1
|
Prša P, Miller IP, Kramar B, Šuput D, Milisav I. Short-Term Fasting Induces Hepatocytes' Stress Response and Increases Their Resilience. Int J Mol Sci 2025; 26:999. [PMID: 39940770 PMCID: PMC11817670 DOI: 10.3390/ijms26030999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Fasting leads to a range of metabolic adaptations that have developed through evolution, as humans and other mammals have unequal access to food over the circadian cycle and are therefore adapted to fasting and feeding cycles. We have investigated the role of a single fasting episode in rats in triggering the stress response of liver hepatocytes. Since the stress responses were observed in both animals and isolated cells, we investigated whether the effects of the animal stressor could persist in the cells after isolation. By measuring staurosporine-induced apoptosis, stress signalling, and oxidative and antioxidant responses in hepatocytes from fasted and ad libitum-fed animals, we found that only fasting animals elicited a stress response that prevented caspase-9 activation and persisted in isolated cells. The addition of glucose oxidase, a hydrogen peroxide-producing enzyme, to the cells from ad libitum-fed animals also led to a stress response phenotype and prevented the activation of caspase-9. A single fasting episode thus leads to a stress response in normal hepatocytes, with hydrogen peroxide as a second messenger that reduces the initiation of apoptosis. This finding is the first characterisation of a mechanism underlying the effects of fasting and provides a basis for the development of methods to increase the resilience of cells. These findings need to be taken into account when interpreting the results obtained in animal and cell research models to account for the effects of overnight fasting used in many laboratory protocols. The research results also form the basis for the development of clinical applications to increase the resistance of transplants and to improve the fitness of hepatocytes under acute stress conditions in liver and some metabolic diseases.
Collapse
Affiliation(s)
- Patrik Prša
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
| | - Izak Patrik Miller
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
| | - Barbara Kramar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
| | - Dušan Šuput
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Pipiya VV, Gilazieva ZE, Issa SS, Rizvanov AA, Solovyeva VV. Comparison of primary and passaged tumor cell cultures and their application in personalized medicine. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:581-599. [PMID: 38966179 PMCID: PMC11220317 DOI: 10.37349/etat.2024.00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 07/06/2024] Open
Abstract
Passaged cell lines represent currently an integral component in various studies of malignant neoplasms. These cell lines are utilized for drug screening both in monolayer cultures or as part of three-dimensional (3D) tumor models. They can also be used to model the tumor microenvironment in vitro and in vivo through xenotransplantation into immunocompromised animals. However, immortalized cell lines have some limitations of their own. The homogeneity of cell line populations and the extensive passaging in monolayer systems make these models distant from the original disease. Recently, there has been a growing interest among scientists in the use of primary cell lines, as these are passaged directly from human tumor tissues. In this case, cells retain the morphological and functional characteristics of the tissue from which they were derived, an advantage often not observed in passaged cultures. This review highlights the advantages and limitations of passaged and primary cell cultures, their similarities and differences, as well as existing test systems that are based on primary and passaged cell cultures for drug screening purposes.
Collapse
Affiliation(s)
- Vladislava V. Pipiya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Zarema E. Gilazieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
3
|
Polidoro MA, Ferrari E, Marzorati S, Lleo A, Rasponi M. Experimental liver models: From cell culture techniques to microfluidic organs-on-chip. Liver Int 2021; 41:1744-1761. [PMID: 33966344 DOI: 10.1111/liv.14942] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
The liver is one of the most studied organs of the human body owing to its central role in xenobiotic and drug metabolism. In recent decades, extensive research has aimed at developing in vitro liver models able to mimic liver functions to study pathophysiological clues in high-throughput and reproducible environments. Two-dimensional (2D) models have been widely used in screening potential toxic compounds but have failed to accurately reproduce the three-dimensionality (3D) of the liver milieu. To overcome these limitations, improved 3D culture techniques have been developed to recapitulate the hepatic native microenvironment. These models focus on reproducing the liver architecture, representing both parenchymal and nonparenchymal cells, as well as cell interactions. More recently, Liver-on-Chip (LoC) models have been developed with the aim of providing physiological fluid flow and thus achieving essential hepatic functions. Given their unprecedented ability to recapitulate critical features of the liver cellular environments, LoC have been extensively adopted in pathophysiological modelling and currently represent a promising tool for tissue engineering and drug screening applications. In this review, we discuss the evolution of experimental liver models, from the ancient 2D hepatocyte models, widely used for liver toxicity screening, to 3D and LoC culture strategies adopted for mirroring a more physiological microenvironment for the study of liver diseases.
Collapse
Affiliation(s)
- Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Erika Ferrari
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Simona Marzorati
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
4
|
Garzón I, Jaimes-Parra BD, Pascual-Geler M, Cózar JM, Sánchez-Quevedo MDC, Mosquera-Pacheco MA, Sánchez-Montesinos I, Fernández-Valadés R, Campos F, Alaminos M. Biofabrication of a Tubular Model of Human Urothelial Mucosa Using Human Wharton Jelly Mesenchymal Stromal Cells. Polymers (Basel) 2021; 13:1568. [PMID: 34068343 PMCID: PMC8153323 DOI: 10.3390/polym13101568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
Several models of bioartificial human urothelial mucosa (UM) have been described recently. In this study, we generated novel tubularized UM substitutes using alternative sources of cells. Nanostructured fibrin-agarose biomaterials containing fibroblasts isolated from the human ureter were used as stroma substitutes. Then, human Wharton jelly mesenchymal stromal cells (HWJSC) were used to generate an epithelial-like layer on top. Three differentiation media were used for 7 and 14 days. Results showed that the biofabrication methods used here succeeded in generating a tubular structure consisting of a stromal substitute with a stratified epithelial-like layer on top, especially using a medium containing epithelial growth and differentiation factors (EM), although differentiation was not complete. At the functional level, UM substitutes were able to synthesize collagen fibers, proteoglycans and glycosaminoglycans, although the levels of control UM were not reached ex vivo. Epithelial differentiation was partially achieved, especially with EM after 14 days of development, with expression of keratins 7, 8, and 13 and pancytokeratin, desmoplakin, tight-junction protein-1, and uroplakin 2, although at lower levels than controls. These results confirm the partial urothelial differentiative potential of HWJSC and suggest that the biofabrication methods explored here were able to generate a potential substitute of the human UM for future clinical use.
Collapse
Affiliation(s)
- Ingrid Garzón
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (I.G.); (B.D.J.-P.); (M.d.C.S.-Q.); (M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
| | - Boris Damián Jaimes-Parra
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (I.G.); (B.D.J.-P.); (M.d.C.S.-Q.); (M.A.)
- Department of Histology, Faculty of Health Sciences, University Autónoma de Bucaramanga, 680003 Santander, Colombia
| | | | - José Manuel Cózar
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
- Division of Urology, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
| | - María del Carmen Sánchez-Quevedo
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (I.G.); (B.D.J.-P.); (M.d.C.S.-Q.); (M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
| | | | - Indalecio Sánchez-Montesinos
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
| | - Ricardo Fernández-Valadés
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
- Division of Pediatric Surgery, University Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (I.G.); (B.D.J.-P.); (M.d.C.S.-Q.); (M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (I.G.); (B.D.J.-P.); (M.d.C.S.-Q.); (M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
| |
Collapse
|
5
|
Li J, Zhang Y, Ye Y, Li D, Liu Y, Lee E, Zhang M, Dai X, Zhang X, Wang S, Zhang J, Jia W, Zen K, Vidal‐Puig A, Jiang X, Zhang C. Pancreatic β cells control glucose homeostasis via the secretion of exosomal miR-29 family. J Extracell Vesicles 2021; 10:e12055. [PMID: 33520119 PMCID: PMC7820156 DOI: 10.1002/jev2.12055] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/28/2020] [Accepted: 12/25/2020] [Indexed: 12/22/2022] Open
Abstract
Secreted microRNAs (miRNAs) are novel endocrine factors that play essential pathological and physiological roles. Here, we report that pancreatic β cell-released exosomal miR-29 family members (miR-29s) regulate hepatic insulin sensitivity and control glucose homeostasis. Cultured pancreatic islets were shown to secrete miR-29s in response to high levels of free fatty acids (FFAs) in vitro. In vivo, high levels of FFAs, promoted by either high-fat diet (HFD) feeding (physiopathological) or fasting (physiological), increased the secretion of miR-29s into plasma. Intravenous administration of exosomal miR-29s attenuated insulin sensitivity. The overexpression of miR-29s in the β cells of transgenic (TG) mice promoted the secretion of miR-29s and inhibited the insulin-mediated suppression of glucose output in the liver. We used selective overexpression of traceable heterogenous mutant miR-29s in β cells to confirm that islet-derived exosomal miR-29s target insulin signalling in the liver and blunt hepatic insulin sensitivity. Moreover, in vivo disruption of miR-29s expression in β cells reversed HFD-induced insulin resistance. In vitro experiments demonstrated that isolated exosomes enriched in miR-29s inhibited insulin signalling in the liver and increased hepatic glucose production. These results unveil a novel β cell-derived secretory signal-exosomal miR-29s-and provide insight into the roles of miR-29s in manipulating glucose homeostasis.
Collapse
Affiliation(s)
- Jing Li
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and TherapyChinese Academy of Medical Sciences Research Unit of Extracellular RNAState Key Laboratory of Pharmaceutical BiotechnologyJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute of Life Sciences (NAILS)Institute of Artificial Intelligence BiomedicineSchool of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Yujing Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and TherapyChinese Academy of Medical Sciences Research Unit of Extracellular RNAState Key Laboratory of Pharmaceutical BiotechnologyJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute of Life Sciences (NAILS)Institute of Artificial Intelligence BiomedicineSchool of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Yangyang Ye
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and TherapyChinese Academy of Medical Sciences Research Unit of Extracellular RNAState Key Laboratory of Pharmaceutical BiotechnologyJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute of Life Sciences (NAILS)Institute of Artificial Intelligence BiomedicineSchool of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Dameng Li
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and TherapyChinese Academy of Medical Sciences Research Unit of Extracellular RNAState Key Laboratory of Pharmaceutical BiotechnologyJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute of Life Sciences (NAILS)Institute of Artificial Intelligence BiomedicineSchool of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Yuchen Liu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and TherapyChinese Academy of Medical Sciences Research Unit of Extracellular RNAState Key Laboratory of Pharmaceutical BiotechnologyJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute of Life Sciences (NAILS)Institute of Artificial Intelligence BiomedicineSchool of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Eunyoung Lee
- Department of Medical PhysiologyGraduate School of MedicineChiba UniversityChibaJapan
- Wellcome‐MRC Institute of Metabolic ScienceAddenbrooke's HospitalUniversity of Cambridge Metabolic Research LaboratoriesCambridgeUK
| | - Mingliang Zhang
- Department of Endocrinology & MetabolismShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Diabetes InstituteShanghaiChina
| | - Xin Dai
- Department of GastroenterologyRuijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Xiang Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and TherapyChinese Academy of Medical Sciences Research Unit of Extracellular RNAState Key Laboratory of Pharmaceutical BiotechnologyJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute of Life Sciences (NAILS)Institute of Artificial Intelligence BiomedicineSchool of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Shibei Wang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and TherapyChinese Academy of Medical Sciences Research Unit of Extracellular RNAState Key Laboratory of Pharmaceutical BiotechnologyJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute of Life Sciences (NAILS)Institute of Artificial Intelligence BiomedicineSchool of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Junfeng Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and TherapyChinese Academy of Medical Sciences Research Unit of Extracellular RNAState Key Laboratory of Pharmaceutical BiotechnologyJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute of Life Sciences (NAILS)Institute of Artificial Intelligence BiomedicineSchool of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Weiping Jia
- Department of Endocrinology & MetabolismShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Diabetes InstituteShanghaiChina
| | - Ke Zen
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and TherapyChinese Academy of Medical Sciences Research Unit of Extracellular RNAState Key Laboratory of Pharmaceutical BiotechnologyJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute of Life Sciences (NAILS)Institute of Artificial Intelligence BiomedicineSchool of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Antonio Vidal‐Puig
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and TherapyChinese Academy of Medical Sciences Research Unit of Extracellular RNAState Key Laboratory of Pharmaceutical BiotechnologyJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute of Life Sciences (NAILS)Institute of Artificial Intelligence BiomedicineSchool of Life SciencesNanjing UniversityNanjingJiangsuChina
- Wellcome‐MRC Institute of Metabolic ScienceAddenbrooke's HospitalUniversity of Cambridge Metabolic Research LaboratoriesCambridgeUK
- Wellcome Sanger InstituteCambridgeUK
- Cambridge University Nanjing Centre of Technology and InnovationNanjingChina
| | - Xiaohong Jiang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and TherapyChinese Academy of Medical Sciences Research Unit of Extracellular RNAState Key Laboratory of Pharmaceutical BiotechnologyJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute of Life Sciences (NAILS)Institute of Artificial Intelligence BiomedicineSchool of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Chen‐Yu Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and TherapyChinese Academy of Medical Sciences Research Unit of Extracellular RNAState Key Laboratory of Pharmaceutical BiotechnologyJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute of Life Sciences (NAILS)Institute of Artificial Intelligence BiomedicineSchool of Life SciencesNanjing UniversityNanjingJiangsuChina
| |
Collapse
|
6
|
Chowdhury S, Ghosh S. Sources, Isolation and culture of stem cells? Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Forsythe S, Pu T, Skardal A. Using organoid models to predict chemotherapy efficacy: the future of precision oncology? EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1685868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Steven Forsythe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Tracey Pu
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest School of Medicine, Bowman Gray Center, Winston-Salem, NC, USA
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
- Wake Forest School of Medicine, Bowman Gray Center, Winston-Salem, NC, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
- Department of Molecular Medicine and Translational Science, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| |
Collapse
|
8
|
Beneficial Role of ROS in Cell Survival: Moderate Increases in H 2O 2 Production Induced by Hepatocyte Isolation Mediate Stress Adaptation and Enhanced Survival. Antioxidants (Basel) 2019; 8:antiox8100434. [PMID: 31581418 PMCID: PMC6826461 DOI: 10.3390/antiox8100434] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/07/2019] [Accepted: 09/17/2019] [Indexed: 01/06/2023] Open
Abstract
High levels of reactive oxygen species (ROS) can lead to impairment of cell structure, biomolecules' loss of function and cell death and are associated with liver diseases. Cells that survive increased ROS often undergo malignant transformation. Many cancer cells tolerate high levels of ROS. Here we report a transiently increased production of H2O2 and concomitant upregulation of antioxidative enzymes triggered by hepatocyte isolation; the H2O2 levels revert in about two days in culture. Three-day survival rate of the isolated cells in the presence of 2.5-fold increase of H2O2 is almost 80%. Apoptosis activation through the mitochondrial pathway is meanwhile reduced by inhibition of caspase-9 triggering. This reduction depends on the amount of H2O2 production, as decreased production of H2O2 in the presence of an antioxidant results in increased apoptosis triggering. These stress adaptations do not influence urea production, which is unchanged throughout the normal and stress adapted phases. We conclude that hepatocytes' stress adaptation is mediated by increased ROS production. In this case, high ROS improve cell survival.
Collapse
|
9
|
Ma X, Yu C, Wang P, Xu W, Wan X, Lai CSE, Liu J, Koroleva-Maharajh A, Chen S. Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture. Biomaterials 2018; 185:310-321. [PMID: 30265900 PMCID: PMC6186504 DOI: 10.1016/j.biomaterials.2018.09.026] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/22/2018] [Accepted: 09/16/2018] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC), as the fifth most common malignant cancer, develops and progresses mostly in a cirrhotic liver where stiff nodules are separated by fibrous bands. Scaffolds that can provide a 3D cirrhotic mechanical environment with complex native composition and biomimetic architecture are necessary for the development of better predictive tissue models. Here, we developed photocrosslinkable liver decellularized extracellular matrix (dECM) and a rapid light-based 3D bioprinting process to pattern liver dECM with tailorable mechanical properties to serve as a platform for HCC progression study. 3D bioprinted liver dECM scaffolds were able to stably recapitulate the clinically relevant mechanical properties of cirrhotic liver tissue. When encapsulated in dECM scaffolds with cirrhotic stiffness, HepG2 cells demonstrated reduced growth along with an upregulation of invasion markers compared to healthy controls. Moreover, an engineered cancer tissue platform possessing tissue-scale organization and distinct regional stiffness enabled the visualization of HepG2 stromal invasion from the nodule with cirrhotic stiffness. This work demonstrates a significant advancement in rapid 3D patterning of complex ECM biomaterials with biomimetic architecture and tunable mechanical properties for in vitro disease modeling.
Collapse
Affiliation(s)
- Xuanyi Ma
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Claire Yu
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Pengrui Wang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Weizhe Xu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Xueyi Wan
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Cheuk Sun Edwin Lai
- Chemical Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Justin Liu
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anna Koroleva-Maharajh
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shaochen Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA; Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA; Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA; Chemical Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
10
|
Miserocchi G, Mercatali L, Liverani C, De Vita A, Spadazzi C, Pieri F, Bongiovanni A, Recine F, Amadori D, Ibrahim T. Management and potentialities of primary cancer cultures in preclinical and translational studies. J Transl Med 2017; 15:229. [PMID: 29116016 PMCID: PMC5688825 DOI: 10.1186/s12967-017-1328-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
The use of patient-derived primary cell cultures in cancer preclinical assays has increased in recent years. The management of resected tumor tissue remains complex and a number of parameters must be respected to obtain complete sample digestion and optimal vitality yield. We provide an overview of the benefits of correct primary cell culture management using different preclinical methodologies, and describe the pros and cons of this model with respect to other kinds of samples. One important advantage is that the heterogeneity of the cell populations composing a primary culture partially reproduces the tumor microenvironment and crosstalk between malignant and healthy cells, neither of which is possible with cell lines. Moreover, the use of patient-derived specimens in innovative preclinical technologies, such as 3D systems or bioreactors, represents an important opportunity to improve the translational value of the results obtained. In vivo models could further our understanding of the crosstalk between tumor and other tissues as they enable us to observe the systemic and biological interactions of a complete organism. Although engineered mice are the most common model used in this setting, the zebrafish (Danio rerio) species has recently been recognized as an innovative experimental system. In fact, the transparent body and incomplete immune system of zebrafish embryos are especially useful for evaluating patient-derived tumor tissue interactions in healthy hosts. In conclusion, ex vivo systems represent an important tool for cancer research, but samples require correct manipulation to maximize their translational value.
Collapse
Affiliation(s)
- Giacomo Miserocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy.
| | - Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Federica Pieri
- Pathology Unit, Morgagni-Pierantoni Hospital, Via Carlo Forlanini 34, 47121, Forlì, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Federica Recine
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Dino Amadori
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| |
Collapse
|
11
|
Feng Y, Feng YM, Lu C, Han Y, Liu L, Sun X, Dai J, Xia X. Tree shrew, a potential animal model for hepatitis C, supports the infection and replication of HCV in vitro and in vivo. J Gen Virol 2017; 98:2069-2078. [PMID: 28758632 PMCID: PMC5656785 DOI: 10.1099/jgv.0.000869] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The tree shrew (Tupaia belangeri chinensis), a small animal widely distributed in Southeast Asia and southwest China, has the potential to be developed as an animal model for hepatitis C. To determine the susceptibility of the tree shrew to hepatitis C virus (HCV) infection in vitro and in vivo, a well-established HCV, produced from the J6/JFH1-Huh7.5.1 culture system, was used to infect cultured primary tupaia hepatocytes (PTHs) and tree shrews. The in vitro results showed that HCV genomic RNA and HCV-specific nonstructural protein 5A (NS5A) could be detected in the PTH cell culture from days 3-15 post-infection, although the viral load was lower than that observed in Huh7.5.1 cell culture. The occurrence of five sense mutations [S391A, G397A, L402F and M405T in the hypervariable region 1 (HVR1) of envelope glycoprotein 2 and I2750M in NS5B] suggested that HCV undergoes genetic evolution during culture. Fourteen of the 30 experimental tree shrews (46.7 %) were found to be infected, although the HCV viremia was intermittent in vivo. A positive test for HCV RNA in liver tissue provided stronger evidence for HCV infection and replication in tree shrews. The results of an immunohistochemistry assay also demonstrated the presence of four HCV-specific proteins (Core, E2, NS3/4 and NS5A) in the hepatocytes of infected tree shrews. The pathological changes observed in the liver tissue of infected tree shrews could be considered to be representative symptoms of mild hepatitis. These results revealed that the tree shrew can be used as an animal model supporting the infection and replication of HCV in vitro and in vivo.
Collapse
Affiliation(s)
- Yue Feng
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Yue-Mei Feng
- Academy of Public Health, Kunming Medical University, Kunming, Yunnan 650500, PR China
| | - Caixia Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan 650118, PR China
| | - Yuanyuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan 650118, PR China
| | - Li Liu
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Xiaomei Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan 650118, PR China
| | - Jiejie Dai
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan 650118, PR China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| |
Collapse
|
12
|
Nakamura K, Aizawa K, Aung KH, Yamauchi J, Tanoue A. Zebularine upregulates expression of CYP genes through inhibition of DNMT1 and PKR in HepG2 cells. Sci Rep 2017; 7:41093. [PMID: 28112215 PMCID: PMC5253741 DOI: 10.1038/srep41093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/14/2016] [Indexed: 01/22/2023] Open
Abstract
Drug-induced hepatotoxicity is one of the major reasons cited for drug withdrawal. Therefore, it is of extreme importance to detect human hepatotoxic candidates as early as possible during the drug development process. In this study, we aimed to enhance hepatocyte functions such as CYP gene expression in HepG2 cells, one of the most extensively used cell lines in evaluating hepatotoxicity of chemicals and drugs. We found that zebularine, a potent inhibitor of DNA methylation, remarkably upregulates the expression of CYP genes in HepG2 cells. In addition, we revealed that the upregulation of CYP gene expression by zebularine was mediated through the inhibition of both DNA methyltransferase 1 (DNMT1) and double-stranded RNA-dependent protein kinase (PKR). Furthermore, HepG2 cells treated with zebularine were more sensitive than control cells to drug toxicity. Taken together, our results show that zebularine may make HepG2 cells high-functioning and thus could be useful for evaluating the hepatotoxicity of chemicals and drugs speedily and accurately in in-vitro systems. The finding that zebularine upregulates CYP gene expression through DNMT1 and PKR modulation sheds light on the mechanisms controlling hepatocyte function and thus may aid in the development of new in-vitro systems using high-functioning hepatocytes.
Collapse
Affiliation(s)
- Kazuaki Nakamura
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Kazuko Aizawa
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Kyaw Htet Aung
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Akito Tanoue
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| |
Collapse
|
13
|
Solanas E, Sostres C, Serrablo A, García-Gil A, García JJ, Aranguren FJ, Jiménez P, Hughes RD, Serrano MT. Effect of Dimethyl Sulfoxide and Melatonin on the Isolation of Human Primary Hepatocytes. Cells Tissues Organs 2015; 200:316-25. [DOI: 10.1159/000433521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 11/19/2022] Open
|
14
|
Svejda B, Kidd M, Timberlake A, Harry K, Kazberouk A, Schimmack S, Lawrence B, Pfragner R, Modlin IM. Serotonin and the 5-HT7 receptor: the link between hepatocytes, IGF-1 and small intestinal neuroendocrine tumors. Cancer Sci 2013; 104:844-55. [PMID: 23578138 DOI: 10.1111/cas.12174] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/26/2013] [Accepted: 03/30/2013] [Indexed: 12/14/2022] Open
Abstract
Platelet-derived serotonin (5-HT) is involved in liver regeneration. The liver is also the metastatic site for malignant enterochromaffin (EC) cell "carcinoid" (neuroendocrine) neoplasms, the principal cellular source of 5-HT. We hypothesized that 5-HT produced by metastatic EC cells played a role in the hepatic tumor-microenvironment principally via 5-HT₇ receptor-mediated activation of hepatocyte IGF-1 synthesis and secretion. Using isolated rat hepatocytes, we evaluated 5-HT₇ receptor expression (using PCR, sequencing and western blot). ELISA, cell transfection and western blots delineated 5-HT-mediated signaling pathways (pCREB, AKT and ERK). IGF-1 synthesis/secretion was evaluated using QPCR and ELISA. IGF-1 was tested on small intestinal neuroendocrine neoplasm proliferation, while IGF-1 production and 5-HT₇ expression were examined in an in vivo SCID metastasis model. Our results demonstrated evidence for a functional 5-HT₇ receptor. 5-HT activated cAMP/PKA activity, pCREB (130-205%, P < 0.05) and pERK/pAKT (1.2-1.75, P < 0.05). Signaling was reversed by the 5-HT₇ receptor antagonist SB269970. IGF-1 significantly stimulated proliferation of two small intestinal neuroendocrine neoplasm cell lines (EC₅₀: 7-70 pg/mL) and could be reversed by the small molecule inhibitor BMS-754807. IGF-1 and 5-HT were elevated (40-300×) in peri-tumoral hepatic tissue in nude mice, while 5-HT₇ was increased fourfold compared to sham-operated animals. We conclude that hepatocytes express a cAMP-coupled 5-HT₇ receptor, which, at elevated 5-HT concentrations that occur in liver metastases, signals via CREB/AKT and is linked to IGF-1 synthesis and secretion. Because IGF-1 regulates NEN proliferation, identification of a role for 5-HT₇ in the hepatic metastatic tumor microenvironment suggests the potential for novel therapeutic strategies for amine-producing mid-gut tumors.
Collapse
Affiliation(s)
- Bernhard Svejda
- Gastrointestinal Pathobiology Research Group, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Palakkan AA, Hay DC, Anil Kumar PR, Kumary TV, Ross JA. Liver tissue engineering and cell sources: issues and challenges. Liver Int 2013; 33:666-76. [PMID: 23490085 DOI: 10.1111/liv.12134] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/27/2013] [Indexed: 02/13/2023]
Abstract
Liver diseases are of major concern as they now account for millions of deaths annually. As a result of the increased incidence of liver disease, many patients die on the transplant waiting list, before a donor organ becomes available. To meet the huge demand for donor liver, alternative approaches using liver tissue engineering principles are being actively pursued. Even though adult hepatocytes, the primary cells of the liver are most preferred for tissue engineering of liver, their limited availability, isolation from diseased organs, lack of in vitro propagation and deterioration of function acts as a major drawback to their use. Various approaches have been taken to prevent the functional deterioration of hepatocytes including the provision of an adequate extracellular matrix and co-culture with non-parenchymal cells of liver. Great progress has also been made to differentiate human stem cells to hepatocytes and to use them for liver tissue engineering applications. This review provides an overview of recent challenges, issues and cell sources with regard to liver tissue engineering.
Collapse
Affiliation(s)
- Anwar A Palakkan
- Tissue Injury and Repair Group, University of Edinburgh - MRC Centre for Regenerative Medicine, Edinburgh, UK
| | | | | | | | | |
Collapse
|
16
|
Mitra A, Mishra L, Li S. Technologies for deriving primary tumor cells for use in personalized cancer therapy. Trends Biotechnol 2013; 31:347-54. [PMID: 23597659 DOI: 10.1016/j.tibtech.2013.03.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/06/2013] [Accepted: 03/14/2013] [Indexed: 01/02/2023]
Abstract
For decades, immortal cancer cell lines have constituted an accessible, easily usable set of biological models to investigate cancer biology and explore the potential efficacy of anticancer drugs. However, numerous studies have suggested that these cell lines poorly represent the diversity, heterogeneity, and drug-resistant tumors occurring in patients. The derivation and short-term culture of primary cells from solid tumors have thus gained significant importance in personalized cancer therapy. This review focuses on our current understanding and the pros and cons of different methods for primary tumor cell culture. Furthermore, various culture matrices such as biomimetic scaffolds and chemically defined media supplemented with essential nutrients, have been prepared for different tissues. These well-characterized primary tumor cells redefine cancer therapies with high translational relevance.
Collapse
Affiliation(s)
- Abhisek Mitra
- Department of Pediatrics, Unit 853, The University of Texas MD Anderson Cancer Center, 1515 Holocombe Blvd, Houston, Texas 77030, USA
| | | | | |
Collapse
|
17
|
Fakunle ES, Loring JF. Ethnically diverse pluripotent stem cells for drug development. Trends Mol Med 2012; 18:709-16. [DOI: 10.1016/j.molmed.2012.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/18/2012] [Indexed: 01/16/2023]
|
18
|
Rogée S, Talbot N, Caperna T, Bouquet J, Barnaud E, Pavio N. New models of hepatitis E virus replication in human and porcine hepatocyte cell lines. J Gen Virol 2012; 94:549-558. [PMID: 23175242 DOI: 10.1099/vir.0.049858-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus (HEV) causes acute, enterically transmitted hepatitis in human. It is associated with large epidemics in tropical and subtropical regions where it is endemic or with sporadic cases in non-endemic regions. Unlike other hepatitis viruses, HEV has several animal reservoirs. Phylogenetic studies on HEV human and animal sequences, and the identification of cases of direct transmission from animal to human strongly suggest that HEV is a zoonotic agent. The lack of efficient cell culture models limits studies on molecular and cellular aspects of HEV infection and species barrier crossing. The present study reports on the development of two new in vitro models of HEV replication using a human hepatoma-derived cell line, HepaRG, and a porcine embryonic stem cell-derived cell line, PICM-19. These two cell lines have morphological and functional properties similar to primary hepatocytes. These in vitro culture systems support HEV replication and release of encapsidated RNA. These new models represent a powerful tool for studying the viral replication cycle, species barrier crossing and virulence factors.
Collapse
Affiliation(s)
- Sophie Rogée
- UMR 1161 Virology, Ecole Nationale Vétérinaire d'Alfort, 94706 Maisons-Alfort, France.,UMR 1161 Virology, INRA, 94706 Maisons-Alfort, France.,UMR 1161 Virology, ANSES, Laboratoire de Santé Animale, 94706 Maisons-Alfort, France
| | - Neil Talbot
- USDA, ARS, Animal and Natural Resources Institute, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Thomas Caperna
- USDA, ARS, Animal and Natural Resources Institute, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Jérôme Bouquet
- UMR 1161 Virology, Ecole Nationale Vétérinaire d'Alfort, 94706 Maisons-Alfort, France.,UMR 1161 Virology, INRA, 94706 Maisons-Alfort, France.,UMR 1161 Virology, ANSES, Laboratoire de Santé Animale, 94706 Maisons-Alfort, France
| | - Elodie Barnaud
- UMR 1161 Virology, Ecole Nationale Vétérinaire d'Alfort, 94706 Maisons-Alfort, France.,UMR 1161 Virology, INRA, 94706 Maisons-Alfort, France.,UMR 1161 Virology, ANSES, Laboratoire de Santé Animale, 94706 Maisons-Alfort, France
| | - Nicole Pavio
- UMR 1161 Virology, Ecole Nationale Vétérinaire d'Alfort, 94706 Maisons-Alfort, France.,UMR 1161 Virology, INRA, 94706 Maisons-Alfort, France.,UMR 1161 Virology, ANSES, Laboratoire de Santé Animale, 94706 Maisons-Alfort, France
| |
Collapse
|
19
|
Uchea C, Sarda S, Schulz-Utermoehl T, Owen S, Chipman KJ. In vitromodels of xenobiotic metabolism in trout for use in environmental bioaccumulation studies. Xenobiotica 2012; 43:421-31. [DOI: 10.3109/00498254.2012.730644] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Hozumi K, Sasaki A, Yamada Y, Otagiri D, Kobayashi K, Fujimori C, Katagiri F, Kikkawa Y, Nomizu M. Reconstitution of laminin-111 biological activity using multiple peptide coupled to chitosan scaffolds. Biomaterials 2012; 33:4241-50. [DOI: 10.1016/j.biomaterials.2012.02.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 02/14/2012] [Indexed: 01/15/2023]
|
21
|
Nakamura K, Kato N, Aizawa K, Mizutani R, Yamauchi J, Tanoue A. Expression of albumin and cytochrome P450 enzymes in HepG2 cells cultured with a nanotechnology-based culture plate with microfabricated scaffold. J Toxicol Sci 2012; 36:625-33. [PMID: 22008537 DOI: 10.2131/jts.36.625] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Nanoculture plate (NCP) is a recently developed plate which essentially consists of a textured surface with specific characteristics that induce spheroid formation: microfabrications with a micro-square pattern on the culture surface. The NCP can be used to generate uniform adhesive spheroids of cancer cell lines using conventional techniques without the need of any animal compounds. In this study, we assessed the performance of human hepatoma cell line HepG2 cells cultured with an NCP to evaluate the effects of the NCP on their hepatocyte-specific functions. The NCP facilitated the formation of three-dimensional (3D) HepG2 cell architecture. HepG2 cells cultured with an NCP exhibited enhanced mRNA expression levels of albumin and cytochrome P450 (CYP) enzymes compared to those cultured with a two-dimensional (2D) conventional plate. The expression levels of two specific liver-enriched transcription factors, hepatocyte nuclear factor 4α (HNF4α) and CCAAT/enhancer binding protein α (C/EBPα), were higher in HepG2 cells grown with the NCP than those in HepG2 cells grown with conventional plates before albumin and CYP enzymes expression levels were increased. The inducibility of CYP1A2 and CYP3A4 mRNA following exposure to inducers in HepG2 cells cultured with an NCP was comparable to that in HepG2 cells cultured with conventional plates, while the expression levels of CYP1A2 and CYP3A4 mRNA following exposure to inducers were higher when using an NCP than when using conventional plates. These results suggest that the use of an NCP enhances the hepatocyte-specific functions of HepG2 cells, such as drug-metabolizing enzyme expression, making the NCP/HepG2 system a useful tool for evaluating drug metabolism in vitro.
Collapse
Affiliation(s)
- Kazuaki Nakamura
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Matrigel-embedded 3D culture of Huh-7 cells as a hepatocyte-like polarized system to study hepatitis C virus cycle. Virology 2012; 425:31-9. [PMID: 22280897 DOI: 10.1016/j.virol.2011.12.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/11/2011] [Accepted: 12/31/2011] [Indexed: 12/26/2022]
Abstract
Hepatocytes are highly polarized cells where intercellular junctions, including tight junctions (TJs), determine the polarity. Recently, the TJ-associated proteins claudin-1 and occludin have been implicated in hepatitis C virus (HCV) entry and spread. Nevertheless, cell line-based experimental systems that exhibit hepatocyte-like polarity and permit robust infection and virion production are not currently available. Thus, we sought to determine whether cell line-based, Matrigel-embedded cultures could be used to study hepatitis C virus (HCV) infection and virion production in a context of hepatocyte-like polarized cells. In contrast to standard bidimensional cultures, Matrigel-cultured Huh-7 cells adopted hepatocyte polarization features forming a continuous network of functional proto-bile canaliculi structures. These 3D cultures supported HCV infection by JFH-1 virus and produced infective viral particles which shifted towards lower densities with higher associated specific infectivity. In conclusion, our findings describe a novel use of Matrigel to study the entire HCV cycle in a more relevant context.
Collapse
|
23
|
Liu X, Ory V, Chapman S, Yuan H, Albanese C, Kallakury B, Timofeeva OA, Nealon C, Dakic A, Simic V, Haddad BR, Rhim JS, Dritschilo A, Riegel A, McBride A, Schlegel R. ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:599-607. [PMID: 22189618 DOI: 10.1016/j.ajpath.2011.10.036] [Citation(s) in RCA: 599] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/06/2011] [Accepted: 10/11/2011] [Indexed: 12/20/2022]
Abstract
We demonstrate that a Rho kinase inhibitor (Y-27632), in combination with fibroblast feeder cells, induces normal and tumor epithelial cells from many tissues to proliferate indefinitely in vitro, without transduction of exogenous viral or cellular genes. Primary prostate and mammary cells, for example, are reprogrammed toward a basaloid, stem-like phenotype and form well-organized prostaspheres and mammospheres in Matrigel. However, in contrast to the selection of rare stem-like cells, the described growth conditions can generate 2 × 10(6) cells in 5 to 6 days from needle biopsies, and can generate cultures from cryopreserved tissue and from fewer than four viable cells. Continued cell proliferation is dependent on both feeder cells and Y-27632, and the conditionally reprogrammed cells (CRCs) retain a normal karyotype and remain nontumorigenic. This technique also efficiently establishes cell cultures from human and rodent tumors. For example, CRCs established from human prostate adenocarcinoma displayed instability of chromosome 13, proliferated abnormally in Matrigel, and formed tumors in mice with severe combined immunodeficiency. The ability to rapidly generate many tumor cells from small biopsy specimens and frozen tissue provides significant opportunities for cell-based diagnostics and therapeutics (including chemosensitivity testing) and greatly expands the value of biobanking. In addition, the CRC method allows for the genetic manipulation of epithelial cells ex vivo and their subsequent evaluation in vivo in the same host.
Collapse
Affiliation(s)
- Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Epidermal growth factor improves lentivirus vector gene transfer into primary mouse hepatocytes. Gene Ther 2011; 19:425-34. [PMID: 21850050 DOI: 10.1038/gt.2011.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Partial resistance of primary mouse hepatocytes to lentiviral (LV) vector transduction poses a challenge for ex vivo gene therapy protocols in models of monogenetic liver disease. We thus sought to optimize ex vivo LV gene transfer while preserving the hepatocyte integrity for subsequent transplantation into recipient animals. We found that culture media supplemented with epidermal growth factor (EGF) and, to a lesser extent, hepatocyte growth factor (HGF) markedly improved transduction efficacy at various multiplicities of infection. Up to 87% of primary hepatocytes were transduced in the presence of 10 ng EGF, compared with ~30% in standard culture medium (SCMs). The increased number of transgene-expressing cells correlated with increased nuclear import and more integrated pro-viral copies per cell. Higher LV transduction efficacy was not associated with proliferation, as transduction capacity of gammaretroviral vectors remained low (<1%). Finally, we developed an LV transduction protocol for short-term (maximum 24 h) adherent hepatocyte cultures. LV-transduced hepatocytes showed liver repopulation capacities similar to freshly isolated hepatocytes in alb-uPA mouse recipients. Our findings highlight the importance of EGF for efficient LV transduction of primary hepatocytes in culture and should facilitate studies of LV gene transfer in mouse models of monogenetic liver disease.
Collapse
|
25
|
Schutte M, Fox B, Baradez MO, Devonshire A, Minguez J, Bokhari M, Przyborski S, Marshall D. Rat primary hepatocytes show enhanced performance and sensitivity to acetaminophen during three-dimensional culture on a polystyrene scaffold designed for routine use. Assay Drug Dev Technol 2011; 9:475-86. [PMID: 21675871 DOI: 10.1089/adt.2011.0371] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The in vitro evaluation of hepatotoxicity is an essential stage in the research and development of new pharmaceuticals as the liver is one of the most commonly impacted organs during preclinical toxicity studies. Fresh primary hepatocytes in monolayer culture are the most commonly used in vitro model of the liver but often exhibit limited viability and/or reduction or loss of important liver-specific functions. These limitations could potentially be overcome using three-dimensional (3D) culture systems, but their experimental nature and limited use in liver toxicity screening and drug metabolism has impaired their uptake into commercial screening programs. In this study we use a commercially available polystyrene scaffold developed for routine 3D cell culture to maintain primary rat hepatocytes for use in metabolism and toxicity studies over 72 h. We show that primary hepatocytes retain their natural cuboidal morphology with significantly higher viability (>74%) than cells grown in monolayer culture (maximum of 57%). Hepatocytes in the 3D scaffolds exhibit differential expression of genes associated with phase I, II, and III drug metabolism under basal conditions compared with monolayer culture and can be induced to stably express significantly higher levels of the cytochrome-P450 enzymes 1A2, 2B1, and 3A2 over 48 h. In toxicity studies the hepatocytes in the 3D scaffolds also show increased sensitivity to the model toxicant acetaminophen. These improvements over monolayer culture and the availability of this new easy to use 3D scaffold system could facilitate the uptake of 3D technologies into routine drug screening programs.
Collapse
Affiliation(s)
- Maaike Schutte
- Department of Molecular and Cell Biology, LGC, Queens Road, Teddington, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Au AY, Hasenwinkel JM, Frondoza CG. Silybin inhibits interleukin-1β-induced production of pro-inflammatory mediators in canine hepatocyte cultures. J Vet Pharmacol Ther 2011; 34:120-9. [PMID: 21395602 DOI: 10.1111/j.1365-2885.2010.01200.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatocytes are highly susceptible to cytokine stimulation and are fundamental to liver function. We established primary canine hepatocyte cultures to study effects of anti-inflammatory agents with hepatoprotective properties. Hepatocyte cultures were incubated with control media alone, silybin (SB), or the more bioavailable silybin-phosphatidylcholine complex (SPC), followed by activation with interleukin-1 beta (IL-1β; 10 ng/mL). Inflammatory response was measured by prostaglandin E2 (PGE(2) ), interleukin-8 (IL-8), and monocyte chemotactic protein-1 (MCP-1) production and also nuclear factor-kappa B (NF-κB) translocation. Hepatocyte cultures continued production of the phenotypic marker albumin for more than 7 days in culture. IL-1β exposure increased PGE(2) , IL-8, and MCP-1 production, which was paralleled by NF-κB translocation from the cytoplasm to the nucleus. Pretreatment with SB and SPC significantly inhibited IL-1β-induced production of pro-inflammatory markers and attenuated NF-κB nuclear translocation. We demonstrate for the first time that primary canine hepatocyte cultures can be maintained in culture without phenotypic loss. The observation that hepatocyte cultures respond to pro-inflammatory IL-1β activation indicates hepatocytes as primary cellular targets of extrinsic IL-1β. The ability of SB and SPC to inhibit hepatocyte culture activation by IL-1β reinforces the notion of their hepatoprotective effects. Our primary canine hepatocyte culture model facilitates identification of hepatoprotective agents and their mechanism of action.
Collapse
Affiliation(s)
- A Y Au
- Research and Development, Nutramax Laboratories, Inc., Edgewood, MD 21040, USA
| | | | | |
Collapse
|
27
|
Takeba Y, Matsumoto N, Takenoshita-Nakaya S, Harimoto Y, Kumai T, Kinoshita Y, Nakano H, Ohtsubo T, Kobayashi S. Comparative study of culture conditions for maintaining CYP3A4 and ATP-binding cassette transporters activity in primary cultured human hepatocytes. J Pharmacol Sci 2011; 115:516-524. [PMID: 21436605 DOI: 10.1254/jphs.10215fp] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The aim of this study was to determine suitable culture conditions for maintaining the activity of cytochrome p450 (CYP) 3A4 and drug transporters in primary cultured human hepatocytes. Human hepatocytes were isolated using the two-step collagenase perfusion technique and were cultured with four different media, serum-free William's E medium (serum-free WEM), WEM containing fetal calf serum (FCS-WEM), WEM with human serum (HS-WEM), and Lanford's medium. The albumin levels were maintained for 7 days in hepatocytes. Although CYP3A4 mRNA levels gradually decreased from 3 days, CYP3A4 and hepatocyte nuclear factor-4α alpha protein levels and activities were maintained for 7 days in hepatocytes cultured with serum-free WEM and Lanford's but not in those with FCS-WEM and HS-WEM. Furthermore, CYP3A4 protein levels were significantly increased by the addition of rifampicin and dexamethasone to the culture media, indicating that the induction potential was maintained. The protein levels of P-glycoprotein, multi-drug-resistance-2, and breast cancer-resistance protein were maintained for 7 days in all media. Serum-free WEM and Lanford's also maintained protein levels of CYP2C19, CYP2D6, and organic anion transporter polypeptide in the hepatocytes. Serum-free WEM and Lanford's may be appropriate culture media for maintaining CYP3A4 and drug transporter protein levels in primary cultured hepatocytes.
Collapse
Affiliation(s)
- Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaski, Kanagawa 216-8511, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Meng Q. Three-dimensional culture of hepatocytes for prediction of drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2010; 6:733-46. [DOI: 10.1517/17425251003674356] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Development of a quantitative 96-well method to image glycogen storage in primary rat hepatocytes. Mol Cell Biochem 2010; 341:73-8. [PMID: 20333445 DOI: 10.1007/s11010-010-0438-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 03/11/2010] [Indexed: 12/25/2022]
Abstract
Within the liver, hormonal control of glycogen metabolism allows for rapid release and uptake of glucose from the circulation, providing a reserve of glucose that can be utilised by other organs. Traditionally, cellular glycogen storage has been detected using Periodic acid Schiff (PAS) staining of histopathology samples or a biochemical assay. Colorimetric measurement of glycogen content using PAS staining is hard to quantify whilst biochemical techniques give limited information about events such as cytotoxicity or allow analysis of hepatic heterogeneity. Here, we describe the development of an imaging based method to quantify glycogen storage in 96-well cultures of primary rat hepatocytes using the inherent fluorescence properties of the Schiff reagent. PAS-stained hepatocytes were imaged using an automated fluorescent microscope, with the amount of glycogen present in each cell being quantified. Using this technique, we found an increase in glycogen storage in response to insulin (EC50 = 0.31 nM) that was in agreement with that determined using biochemical quantification (EC50 = 0.32 nM). Furthermore, a dose dependent increase in glycogen storage was also seen in response to glycogen synthase kinase inhibitors and glycogen phosphorylase inhibitors. This technique allows rapid assessment of cellular glycogen storage in response to hormones and small molecule inhibitors.
Collapse
|
30
|
Sung JH, Kam C, Shuler ML. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. LAB ON A CHIP 2010; 10:446-55. [PMID: 20126684 DOI: 10.1039/b917763a] [Citation(s) in RCA: 346] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Drug discovery is often impeded by the poor predictability of in vitro assays for drug toxicity. One primary reason for this observation is the inability to reproduce the pharmacokinetics (PK) of drugs in vitro. Mathematical models to predict the pharmacokinetics-pharmacodynamics (PK-PD) of drugs are available, but have several limitations, preventing broader application. A microscale cell culture analog (microCCA) is a microfluidic device based on a PK-PD model, where multiple cell culture chambers are connected with fluidic channels to mimic multi-organ interactions and test drug toxicity in a pharmacokinetic-based manner. One critical issue with microfluidics, including the microCCA, is that specialized techniques are required for assembly and operation, limiting its usability to non-experts. Here, we describe a novel design, with enhanced usability while allowing hydrogel-cell cultures of multiple types. Gravity-induced flow enables pumpless operation and prevents bubble formation. Three cell lines representing the liver, tumor and marrow were cultured in the three-chamber microCCA to test the toxicity of an anticancer drug, 5-fluorouracil. The result was analyzed with a PK-PD model of the device, and compared with the result in static conditions. Each cell type exhibited differential responses to 5-FU, and the responses in the microfluidic environment were different from those in static environment. Combination of a mathematical modeling approach (PK-PD modeling) and an in vitro experimental approach (microCCA) provides a novel platform with improved predictability for testing drug toxicity and can help researchers gain a better insight into the drug's mechanism of action.
Collapse
Affiliation(s)
- Jong Hwan Sung
- Chemical and Biomolecular Engineering, Cornell University, USA
| | | | | |
Collapse
|
31
|
Croyle MA. Long-term virus-induced alterations of CYP3A-mediated drug metabolism: a look at the virology, immunology and molecular biology of a multi-faceted problem. Expert Opin Drug Metab Toxicol 2009; 5:1189-211. [PMID: 19732028 DOI: 10.1517/17425250903136748] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Virus infections are on the rise. Although the first description of CYP expression during virus infection was recorded 50 years ago, mechanistic studies of this phenomenon only began to appear in the last decade due to breakthroughs in molecular biology, genomic and transgenic technology. This review describes the relationship(s) among CYP-mediated drug metabolism, virus infection and the immune response and evaluates in vitro and in vivo models for mechanistic studies. The first studies that assessed CYP expression during infection focused on inflammatory mediators and the innate immune response at early time points. Recent studies assessing virus infection and its effect on hepatic CYP expression noted more long-term effects. An obvious approach toward understanding how viruses affect hepatic CYP3A expression and function would be to assess key regulators of CYP during infection. Improvements in techniques to identify post-translational modifications of CYP and systems that focus on virus-receptor interactions which allow subtraction and addition of immunological and regulatory elements that drive CYP will demonstrate that long-term changes in drug metabolism start from the time the virus enters the circulation, are reinforced by virus binding to cellular targets and further solidified by changes in cellular processes long after the virus is cleared.
Collapse
Affiliation(s)
- Maria A Croyle
- The University of Texas at Austin, College of Pharmacy, Division of Pharmaceutics and Institute of Cellular and Molecular Biology, PHR 4.214D, 2409 W University Avenue, Austin, TX 78712-1074, USA.
| |
Collapse
|