1
|
Calcagno D, Perina ML, Zingale GA, Pandino I, Tuccitto N, Oliveri V, Parravano MC, Grasso G. Detection of insulin oligomeric forms by a novel surface plasmon resonance-diffusion coefficient based approach. Protein Sci 2024; 33:e4962. [PMID: 38501507 PMCID: PMC10949399 DOI: 10.1002/pro.4962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
Insulin is commonly used to treat diabetes and undergoes aggregation at the site of repeated injections in diabetic patients. Moreover, aggregation is also observed during its industrial production and transport and should be avoided to preserve its bioavailability to correctly adjust glucose levels in diabetic patients. However, monitoring the effect of various parameters (pH, protein concentration, metal ions, etc.) on the insulin aggregation and oligomerization state is very challenging. In this work, we have applied a novel Surface Plasmon Resonance (SPR)-based experimental approach to insulin solutions at various experimental conditions, monitoring how its diffusion coefficient is affected by pH and the presence of metal ions (copper and zinc) with unprecedented sensitivity, precision, and reproducibility. The reported SPR method, hereby applied to a protein for the first time, besides giving insight into the insulin oligomerization and aggregation phenomena, proved to be very robust for determining the diffusion coefficient of any biomolecule. A theoretical background is given together with the software description, specially designed to fit the experimental data. This new way of applying SPR represents an innovation in the bio-sensing field and expanding the potentiality of commonly used SPR instruments well over the canonical investigation of biomolecular interactions.
Collapse
Affiliation(s)
| | | | | | | | - Nunzio Tuccitto
- Dipartimento di Scienze ChimicheUniversity of CataniaCataniaItaly
| | | | | | - Giuseppe Grasso
- Dipartimento di Scienze ChimicheUniversity of CataniaCataniaItaly
| |
Collapse
|
2
|
Zingale GA, Distefano A, Pandino I, Tuccitto N, Oliveri V, Gaeta M, D'Urso A, Arcoria A, Grasso G. Carbon dots as a versatile tool to monitor insulin aggregation. Anal Bioanal Chem 2023; 415:1829-1840. [PMID: 36808276 PMCID: PMC10049934 DOI: 10.1007/s00216-023-04585-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
The possibility to monitor peptide and protein aggregation is of paramount importance in the so-called conformational diseases, as the understanding of many physiological pathways, as well as pathological processes involved in the development of such diseases, depends very much on the actual possibility to monitor biomolecule oligomeric distribution and aggregation. In this work, we report a novel experimental method to monitor protein aggregation, based on the change of the fluorescent properties of carbon dots upon protein binding. The results obtained in the case of insulin with this newly proposed experimental approach are compared with those obtained with other common experimental techniques normally used for the same purpose (circular dichroism, DLS, PICUP and ThT fluorescence). The greatest advantage of the hereby presented methodology over all the other experimental methods considered is the possibility to monitor the initial stages of insulin aggregation under the different experimental conditions sampled and the absence of possible disturbances and/or molecular probes during the aggregation process.
Collapse
Affiliation(s)
| | - Alessia Distefano
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Irene Pandino
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Nunzio Tuccitto
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Valentina Oliveri
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Massimiliano Gaeta
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Alessandro D'Urso
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Alfio Arcoria
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Grasso
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| |
Collapse
|
3
|
Mijin N, Milošević J, Stevanović S, Petrović P, Lolić A, Urbic T, Polović N. Amyloid-like aggregation influenced by lead(II) and cadmium(II) ions in hen egg white ovalbumin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Sokolov PA, Rolich VI, Vezo OS, Belousov MV, Bondarev SA, Zhouravleva GA, Kasyanenko NA. Amyloid fibril length distribution from dynamic light scattering data. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:325-333. [PMID: 35546203 DOI: 10.1007/s00249-022-01600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/19/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
The study of the aggregation of amyloid proteins is challenging. A new approach to processing dynamic light scattering data was developed and tested using aggregates of the well-known model Sup35NM amyloid. After filtering and calculating the moving averages of autocorrelation functions to reduce impacts of noise, each averaged autocorrelation function is converted to the fibril length distribution via numerical modeling. The processing results were verified using atomic force and scanning electron microscopy data. Analysis of fibril length distribution changes over time gives valuable information about the aggregation process.
Collapse
Affiliation(s)
- Petr A Sokolov
- Department of Physics, St. Petersburg University, 7-9-11 Universitetskaya Emb, St. Petersburg, 199034, Russia.
| | - Valeriy I Rolich
- Department of Physics, St. Petersburg University, 7-9-11 Universitetskaya Emb, St. Petersburg, 199034, Russia
| | - Olga S Vezo
- Department of Physics, St. Petersburg University, 7-9-11 Universitetskaya Emb, St. Petersburg, 199034, Russia
| | - Mikhail V Belousov
- Department of Genetics and Biotechnology, St. Petersburg University, 7-9-11 Universitetskaya Emb, St. Petersburg, 199034, Russia
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelsky chausse, St. Petersburg, 196608, Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, St. Petersburg University, 7-9-11 Universitetskaya Emb, St. Petersburg, 199034, Russia
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg University, 7-9-11 Universitetskaya Emb, St. Petersburg, 199034, Russia
| | - Nina A Kasyanenko
- Department of Physics, St. Petersburg University, 7-9-11 Universitetskaya Emb, St. Petersburg, 199034, Russia
| |
Collapse
|
5
|
Hanczyc P, Fita P. Laser Emission of Thioflavin T Uncovers Protein Aggregation in Amyloid Nucleation Phase. ACS PHOTONICS 2021; 8:2598-2609. [PMID: 34557567 PMCID: PMC8451393 DOI: 10.1021/acsphotonics.1c00082] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 05/13/2023]
Abstract
There is currently no definitive test for early detection of neurodegeneration which is linked with protein aggregation. Finding methods capable of detecting intermediate states of protein aggregates, named oligomers, is critical for the early stage diagnosis of over 30 neurodegenerative diseases including Alzheimer's or Parkinson's. Currently, fluorescence-based imaging using Thioflavin T (ThT) dye is the gold standard for detecting protein aggregation. It is used to detect aggregation in vitro and in various tissues, including the cerebrospinal fluid (CSF), whereby the disease-related protein recombinant is seeded with the patient's fluid. The major drawback of ThT is its lack of sensitivity to oligomeric forms of protein aggregates. Here, we overcome this limitation by transferring a ThT-oligomer mixture into solid state thin films and detecting fluorescence of ThT amplified in the process of stimulated emission. By monitoring the amplified spontaneous emission (ASE) we achieved a remarkable recognition sensitivity to prefibrillar oligomeric forms of insulin and lysozyme aggregates in vitro, to Aβ42 oligomers in the human protein recombinants seeded with CSF and to Aβ42 oligomers doped into brain tissue. Seeding with Alzheimer patient's CSF containing Aβ42 and Tau aggregates revealed that only Aβ42 oligomers allowed generating ASE. Thus, we demonstrated that, in contrast to the current state-of-the-art, ASE of ThT, a commonly used histological dye, can be used to detect and differentiate amyloid oligomers and evaluate the risk levels of neurodegenerative diseases to potential patients before the clinical symptoms occur.
Collapse
|
6
|
Szulc N, Burdukiewicz M, Gąsior-Głogowska M, Wojciechowski JW, Chilimoniuk J, Mackiewicz P, Šneideris T, Smirnovas V, Kotulska M. Bioinformatics methods for identification of amyloidogenic peptides show robustness to misannotated training data. Sci Rep 2021; 11:8934. [PMID: 33903613 PMCID: PMC8076271 DOI: 10.1038/s41598-021-86530-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/08/2021] [Indexed: 02/02/2023] Open
Abstract
Several disorders are related to amyloid aggregation of proteins, for example Alzheimer's or Parkinson's diseases. Amyloid proteins form fibrils of aggregated beta structures. This is preceded by formation of oligomers-the most cytotoxic species. Determining amyloidogenicity is tedious and costly. The most reliable identification of amyloids is obtained with high resolution microscopies, such as electron microscopy or atomic force microscopy (AFM). More frequently, less expensive and faster methods are used, especially infrared (IR) spectroscopy or Thioflavin T staining. Different experimental methods are not always concurrent, especially when amyloid peptides do not readily form fibrils but oligomers. This may lead to peptide misclassification and mislabeling. Several bioinformatics methods have been proposed for in-silico identification of amyloids, many of them based on machine learning. The effectiveness of these methods heavily depends on accurate annotation of the reference training data obtained from in-vitro experiments. We study how robust are bioinformatics methods to weak supervision, encountering imperfect training data. AmyloGram and three other amyloid predictors were applied. The results proved that a certain degree of misannotation in the reference data can be eliminated by the bioinformatics tools, even if they belonged to their training set. The computational results are supported by new experiments with IR and AFM methods.
Collapse
Affiliation(s)
- Natalia Szulc
- grid.7005.20000 0000 9805 3178Department of Biomedical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland ,grid.29172.3f0000 0001 2194 6418University of Lorraine, CNRS, 5400 Nancy, France
| | - Michał Burdukiewicz
- grid.48324.390000000122482838Medical University of Bialystok, 15-089 Białystok, Poland ,grid.413454.30000 0001 1958 0162Institute of Biochemistry and Biophysics, Polish Academy Sciences, 02-106 Warsaw, Poland
| | - Marlena Gąsior-Głogowska
- grid.7005.20000 0000 9805 3178Department of Biomedical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Jakub W. Wojciechowski
- grid.7005.20000 0000 9805 3178Department of Biomedical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Jarosław Chilimoniuk
- grid.8505.80000 0001 1010 5103Faculty of Biotechnology, University of Wroclaw, 50-137 Wroclaw, Poland
| | - Paweł Mackiewicz
- grid.8505.80000 0001 1010 5103Faculty of Biotechnology, University of Wroclaw, 50-137 Wroclaw, Poland
| | - Tomas Šneideris
- grid.6441.70000 0001 2243 2806Life Sciences Center, Institute of Biotechnology, Vilnius University, 01513 Vilnius, Lithuania
| | - Vytautas Smirnovas
- grid.6441.70000 0001 2243 2806Life Sciences Center, Institute of Biotechnology, Vilnius University, 01513 Vilnius, Lithuania
| | - Malgorzata Kotulska
- grid.7005.20000 0000 9805 3178Department of Biomedical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| |
Collapse
|
7
|
Koo BK, Munroe W, Gralla EB, Valentine JS, Whitelegge JP. A Novel SOD1 Intermediate Oligomer, Role of Free Thiols and Disulfide Exchange. Front Neurosci 2021; 14:619279. [PMID: 33679289 PMCID: PMC7930385 DOI: 10.3389/fnins.2020.619279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022] Open
Abstract
Wild-type human SOD1 forms a highly conserved intra-molecular disulfide bond between C57-C146, and in its native state is greatly stabilized by binding one copper and one zinc atom per monomer rendering the protein dimeric. Loss of copper extinguishes dismutase activity and destabilizes the protein, increasing accessibility of the disulfide with monomerization accompanying disulfide reduction. A further pair of free thiols exist at C6 and C111 distant from metal binding sites, raising the question of their function. Here we investigate their role in misfolding of SOD1 along a pathway that leads to formation of amyloid fibrils. We present the seeding reaction of a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1) to exclude variables caused by these free cysteines. Completely reduced fibril seeds decreasing the kinetic barrier to cleave the highly conserved intramolecular disulfide bond, and accelerating SOD1 reduction and initiation of fibrillation. Presence or absence of the pair of free thiols affects kinetics of fibrillation. Previously, we showed full maturation with both Cu and Zn prevents this behavior while lack of Cu renders sensitivity to fibrillation, with presence of the native disulfide bond modulating this propensity much more strongly than presence of Zn or dimerization. Here we further investigate the role of reduction of the native C57-C146 disulfide bond in fibrillation of wild-type hSOD1, firstly through removal of free thiols by paired mutations C6A, C111S (AS-SOD1), and secondly in seeded fibrillation reactions modulated by reductant tris (2-carboxyethyl) phosphine (TCEP). Fibrillation of AS-SOD1 was dependent upon disulfide reduction and showed classic lag and exponential growth phases compared with wild-type hSOD1 whose fibrillation trajectories were typically somewhat perturbed. Electron microscopy showed that AS-SOD1 formed classic fibrils while wild-type fibrillation reactions showed the presence of smaller “sausage-like” oligomers in addition to fibrils, highlighting the potential for mixed disulfides involving C6/C111 to disrupt efficient fibrillation. Seeding by addition of sonicated fibrils lowered the TCEP concentration needed for fibrillation in both wild-type and AS-SOD1 providing evidence for template-driven structural disturbance that elevated susceptibility to reduction and thus propensity to fibrillate.
Collapse
Affiliation(s)
- Bon-Kyung Koo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - William Munroe
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Edith B Gralla
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joan Selverstone Valentine
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Julian P Whitelegge
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States.,The Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, NPI-Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
8
|
Martins PM, Navarro S, Silva A, Pinto MF, Sárkány Z, Figueiredo F, Pereira PJB, Pinheiro F, Bednarikova Z, Burdukiewicz M, Galzitskaya OV, Gazova Z, Gomes CM, Pastore A, Serpell LC, Skrabana R, Smirnovas V, Ziaunys M, Otzen DE, Ventura S, Macedo-Ribeiro S. MIRRAGGE - Minimum Information Required for Reproducible AGGregation Experiments. Front Mol Neurosci 2020; 13:582488. [PMID: 33328883 PMCID: PMC7729192 DOI: 10.3389/fnmol.2020.582488] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Reports on phase separation and amyloid formation for multiple proteins and aggregation-prone peptides are recurrently used to explore the molecular mechanisms associated with several human diseases. The information conveyed by these reports can be used directly in translational investigation, e.g., for the design of better drug screening strategies, or be compiled in databases for benchmarking novel aggregation-predicting algorithms. Given that minute protocol variations determine different outcomes of protein aggregation assays, there is a strong urge for standardized descriptions of the different types of aggregates and the detailed methods used in their production. In an attempt to address this need, we assembled the Minimum Information Required for Reproducible Aggregation Experiments (MIRRAGGE) guidelines, considering first-principles and the established literature on protein self-assembly and aggregation. This consensus information aims to cover the major and subtle determinants of experimental reproducibility while avoiding excessive technical details that are of limited practical interest for non-specialized users. The MIRRAGGE table (template available in Supplementary Information) is useful as a guide for the design of new studies and as a checklist during submission of experimental reports for publication. Full disclosure of relevant information also enables other researchers to reproduce results correctly and facilitates systematic data deposition into curated databases.
Collapse
Affiliation(s)
- Pedro M Martins
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alexandra Silva
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria F Pinto
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Zsuzsa Sárkány
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisco Figueiredo
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,International Iberian Nanotechnology Laboratory - Department of Atomic Structure - Composition of Materials, Braga, Portugal
| | - Pedro José Barbosa Pereira
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Michał Burdukiewicz
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Annalisa Pastore
- UK-DRI Centre at King's College London, the Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Rostislav Skrabana
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Bratislava, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sandra Macedo-Ribeiro
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
9
|
Raina N, Singh AK, Hassan MI, Ahmad F, Islam A. Concentration dependent effect of ethylene glycol on the structure and stability of holo α-lactalbumin: Characterization of intermediate state amidst soft interactions. Int J Biol Macromol 2020; 164:2151-2161. [PMID: 32735932 DOI: 10.1016/j.ijbiomac.2020.07.224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022]
Abstract
The interior of the cell is crowded with different kinds of biological molecules with varying sizes, shapes and compositions which may affect physiological processes especially protein folding, protein conformation and protein stability. To understand the consequences of such a crowded environment, pH-induced unfolding of holo alpha-lactalbumin (holo α-LA) was studied in the presence of ethylene glycol (EG). The effect of EG on the folding and stability of holo α-LA in aqueous solution was investigated using several spectroscopic techniques. The results indicate that stabilization/destabilization of holo α-LA by EG is concentration- and pH-dependent. Low concentration of EG stabilizes the protein at pH near its pI. From the results of far-UV CD, UV-visible and ANS fluorescence, intermediate state (MG state) was characterized in the presence of high concentration of ethylene glycol. The results invoke a new mechanism for the formation of MG state identical to active component of BAMLET. MG state of holo α-LA has a direct implication to cancer therapy. MG state of α-LA in complex with specific type of lipid is a novel class of protein-based anti-cancer complexes that incorporate oleic acid and deliver it to the cancer cells.
Collapse
Affiliation(s)
- Neha Raina
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh 201310, India; Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
10
|
Milošević J, Petrić J, Jovčić B, Janković B, Polović N. Exploring the potential of infrared spectroscopy in qualitative and quantitative monitoring of ovalbumin amyloid fibrillation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117882. [PMID: 31818644 DOI: 10.1016/j.saa.2019.117882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Amyloid fibrils are highly ordered self-assembled (poly)peptide aggregates with cross-β structural pattern. Ovalbumin was used as a model for exploring the potential of infrared spectroscopy in detecting structural transitions and quantitative monitoring of amyloid fibrillation. Low pH (pH 2) and high temperature (90 °C) over the course of 24 h were conditions applied for amyloid formation. Fibrillation of ovalbumin was monitored by ThT and ANS fluorescence, and SDS PAGE. A significant increase in ThT fluorescence with a plateau reached after 4 h of incubation, without the lag phase, was detected. Structural transitions leading to amyloid fibrillation were analysed using all three Amide regions in ATR-FTIR spectra. Significant changes were detected in Amide I and Amide III region (decrease of α-helix and increase of β-sheet peaks). To establish a fast, precise and simple method for quantitative monitoring of amyloid fibrillation, the Amide I/Amide II ratios of aggregation specific β-sheets (1625 and 1695 cm-1, respectively) with 1540 cm-1 as internal standard were used, resulting in good correlation (R2 = 0.93 and 0.95) with the data observed by monitoring ThT fluorescence. On the other hand, assessing aggregation specific β-sheet contents by self-deconvolution showed lower correlation with ThT fluorescence (R2 = 0.75 and 0.64). Here we examined structural transitions during ovalbumin fibrillation in a qualitative and quantitative manner by exploiting the full potential of Amide regions simultaneously. Secondary structure distribution was monitored using second derivative spectra in Amide I region. A novel, simple mathematical calculation for quantitative monitoring of fibrils formation was presented employing that the increase in low and high frequency aggregation specific β-sheet in Amide I region compared to the internal standard in Amide II region is suitable for fibril formation monitoring.
Collapse
Affiliation(s)
- Jelica Milošević
- University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Belgrade, Serbia
| | - Jovan Petrić
- University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Belgrade, Serbia
| | - Branko Jovčić
- University of Belgrade - Faculty of Biology, Belgrade, Serbia; Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Brankica Janković
- University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Belgrade, Serbia
| | - Natalija Polović
- University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Belgrade, Serbia.
| |
Collapse
|
11
|
Hagmeyer S, Romão MA, Cristóvão JS, Vilella A, Zoli M, Gomes CM, Grabrucker AM. Distribution and Relative Abundance of S100 Proteins in the Brain of the APP23 Alzheimer's Disease Model Mice. Front Neurosci 2019; 13:640. [PMID: 31281238 PMCID: PMC6596341 DOI: 10.3389/fnins.2019.00640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence links proteins of the S100 family to the pathogenesis of Alzheimer's disease (AD). S100 proteins are EF-hand calcium-binding proteins with intra- and extracellular functions related to regulation of proliferation, differentiation, apoptosis, and trace metal homeostasis, and are important modulators of inflammatory responses. For example, S100A6, S100A8, and S100B expression levels were found increased in inflammatory diseases, but also neurodegenerative disorders, and S100A8/A9 complexes may provide a mechanistic link between amyloid-beta (Aβ) plaque formation and neuroinflammation. On the other hand, S100B, a proinflammatory protein that is chronically up-regulated in AD and whose elevation precedes plaque formation, was recently shown to suppress Aβ aggregation. Here, we report expression of S100A6 and S100B in astrocytes and less so in neurons, and low level of expression of S100A8 in both neurons and glial cells in vitro. In vivo, S100A8 expression is almost absent in the brain of aged wildtype mice, while S100A6 and S100B are expressed in all brain regions and most prominently in the cortex and cerebellum. S100B seems to be enriched in Purkinje cells of the cerebellum. In contrast, in the brain of APP23 mice, a mouse model for Alzheimer's disease, S100B, S100A6, and S100A8 show co-localization with Aβ plaques, compatible with astrocyte activation, and the expression level of S100A8 is increased in neural cells. While S100A6 and S100B are enriched in the periphery of plaques where less fibrillar Aβ is found, S100A8 is more intense within the center of the inclusion. In vitro assays show that, similarly to S100B, S100A6, and S100A8 also delay Aβ aggregation suggesting a regulatory action over protein aggregation. We posit that elevated expression levels and overlapping spatial distribution of brain S100 proteins and plaques translates functional relationships between these inflammatory mediators and AD pathophysiology processes that uncover important molecular mechanisms linking the aggregation and neuroinflammation cascades.
Collapse
Affiliation(s)
- Simone Hagmeyer
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, Limerick, Ireland
- WG Molecular Analysis of Synaptopathies, Department of Neurology, Neurocenter of Ulm University, Ulm, Germany
| | - Mariana A. Romão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S. Cristóvão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Cláudio M. Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| | - Andreas M. Grabrucker
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| |
Collapse
|
12
|
|