1
|
Bisaro F, Shuman HA, Feldman MF, Gebhardt MJ, Pukatzki S. Acinetobacter baumannii ATCC 17978 encodes a microcin system with antimicrobial properties for contact-independent competition. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001346. [PMID: 37289493 PMCID: PMC10333792 DOI: 10.1099/mic.0.001346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
Acinetobacter baumannii is a multidrug-resistant opportunistic pathogen that persists in the hospital environment and causes various clinical infections, primarily affecting immunocompromised patients. A. baumannii has evolved a wide range of mechanisms to compete with neighbouring bacteria. One such competition strategy depends on small secreted peptides called microcins, which exert antimicrobial effects in a contact-independent manner. Here, we report that A. baumannii ATCC 17978 (AB17978) encodes the class II microcin 17 978 (Mcc17978) with antimicrobial activity against closely related Acinetobacter, and surprisingly, also Escherichia coli strains. We identified the genetic locus encoding the Mcc17978 system in AB17978. Using classical bacterial genetic approaches, we determined that the molecular receptor of Mcc17978 in E. coli is the iron-catecholate transporter Fiu, and in Acinetobacter is Fiu's homolog, PiuA. In bacteria, the Ferric uptake regulator (Fur) positively regulates siderophore systems and microcin systems under iron-deprived environments. We found that the Mcc17978 system is upregulated under low-iron conditions commonly found in the host environment and identified a putative Fur binding site upstream of the mcc17978 gene. When we tested the antimicrobial activity of Mcc17978 under different levels of iron availability, we observed that low iron levels not only triggered transcriptional induction of the microcin, but also led to enhanced microcin activity. Taken together, our findings suggest that A. baumannii may utilize microcins to compete with other microbes for resources during infection.
Collapse
Affiliation(s)
- Fabiana Bisaro
- Department of Biology, The City College, City University of New York, New York, NY 10031, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis MO 63110, USA
| | - Howard A. Shuman
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
- Present address: P.O. Box 1088, Sheffield, MA 01257, USA
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis MO 63110, USA
| | - Michael J. Gebhardt
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Stefan Pukatzki
- Department of Biology, The City College, City University of New York, New York, NY 10031, USA
| |
Collapse
|
2
|
Sheldon JR, Himmel LE, Kunkle DE, Monteith AJ, Maloney KN, Skaar EP. Lipocalin-2 is an essential component of the innate immune response to Acinetobacter baumannii infection. PLoS Pathog 2022; 18:e1010809. [PMID: 36054235 PMCID: PMC9477428 DOI: 10.1371/journal.ppat.1010809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/15/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen and an emerging global health threat. Within healthcare settings, major presentations of A. baumannii include bloodstream infections and ventilator-associated pneumonia. The increased prevalence of ventilated patients during the COVID-19 pandemic has led to a rise in secondary bacterial pneumonia caused by multidrug resistant (MDR) A. baumannii. Additionally, due to its MDR status and the lack of antimicrobial drugs in the development pipeline, the World Health Organization has designated carbapenem-resistant A. baumannii to be its priority critical pathogen for the development of novel therapeutics. To better inform the design of new treatment options, a comprehensive understanding of how the host contains A. baumannii infection is required. Here, we investigate the innate immune response to A. baumannii by assessing the impact of infection on host gene expression using NanoString technology. The transcriptional profile observed in the A. baumannii infected host is characteristic of Gram-negative bacteremia and reveals expression patterns consistent with the induction of nutritional immunity, a process by which the host exploits the availability of essential nutrient metals to curtail bacterial proliferation. The gene encoding for lipocalin-2 (Lcn2), a siderophore sequestering protein, was the most highly upregulated during A. baumannii bacteremia, of the targets assessed, and corresponds to robust LCN2 expression in tissues. Lcn2-/- mice exhibited distinct organ-specific gene expression changes including increased transcription of genes involved in metal sequestration, such as S100A8 and S100A9, suggesting a potential compensatory mechanism to perturbed metal homeostasis. In vitro, LCN2 inhibits the iron-dependent growth of A. baumannii and induces iron-regulated gene expression. To elucidate the role of LCN2 in infection, WT and Lcn2-/- mice were infected with A. baumannii using both bacteremia and pneumonia models. LCN2 was not required to control bacterial growth during bacteremia but was protective against mortality. In contrast, during pneumonia Lcn2-/- mice had increased bacterial burdens in all organs evaluated, suggesting that LCN2 plays an important role in inhibiting the survival and dissemination of A. baumannii. The control of A. baumannii infection by LCN2 is likely multifactorial, and our results suggest that impairment of iron acquisition by the pathogen is a contributing factor. Modulation of LCN2 expression or modifying the structure of LCN2 to expand upon its ability to sequester siderophores may thus represent feasible avenues for therapeutic development against this pathogen. A lack of therapeutic options has prompted the World Health Organization to designate multidrug-resistant Acinetobacter baumannii as its priority critical pathogen for research into new treatment strategies. The mechanisms employed by A. baumannii to cause disease and the host tactics exercised to constrain infection are not fully understood. Here, we further characterize the innate immune response to A. baumannii infection. We identify nutritional immunity, a process where the availability of nutrient metals is exploited to restrain bacterial growth, as being induced during infection. The gene encoding for lipocalin-2 (Lcn2), a protein that can impede iron uptake by bacteria, is highly upregulated in infected mice, and corresponds to robust LCN2 detection in the tissues. We find that LCN2 is crucial to reducing mortality from A. baumannii bacteremia and inhibits dissemination of the pathogen during pneumonia. In wild-type and Lcn2-deficient mice, broader transcriptional profiling reveals expression patterns consistent with the known response to Gram-negative bacteremia. Although the role of LCN2 in infection is likely multifactorial, we find its antimicrobial effects are at least partly exerted by impairing iron acquisition by A. baumannii. Facets of nutritional immunity, such as LCN2, may be exploited as novel therapeutics in combating A. baumannii infection.
Collapse
Affiliation(s)
- Jessica R. Sheldon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Lauren E. Himmel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Dillon E. Kunkle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Andrew J. Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - K. Nichole Maloney
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
3
|
Robin B, Nicol M, Le H, Tahrioui A, Schaumann A, Vuillemenot JB, Vergoz D, Lesouhaitier O, Jouenne T, Hardouin J, Potron A, Perrot V, Dé E. MacAB-TolC Contributes to the Development of Acinetobacter baumannii Biofilm at the Solid–Liquid Interface. Front Microbiol 2022; 12:785161. [PMID: 35095797 PMCID: PMC8792954 DOI: 10.3389/fmicb.2021.785161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Acinetobacter baumannii has emerged as one of the most problematic bacterial pathogens responsible for hospital-acquired and community infections worldwide. Besides its high capacity to acquire antibiotic resistance mechanisms, it also presents high adhesion abilities on inert and living surfaces leading to biofilm development. This lifestyle confers additional protection against various treatments and allows it to persist for long periods in various hospital niches. Due to their remarkable antimicrobial tolerance, A. baumannii biofilms are difficult to control and ultimately eradicate. Further insights into the mechanism of biofilm development will help to overcome this challenge and to develop novel antibiofilm strategies. To unravel critical determinants of this sessile lifestyle, the proteomic profiles of two A. baumannii strains (ATTC17978 and SDF) grown in planktonic stationary phase or in mature solid–liquid (S-L) biofilm were compared using a semiquantitative proteomic study. Of interest, among the 69 common proteins determinants accumulated in the two strains at the S-L interface, we sorted out the MacAB-TolC system. This tripartite efflux pump played a role in A. baumannii biofilm formation as demonstrated by using ΔmacAB-tolC deletion mutant. Complementary approaches allowed us to get an overview of the impact of macAB-tolC deletion in A. baumannii physiology. Indeed, this efflux pump appeared to be involved in the envelope stress response occurring in mature biofilm. It contributes to maintain wild type (WT) membrane rigidity and provides tolerance to high osmolarity conditions. In addition, this system is probably involved in the maintenance of iron and sulfur homeostasis. MacAB-TolC might help this pathogen face and adapt to deleterious conditions occurring in mature biofilms. Increasing our knowledge of A. baumannii biofilm formation will undoubtedly help us develop new therapeutic strategies to tackle this emerging threat to human health.
Collapse
Affiliation(s)
- Brandon Robin
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | - Marion Nicol
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | - Hung Le
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | - Ali Tahrioui
- Normandie Univ, UNIROUEN, LMSM EA4312, Evreux, France
| | - Annick Schaumann
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- PISSARO Proteomic Facility, IRIB, Mont-Saint-Aignan, France
| | | | - Delphine Vergoz
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | | | - Thierry Jouenne
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- PISSARO Proteomic Facility, IRIB, Mont-Saint-Aignan, France
| | - Julie Hardouin
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- PISSARO Proteomic Facility, IRIB, Mont-Saint-Aignan, France
| | - Anaïs Potron
- UMR 6249 Chrono-Environnement, CNRS-Université de Bourgogne/Franche-Comté, Besançon, France
| | - Valérie Perrot
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- *Correspondence: Valérie Perrot,
| | - Emmanuelle Dé
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- Emmanuelle Dé,
| |
Collapse
|
4
|
Hua X, He J, Wang J, Zhang L, Zhang L, Xu Q, Shi K, Leptihn S, Shi Y, Fu X, Zhu P, Higgins PG, Yu Y. Novel tigecycline resistance mechanisms in Acinetobacter baumannii mediated by mutations in adeS, rpoB and rrf. Emerg Microbes Infect 2021; 10:1404-1417. [PMID: 34170209 PMCID: PMC8274536 DOI: 10.1080/22221751.2021.1948804] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acinetobacter baumannii is an important pathogen in hospital acquired infections. Although tigecycline currently remains a potent antibiotic for treating infections caused by multidrug resistant A. baumannii (MDRAB) strains, reports of tigecycline resistant isolates have substantially increased. The resistance mechanisms to tigecycline in A. baumannii are far more complicated and diverse than what has been described in the literature so far. Here, we characterize in vitro-selected MDRAB strains obtained by increasing concentrations of tigecycline. We have identified mutations in adeS, rrf and rpoB that result in reduced susceptibility to tigecycline. Using in situ complementation experiments, we confirm that mutations in rrf, rpoB, and two types of mutations in adeS correlate with tigecycline resistance. By Western blot and polysome profile analysis, we demonstrate that the rrf mutation results in decreased expression of RRF, which affects the process of ribosome recycling ultimately leading to increased tigecycline tolerance. A transcriptional analysis shows that the mutated rpoB gene plays a role in regulating the expression of the SAM-dependent methyltransferase (trm) and transcriptional regulators, to confer moderate tigecycline resistance. This study provides direct in vitro evidence that mutations in the adeS, rpoB and rrf are associated with tigecycline resistance in A. baumannii.
Collapse
Affiliation(s)
- Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jingfen Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Linghong Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Linyue Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qingye Xu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Keren Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Sebastian Leptihn
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Yue Shi
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xiaoting Fu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People's Republic of China.,Single-cell Center, Shandong Energy Institute, Qingdao, People's Republic of China
| | - Pengfei Zhu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People's Republic of China.,Single-cell Center, Shandong Energy Institute, Qingdao, People's Republic of China
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
5
|
Sheldon JR, Skaar EP. Acinetobacter baumannii can use multiple siderophores for iron acquisition, but only acinetobactin is required for virulence. PLoS Pathog 2020; 16:e1008995. [PMID: 33075115 PMCID: PMC7595644 DOI: 10.1371/journal.ppat.1008995] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/29/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii is an emerging pathogen that poses a global health threat due to a lack of therapeutic options for treating drug-resistant strains. In addition to acquiring resistance to last-resort antibiotics, the success of A. baumannii is partially due to its ability to effectively compete with the host for essential metals. Iron is fundamental in shaping host-pathogen interactions, where the host restricts availability of this nutrient in an effort to curtail bacterial proliferation. To circumvent restriction, pathogens possess numerous mechanisms to obtain iron, including through the use of iron-scavenging siderophores. A. baumannii elaborates up to ten distinct siderophores, encoded from three different loci: acinetobactin and pre-acinetobactin (collectively, acinetobactin), baumannoferrins A and B, and fimsbactins A-F. The expression of multiple siderophores is common amongst bacterial pathogens and often linked to virulence, yet the collective contribution of these siderophores to A. baumannii survival and pathogenesis has not been investigated. Here we begin dissecting functional redundancy in the siderophore-based iron acquisition pathways of A. baumannii. Excess iron inhibits overall siderophore production by the bacterium, and the siderophore-associated loci are uniformly upregulated during iron restriction in vitro and in vivo. Further, disrupting all of the siderophore biosynthetic pathways is necessary to drastically reduce total siderophore production by A. baumannii, together suggesting a high degree of functional redundancy between the metabolites. By contrast, inactivation of acinetobactin biosynthesis alone impairs growth on human serum, transferrin, and lactoferrin, and severely attenuates survival of A. baumannii in a murine bacteremia model. These results suggest that whilst A. baumannii synthesizes multiple iron chelators, acinetobactin is critical to supporting growth of the pathogen on host iron sources. Given the acinetobactin locus is highly conserved and required for virulence of A. baumannii, designing therapeutics targeting the biosynthesis and/or transport of this siderophore may represent an effective means of combating this pathogen.
Collapse
Affiliation(s)
- Jessica R. Sheldon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
6
|
Ramirez MS, Bonomo RA, Tolmasky ME. Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace. Biomolecules 2020; 10:biom10050720. [PMID: 32384624 PMCID: PMC7277208 DOI: 10.3390/biom10050720] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Acinetobacter baumannii is a common cause of serious nosocomial infections. Although community-acquired infections are observed, the vast majority occur in people with preexisting comorbidities. A. baumannii emerged as a problematic pathogen in the 1980s when an increase in virulence, difficulty in treatment due to drug resistance, and opportunities for infection turned it into one of the most important threats to human health. Some of the clinical manifestations of A. baumannii nosocomial infection are pneumonia; bloodstream infections; lower respiratory tract, urinary tract, and wound infections; burn infections; skin and soft tissue infections (including necrotizing fasciitis); meningitis; osteomyelitis; and endocarditis. A. baumannii has an extraordinary genetic plasticity that results in a high capacity to acquire antimicrobial resistance traits. In particular, acquisition of resistance to carbapenems, which are among the antimicrobials of last resort for treatment of multidrug infections, is increasing among A. baumannii strains compounding the problem of nosocomial infections caused by this pathogen. It is not uncommon to find multidrug-resistant (MDR, resistance to at least three classes of antimicrobials), extensively drug-resistant (XDR, MDR plus resistance to carbapenems), and pan-drug-resistant (PDR, XDR plus resistance to polymyxins) nosocomial isolates that are hard to treat with the currently available drugs. In this article we review the acquired resistance to carbapenems by A. baumannii. We describe the enzymes within the OXA, NDM, VIM, IMP, and KPC groups of carbapenemases and the coding genes found in A. baumannii clinical isolates.
Collapse
Affiliation(s)
- Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Robert A. Bonomo
- Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA;
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics; Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- WRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
- Correspondence: ; Tel.: +657-278-5263
| |
Collapse
|
7
|
Effects of Trichoderma asperellum and its siderophores on endogenous auxin in Arabidopsis thaliana under iron-deficiency stress. Int Microbiol 2020; 23:501-509. [PMID: 32080772 DOI: 10.1007/s10123-020-00122-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022]
Abstract
Iron (Fe) deficiency is one of the major limiting factors affecting crop yields. Trichoderma asperellum Q1, a biocontrol and plant growth promoting fungus, can produce the siderophore which has a high affinity to Fe3+ in the absence of iron. In this study, Trichoderma asperellum Q1 was found to be able to promote growth of Arabidopsis thaliana in an iron-deficient or insoluble iron-containing (Fe2O3) medium. It also can produce more siderophore and indole-3-acetic acid (IAA) as the concentration of iron ions decreased. However, it is unclear that the relationship between siderophore and IAA in promoting plant growth. Both Trichoderma asperellum Q1 and siderophore promotes not only the DR5::GFP transgenic Arabidopsis thaliana seedlings, in which the root IAA is labeled by green fluorescent protein gene, but also increases the content of endogenous IAA in the roots, which was shown by the fluorescence study. The strongest fluorescence was observed in the treated group inoculated with Trichoderma asperellum Q1 under the condition of insoluble iron. In the case of iron-free medium, adding siderophore also increased the observed fluorescence intensity. These results suggest that the siderophores produced by Trichoderma asperellum Q1 increased the content of IAA in Arabidopsis roots by enhancing the conversion of poorly soluble iron or by the siderophore itself.
Collapse
|
8
|
Abstract
Natural products from microorganisms are important small molecules that play roles in various biological processes like cellular growth, motility, nutrient acquisition, stress response, biofilm formation, and defense. It is hypothesized that pathogens exploit these molecules to regulate virulence and persistence during infections. Here, we present selected examples of signaling natural products from human pathogenic bacteria that use these metabolites to gain a competitive advantage. Targeting these signaling systems provides novel strategies to antimicrobial treatments.
Collapse
Affiliation(s)
- Zhijuan Hu
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, 201 Gilman Hall, Berkeley, California 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, 201 Gilman Hall, Berkeley, California 94720, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|