1
|
Liu X, Liu Y, Zhou J, Yu X, Wan J, Wang J, Lei S, Zhang Z, Zhang L, Wang S. Porous Collagen Sponge Loaded with Large Efficacy-Potentiated Exosome-Mimicking Nanovesicles for Diabetic Skin Wound Healing. ACS Biomater Sci Eng 2024; 10:975-986. [PMID: 38236143 DOI: 10.1021/acsbiomaterials.3c01282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Diabetic skin wounds are difficult to heal quickly due to insufficient angiogenesis and prolonged inflammation, which is an urgent clinical problem. To address this clinical problem, it becomes imperative to develop a dressing that can promote revascularization and reduce inflammation during diabetic skin healing. Herein, a multifunctional collagen dressing (CTM) was constructed by loading large efficacy-potentiated exosome-mimicking nanovesicles (L-Meseomes) into a porous collagen sponge with transglutaminase (TGase). L-Meseomes were constructed in previous research with the function of promoting cell proliferation, migration, and angiogenesis and inhibiting inflammation. CTM has a three-dimensional porous network structure with good biocompatibility, swelling properties, and degradability and could release L-Meseome slowly. In vitro experiments showed that CTM could promote the proliferation of fibroblasts and the polarization of macrophages to the anti-inflammatory phenotype. For in vivo experiments, on the 21st day after surgery, the wound healing rates of the control and CTM were 83.026 ± 4.17% and 93.12 ± 2.16%, respectively; the epidermal maturation and dermal differentiation scores in CTM were approximately four times that of the control group, and the skin epidermal thickness of the CTM group was approximately 20 μm, which was closest to that of normal rats. CTM could significantly improve wound healing in diabetic rats by promoting anti-inflammation, angiogenesis, epidermal recovery, and dermal collagen deposition. In summary, the multifunctional collagen dressing CTM could significantly promote the healing of diabetic skin wounds, which provides a new strategy for diabetic wound healing in the clinic.
Collapse
Affiliation(s)
- Xiangsheng Liu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yufei Liu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Zhou
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinyi Yu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinpeng Wan
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shaojin Lei
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | - Lin Zhang
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong 250022, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- Nankai International Advanced Research Institute (SHENZHEN FUTIAN), Binglang Road 3#, Futian District, Shenzhen 518045, China
| |
Collapse
|
2
|
Zhao Y, Kim S, Zheng X, Kim SH, Han A, Chen TH, Wang S, Zhong J, Qiu H, Li N. Investigation of High Molecular Weight Size Variant Formation in Antibody-Drug Conjugates: Microbial Transglutaminase-Mediated Crosslinking. J Pharm Sci 2023; 112:2629-2636. [PMID: 37586591 DOI: 10.1016/j.xphs.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Microbial transglutaminase (mTG) has become a powerful tool for manufacturing antibody-drug conjugates (ADCs). It enables site-specific conjugation by catalyzing formation of stable isopeptide bond between glutamine (Q) side chain and primary amine. However, the downstream impact of mTG-mediated conjugation on ADC product quality, especially on high molecular weight (HMW) size variant formation has not been studied in a systematic manner. This study investigates the mechanisms underlying the formation of HMW size variants in mTG-mediated ADCs using size exclusion chromatography (SEC) and liquid chromatography-mass spectrometry (LC-MS). Our findings revealed that the mTG-mediated glutamine and lysine (K) crosslinking is the primary source of the increased level of HMW size variants in the ADCs. In the study, two monoclonal antibodies (mAbs) with glutamine engineered for site-specific conjugation were used as model systems. Based on the LC-MS analysis, a single lysine (K56) in the heavy chain (HC) was identified as the major Q-K crosslinking site in one of the two mAbs. The HC C-terminal K was observed to crosslink to the target Q in both mAbs. Quantitative correlation was established between the percentage of HMW size variants determined by SEC and the percentage of crosslinked peptides quantified by MS peptide mapping. Importantly, it was demonstrated that the level of HMW size variants in the second ADC was substantially reduced by the complete removal of HC C-terminal K before conjugation. The current work demonstrates that crosslinking and other side reactions during mTG-mediated conjugation needs to be carefully monitored and controlled to ensure process consistency and high product quality of the final ADC drug product.
Collapse
Affiliation(s)
- Yimeng Zhao
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.
| | - Sunnie Kim
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Xiang Zheng
- Therapeutic Proteins, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Se Hyun Kim
- Therapeutic Proteins, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Amy Han
- Therapeutic Proteins, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Tse-Hong Chen
- Formulation Development, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Serena Wang
- Formulation Development, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Jieqiang Zhong
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| |
Collapse
|
3
|
Jin Y, Edalatian Zakeri S, Bahal R, Wiemer AJ. New Technologies Bloom Together for Bettering Cancer Drug Conjugates. Pharmacol Rev 2022; 74:680-711. [PMID: 35710136 PMCID: PMC9553120 DOI: 10.1124/pharmrev.121.000499] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug conjugates, including antibody-drug conjugates, are a step toward realizing Paul Ehrlich's idea from over 100 years ago of a "magic bullet" for cancer treatment. Through balancing selective targeting molecules with highly potent payloads, drug conjugates can target specific tumor microenvironments and kill tumor cells. A drug conjugate consists of three parts: a targeting agent, a linker, and a payload. In some conjugates, monoclonal antibodies act as the targeting agent, but new strategies for targeting include antibody derivatives, peptides, and even small molecules. Linkers are responsible for connecting the payload to the targeting agent. Payloads impact vital cellular processes to kill tumor cells. At present, there are 12 antibody-drug conjugates on the market for different types of cancers. Research on drug conjugates is increasing year by year to solve problems encountered in conjugate design, such as tumor heterogeneity, poor circulation, low drug loading, low tumor uptake, and heterogenous expression of target antigens. This review highlights some important preclinical research on drug conjugates in recent years. We focus on three significant areas: improvement of antibody-drug conjugates, identification of new conjugate targets, and development of new types of drug conjugates, including nanotechnology. We close by highlighting the critical barriers to clinical translation and the open questions going forward. SIGNIFICANCE STATEMENT: The development of anticancer drug conjugates is now focused in three broad areas: improvements to existing antibody drug conjugates, identification of new targets, and development of new conjugate forms. This article focuses on the exciting preclinical studies in these three areas and advances in the technology that improves preclinical development.
Collapse
Affiliation(s)
- Yiming Jin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | | | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|