1
|
Lee J, Noh K, Lee S, Kim KH, Chung S, Lim H, Hwang M, Lee JH, Chung WS, Chang S, Lee SJ. Ganglioside GT1b prevents selective spinal synapse removal following peripheral nerve injury. EMBO Rep 2025:10.1038/s44319-025-00452-2. [PMID: 40307621 DOI: 10.1038/s44319-025-00452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
After peripheral nerve injury, the structure of the spinal cord is actively regulated by glial cells, contributing to the chronicity of neuropathic pain. However, the mechanism by which peripheral nerve injury leads to synaptic imbalance remains elusive. Here, we use a pH-reporter system and find that nerve injury triggers a reorganization of excitatory synapses that is influenced by the accumulation of the ganglioside GT1b at afferent terminals. GT1b acts as a protective signal against nerve injury-induced spinal synapse elimination. Inhibition of GT1b-synthesis increases glial phagocytosis of excitatory pre-synapses and reduces excitatory synapses post-injury. In vitro analyses reveal a positive correlation between GT1b accumulation and the frequency of pre-synaptic calcium activity, with GT1b-mediated suppression of glial phagocytosis occurring through SYK dephosphorylation. Our study highlights GT1b's pivotal role in preventing synapse elimination after nerve injury and offers new insight into the molecular underpinning of activity-dependent synaptic stability and glial phagocytosis.
Collapse
Affiliation(s)
- Jaesung Lee
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Physiology and Biomedical Sciences, Dementia Research Center, College of Medicine, Seoul National University, Seoul, 08226, Republic of Korea
| | - Kyungchul Noh
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Subeen Lee
- Interdisciplinary Program in Neuroscience, College of Natural Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kwang Hwan Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seohyun Chung
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyoungsub Lim
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minkyu Hwang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joon-Hyuk Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Dementia Research Center, College of Medicine, Seoul National University, Seoul, 08226, Republic of Korea.
| | - Sung Joong Lee
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Neuroscience, College of Natural Science, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Cheng X, Zhao L, Ke T, Wang X, Cao L, Liu S, He J, Rong W. Celecoxib ameliorates diabetic neuropathy by decreasing apoptosis and oxidative stress in dorsal root ganglion neurons via the miR-155/COX-2 axis. Exp Ther Med 2021; 22:825. [PMID: 34149871 PMCID: PMC8200812 DOI: 10.3892/etm.2021.10257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Celecoxib (CXB) is the only clinical cyclooxygenase-2 (COX-2) inhibitor. Oral administration of CXB in experimental diabetic mice effectively relieved the symptoms of diabetic neuropathy (DN); however, the molecular mechanism remains unclear. The present study aimed to investigate the potential molecular mechanisms of CXB in the treatment of DN. An in vitro cellular model of DN was produced by stimulating dorsal root ganglion (DRG) neurons with high glucose. Cell viability and apoptosis were assessed by Cell Counting Kit-8 assays and flow cytometry, respectively. Reactive oxygen species (ROS) kits, ELISA kits and western blotting were used to determine oxidative cellular damage. The expression level of microRNA (miR)-155 was analyzed by reverse transcription-quantitative PCR. The starBase database and dual-luciferase assays were performed to predict and determine the interaction between miR-155 and COX-2. Protein expression of neurotrophic factors, oxidative stress-related proteins and COX-2 were analyzed by western blotting. Incubation with high glucose led to a decrease in DRG neuron cell viability, facilitated apoptosis, downregulated NGF and BDNF expression, increased ROS and MDA generation and decreased SOD activity. Treatment with CXB significantly protected DRG neurons against high glucose-evoked damage. CXB promoted the expression of miR-155 and COX-2 was revealed to be a direct target of miR-155. Inhibition of COX-2 enhanced the protective effect of CXB on DRG neurons and that treatment with an miR-155 inhibitor partially rescued this effect. The present study demonstrated the involvement of the miR-155/COX-2 axis in the protective effect of CXB against high glucose-induced DN.
Collapse
Affiliation(s)
- Xiaoliang Cheng
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Ling Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Tingyu Ke
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Xi Wang
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Lijun Cao
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Shuyan Liu
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jie He
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Wei Rong
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
3
|
Czuba-Wojnilowicz E, Miellet S, Glab A, Viventi S, Cavalieri F, Cortez-Jugo C, Dottori M, Caruso F. Distribution of Particles in Human Stem Cell-Derived 3D Neuronal Cell Models: Effect of Particle Size, Charge, and Density. Biomacromolecules 2020; 21:3186-3196. [DOI: 10.1021/acs.biomac.0c00626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ewa Czuba-Wojnilowicz
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sara Miellet
- Illawarra Health and Medical Research Institute, Molecular Horizons, School of Medicine, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Agata Glab
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Serena Viventi
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Francesca Cavalieri
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, Molecular Horizons, School of Medicine, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
4
|
Ju A, Fernandez-Arroyo B, Wu Y, Jacky D, Beyeler A. Expression of serotonin 1A and 2A receptors in molecular- and projection-defined neurons of the mouse insular cortex. Mol Brain 2020; 13:99. [PMID: 32594910 PMCID: PMC7322839 DOI: 10.1186/s13041-020-00605-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/22/2020] [Indexed: 11/18/2022] Open
Abstract
The serotonin (5-HT) system is the target of multiple anxiolytics, including Buspirone, which is a partial agonist of the serotonin 1A receptor (5-HT1A). Similarly, ligands of the serotonin 2A receptor (5-HT2A) were shown to alter anxiety level. The 5-HT1A and 2A receptors are widely expressed across the brain, but the target region(s) underlying the influence of those receptors on anxiety remain unknown. Interestingly, recent studies in human and non-human primates have shown that the 5-HT1A and 5-HT2A binding potentials within the insular cortex (insula) are correlated to anxiety. As an initial step to define the function of 5-HT transmission in the insula, we quantified the proportion of specific neuronal populations of the insula expressing 5-HT1A or 5-HT2A. We analyzed seven neural populations, including three defined by a molecular marker (putative glutamate, GABA or parvalbumin), and four defined by their projections to different downstream targets. First, we found that more than 70% of putative glutamatergic neurons, and only 30% of GABAergic neurons express the 5-HT1A. Second, within insular projection neurons, 5-HT1A is highly expressed (75-80%) in the populations targeting one sub-nuclei of the amygdala (central or basolateral), or targeting the rostral or caudal sections of the lateral hypothalamus (LH). Similarly, 70% of putative glutamatergic neurons and only 30% of insular GABAergic neurons contain 5-HT2A. Finally, the 5-HT2A is present in a majority of insula-amygdala and insula-LH projection neurons (73-82%). These observations suggest that most glutamatergic neurons can respond to 5-HT through 5-HT1A or 5-HT2A in the insula, and that 5-HT directly affects a limited number of GABAergic neurons. This study defines a molecular and neuroanatomical map of the 5-HT system within the insular cortex, providing ground knowledge to identify the potential role of serotonergic modulation of selective insular populations in anxiety.
Collapse
Affiliation(s)
- Anes Ju
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, 146 Rue Léo Saignat, 33000, Bordeaux, France
| | - Beatriz Fernandez-Arroyo
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, 146 Rue Léo Saignat, 33000, Bordeaux, France
| | - Yifan Wu
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, 146 Rue Léo Saignat, 33000, Bordeaux, France
| | - Débora Jacky
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, 146 Rue Léo Saignat, 33000, Bordeaux, France
| | - Anna Beyeler
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, 146 Rue Léo Saignat, 33000, Bordeaux, France.
| |
Collapse
|