties for detecting and quantifying TLSs, a TLS-associated gene signature based on The Cancer Genome Atlas (TCGA) BC cohort was used to validate and supplement our results. Methods Electronic platforms (PubMed, Web of Science, EMBASE, the Cochrane Library, CNKI, and Wanfang) were searched systematically to identify relevant studies as of January 11, 2022. We calculated combined odds ratios (ORs) with 95% confidence intervals (CIs) to determine the relationship between clinicopathological parameters and TLSs. The pooled hazard ratios (HRs) and 95% CIs were also calculated to evaluate the prognostic significance of TLSs. The TLS signature based on the TCGA BC cohort was applied to validate and supplement our results. Results Fifteen studies with 3,898 patients were eligible for enrollment in our study. The combined analysis indicated that the presence of TLSs was related to improved disease-free survival (DFS) (HR = 0.61, 95% CI: 0.41-0.90, p < 0.05) and overall survival (OS) (HR = 1.66, 95% CI: 1.26-2.20, p < 0.001). Additionally, the presence of TLSs was positively correlated with early tumor TNM stage and high tumor-infiltrating lymphocytes. TLS presence was positively related to human epidermal growth factor receptor 2 (HER-2) and Ki-67 but inversely correlated with the status of estrogen and progesterone receptor. Simultaneously, our study found that tumor immune microenvironment was more favorable in the high-TLS signature group than in the low-TLS signature group. Consistently, BC patients in the high-TLS signature group exhibited better survival outcomes compared to those in the low-TLS signature group, suggesting that TLSs might be favorable prognostic biomarkers. Conclusions TLS presence provides new insight into the clinicopathological features and prognosis of patients with BC, whereas the factors discussed limited the evidence quality of this study. We look forward to consistent methods to define and characterize TLSs, and more high-quality prospective clinical trials designed to validate the value of TLSs alone or in combination with other markers.
Collapse
Affiliation(s)
- Bin Wang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yin Han
- Department of Pathology, Chengdu Fifth People's Hospital, Chengdu, China
| | - Yaotiao Deng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinze Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Jiang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Qin M, Jin Y, Pan LY. Tertiary lymphoid structure and B-cell-related pathways: A potential target in tumor immunotherapy. Oncol Lett 2021; 22:836. [PMID: 34712360 PMCID: PMC8548801 DOI: 10.3892/ol.2021.13097] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/28/2021] [Indexed: 01/11/2023] Open
Abstract
The tertiary lymphoid structure (TLS), also referred to as the ectopic lymphoid structure, has recently become a focus of attention. The TLS consists of T-cell and B-cell-rich regions, as well as plasma cells, follicular helper T cells, follicular dendritic cells (FDCs), germinal centers (GCs) and high endothelial venules. TLSs can be divided into different subtypes and mature stages according to the density of FDCs and GCs. The TLS serves as an effective site in which an antitumor inflammatory response is generated through infiltrating immune cells. B-cell-related pathways, known as the CXC chemokine ligand 13/CXC chemokine receptor type 5 axis and the CC chemokine ligand (CCL)19/CCL21/CC-chemokine receptor 7 axis, play a key role in the generation and formation of TLSs. The aim of the present review was to systematically summarize updated research progress on the formation, subtypes, evaluation and B-cell-related pathways of TLSs. Furthermore, researchers have previously reported that TLSs are present in several types of solid cancers and that they are associated with survival outcomes. Therefore, studies on TLS in breast, lung, colorectal and ovarian cancers and melanoma were summarized and compared. The TLS and B-cell-related pathways require further investigation as important immune signals and promising new immunotherapy targets in the era of T-cell therapy revolution.
Collapse
Affiliation(s)
- Meng Qin
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China.,Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing 100730, P.R. China
| | - Ying Jin
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China.,Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing 100730, P.R. China
| | - Ling-Ya Pan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China.,Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing 100730, P.R. China
| |
Collapse
|
5
|
Hofman P. New insights into the interaction of the immune system with non-small cell lung carcinomas. Transl Lung Cancer Res 2020; 9:2199-2213. [PMID: 33209644 PMCID: PMC7653157 DOI: 10.21037/tlcr-20-178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The basis of current and future lung cancer immunotherapy depends mainly on our knowledge of the molecular mechanisms of interactions between cancer and immune cells (ICs), as well as on interactions occurring between the different populations of intra-tumor ICs. These interactions are very complex, as virtually all immune cell types, including macrophages, neutrophils, mast cells, natural killer (NK) cells, dendritic cells and T and B lymphocytes can infiltrate lung cancer tissues at the same time. Moreover these interactions lead to progressive emergence of an imbalance in ICs. Initially ICs have an anti-tumor effect but then induce immune tolerance and eventually tumor progression and dissemination. All the cells of innate and adaptive intra-tumor immunity engage in this progressive phenotypic switch. A majority of non-small cell lung carcinoma (NSCLC) patients do not benefit from the expected positive responses associated with current immunotherapy. Thus, there is urgent need to better understand the different roles of the associated cancer ICs. This review summarizes some of the new insights into this domain, with particular focus on: the myeloid cell population associated with tumors, the tertiary lymphoid structures (TLSs), the role of the P2 purinergic receptors (P2R) and ATP, and the new concept of the “liquid microenvironment” implying blood circulating ICs.
Collapse
Affiliation(s)
- Paul Hofman
- CHU Nice, FHU OncoAge, Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, Nice, France.,CNRS, INSERM, IRCAN, FHU OncoAge, Team 4, Hospital-Integrated Biobank, Université Côte d'Azur, Nice, France.,CHU Nice, FHU OncoAge, Hospital-Integrated Biobank, Université Côte d'Azur, Nice, France
| |
Collapse
|
9
|
Li K, Guo Q, Zhang X, Dong X, Liu W, Zhang A, Li Y, Yan J, Jia G, Zheng Z, Tang W, Pan L, An M, Zhang B, Liu S, Fu B. Oral cancer-associated tertiary lymphoid structures: gene expression profile and prognostic value. Clin Exp Immunol 2019; 199:172-181. [PMID: 31652350 DOI: 10.1111/cei.13389] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Tertiary lymphoid structure (TLS) provides a local and critical microenvironment for both cellular and humoral immunity and supports effective antigen presentation and lymphocyte activation. However, the gene expression profile and prognostic significance of TLS in oral cancer remain largely unrevealed. In this study, we found the presence of both intratumoral and peritumoral TLSs in a series of 65 patients with oral cancer treated by surgical resection, with positive detection rates of 33.8 and 75.4%, respectively. The presence of intratumoral TLSs, but not peritumoral TLSs, was significantly associated with decreased P53 and Ki67 scores (P = 0·027 and 0·047, respectively). The survival analyses revealed that oral cancer patients with higher grades of TLSs was associated with improved disease-free survival (DFS) and overall survival (OS) (P = 0·037 and 0·031, respectively). Gene expression profiling analysis of the cytokines and chemokines responsible for lymph-node neogenesis identified a three-up-regulated-gene set, i.e. IL7, LTB and CXCL13, which was shown to be correlated with human oral cancer-associated TLSs. This study provides a framework for better understanding of oral cancer-associated TLSs and for delineating future innovative prognostic biomarkers and immune therapeutic strategies for oral cancer.
Collapse
Affiliation(s)
- K Li
- Department of Human Anatomy, Histology and Embryology, Shandong University School of Medicine, Jinan, China.,Department of Stomatology, Liaocheng People's Hospital, Liaocheng, China.,Shandong Province Key Laboratory of Oral and Maxillofacial-Head and Neck Medicine, Liaocheng, China
| | - Q Guo
- Department of Clinical Laboratory, Yidu Central Hospital of Weifang, Weifang, China
| | - X Zhang
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, China
| | - X Dong
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, China
| | - W Liu
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - A Zhang
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Y Li
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, China
| | - J Yan
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, China
| | - G Jia
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, China
| | - Z Zheng
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, China
| | - W Tang
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - L Pan
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - M An
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - B Zhang
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng, China.,Shandong Province Key Laboratory of Oral and Maxillofacial-Head and Neck Medicine, Liaocheng, China
| | - S Liu
- Department of Human Anatomy, Histology and Embryology, Shandong University School of Medicine, Jinan, China
| | - B Fu
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|