1
|
Kállai BM, Sawasaki T, Endo Y, Mészáros T. Half a Century of Progress: The Evolution of Wheat Germ-Based In Vitro Translation into a Versatile Protein Production Method. Int J Mol Sci 2025; 26:3577. [PMID: 40332070 PMCID: PMC12026531 DOI: 10.3390/ijms26083577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
The first demonstration of wheat germ extract (WGE)-based in vitro translation synthesising a protein from exogenously introduced messenger ribonucleic acid (mRNA) was published approximately fifty years ago. Since then, there have been numerous crucial improvements to the WGE-based in vitro translation, resulting in a significant increase in yield and the development of high-throughput protein-producing platforms. These developments have transformed the original setup into a versatile eukaryotic protein production method with broad applications. The present review explores the theoretical background of the implemented modifications and brings a panel of examples for WGE applications in high-throughput protein studies and synthesis of challenging-to-produce proteins such as protein complexes, extracellular proteins, and membrane proteins. It also highlights the unique advantages of in vitro translation as an open system for synthesising radioactively labelled proteins, as illustrated by numerous publications using WGE to meet the protein demands of these studies. This review aims to orientate readers in finding the most appropriate WGE arrangement for their specific needs and demonstrate that a deeper understanding of the system modifications will help them make further adjustments to the reaction conditions for synthesising difficult-to-express proteins.
Collapse
Affiliation(s)
- Brigitta M. Kállai
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary;
| | - Tatsuya Sawasaki
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan;
| | - Yaeta Endo
- Ehime Prefectural University of Health Sciences, 543 Takooda, Tobe-cho 791-2101, Iyo-gun, Japan;
| | - Tamás Mészáros
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary;
| |
Collapse
|
2
|
Cardiff RAL, Chowdhury S, Sugianto W, Tickman BI, Burbano DA, Meyer PA, Cook M, King B, Garenne D, Beliaev AS, Noireaux V, Pamela PY, Carothers JM. Carbon-conserving bioproduction of malate in an E. coli-based cell-free system. Metab Eng 2025; 91:59-76. [PMID: 40210085 DOI: 10.1016/j.ymben.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/02/2025] [Accepted: 03/30/2025] [Indexed: 04/12/2025]
Abstract
Formate, a biologically accessible form of CO2, has attracted interest as a renewable feedstock for bioproduction. However, approaches are needed to investigate efficient routes for biological formate assimilation due to its toxicity and limited utilization by microorganisms. Cell-free systems hold promise due to their potential for efficient use of carbon and energy sources and compatibility with diverse feedstocks. However, bioproduction using purified cell-free systems is limited by costly enzyme purification, whereas lysate-based systems must overcome loss of flux to background reactions in the cell extract. Here, we engineer an E. coli-based system for an eight-enzyme pathway from DNA and incorporate strategies to regenerate cofactors and minimize loss of flux through background reactions. We produce the industrial di-acid malate from glycine, bicarbonate, and formate by engineering the carbon-conserving reductive TCA and formate assimilation pathways. We show that in situ regeneration of NADH drives metabolic flux towards malate, improving titer by 15-fold. Background reactions can also be reduced 6-fold by diluting the lysate following expression and introducing chemical inhibitors of competing reactions. Together, these results establish a carbon-conserving, lysate-based cell-free platform for malate production, producing 64 μM malate after 8 h. This system conserves 43 % of carbon otherwise lost as CO2 through the TCA cycle and incorporates 0.13 mol CO2 equivalents/mol glycine fed. Finally, techno-economic analysis of cell-free malate production from formate revealed that the high cost of lysate is a key challenge to the economic feasibility of the process, even assuming efficient cofactor recycling. This work demonstrates the capabilities of cell-free expression systems for both the prototyping of carbon-conserving pathways and the sustainable bioproduction of platform chemicals.
Collapse
Affiliation(s)
- Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, 98195, United States
| | - Shaafique Chowdhury
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Widianti Sugianto
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States
| | - Benjamin I Tickman
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States
| | - Diego Alba Burbano
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States
| | - Pimphan A Meyer
- Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States
| | - Margaret Cook
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, 98195, United States
| | - Brianne King
- Department of Chemistry, University of Washington, Seattle, WA, 98195, United States
| | - David Garenne
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Alexander S Beliaev
- Pacific Northwest National Laboratory, Richland, WA, 99354, United States; Centre for Agriculture and the Bioeconomy, School of Biological and Environmental Sciences, Queensland University of Technology, Gardens Point Campus, P.O. Box 2434, Brisbane, 4001, Queensland, Australia; ARC Centre of Excellence in Synthetic Biology, Brisbane, Queensland, Australia
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Peralta-Yahya Pamela
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, United States.
| | - James M Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, 98195, United States; Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States.
| |
Collapse
|
3
|
Willett E, Banta S. Synthetic NAD(P)(H) Cycle for ATP Regeneration. ACS Synth Biol 2023. [PMID: 37369039 DOI: 10.1021/acssynbio.3c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
ATP is the energy currency of the cell and new methods for ATP regeneration will benefit a range of emerging biotechnology applications including synthetic cells. We designed and assembled a membraneless ATP-regenerating enzymatic cascade by exploiting the substrate specificities of selected NAD(P)(H)-dependent oxidoreductases combined with substrate-specific kinases. The enzymes in the NAD(P)(H) cycle were selected to avoid cross-reactions, and the cascade was driven by irreversible fuel oxidation. As a proof-of-concept, formate oxidation was chosen as the fueling reaction. ATP regeneration was accomplished via the phosphorylation of NADH to NADPH and the subsequent transfer of the phosphate to ADP by a reversible NAD+ kinase. The cascade was able to regenerate ATP at a high rate (up to 0.74 mmol/L/h) for hours, and >90% conversion of ADP to ATP using monophosphate was also demonstrated. The cascade was used to regenerate ATP for use in cell free protein synthesis reactions, and the ATP production rate was further enhanced when powered by the multistep oxidation of methanol. The NAD(P)(H) cycle provides a simple cascade for the in vitro regeneration of ATP without the need for a pH-gradient or costly phosphate donors.
Collapse
Affiliation(s)
- Emma Willett
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
4
|
De Capitani J, Mutschler H. The Long Road to a Synthetic Self-Replicating Central Dogma. Biochemistry 2023; 62:1221-1232. [PMID: 36944355 PMCID: PMC10077596 DOI: 10.1021/acs.biochem.3c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Indexed: 03/23/2023]
Abstract
The construction of a biochemical system capable of self-replication is a key objective in bottom-up synthetic biology. Throughout the past two decades, a rapid progression in the design of in vitro cell-free systems has provided valuable insight into the requirements for the development of a minimal system capable of self-replication. The main limitations of current systems can be attributed to their macromolecular composition and how the individual macromolecules use the small molecules necessary to drive RNA and protein synthesis. In this Perspective, we discuss the recent steps that have been taken to generate a minimal cell-free system capable of regenerating its own macromolecular components and maintaining the homeostatic balance between macromolecular biogenesis and consumption of primary building blocks. By following the flow of biological information through the central dogma, we compare the current versions of these systems to date and propose potential alterations aimed at designing a model system for self-replicative synthetic cells.
Collapse
Affiliation(s)
- Jacopo De Capitani
- Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Hannes Mutschler
- Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| |
Collapse
|
5
|
Septer AN, Sharpe G, Shook EA. The Vibrio fischeri type VI secretion system incurs a fitness cost under host-like conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.529561. [PMID: 36945377 PMCID: PMC10028907 DOI: 10.1101/2023.03.07.529561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The type VI secretion system (T6SS) is an interbacterial weapon composed of thousands of protein subunits and predicted to require significant cellular energy to deploy, yet a fitness cost from T6SS use is rarely observed. Here, we identify host-like conditions where the T6SS incurs a fitness cost using the beneficial symbiont, Vibrio fischeri, which uses its T6SS to eliminate competitors in the natural squid host. We hypothesized that a fitness cost for the T6SS could be dependent on the cellular energetic state and used theoretical ATP cost estimates to predict when a T6SS-dependent fitness cost may be apparent. Theoretical energetic cost estimates predicted a minor relative cost for T6SS use in fast-growing populations (0.4-0.45% of total ATP used cell-1), and a higher relative cost (3.1-13.6%) for stationary phase cells. Consistent with these predictions, we observed no significant T6SS-dependent fitness cost for fast-growing populations typically used for competition assays. However, the stationary phase cell density was significantly lower in the wild-type strain, compared to a regulator mutant that does not express the T6SS, and this T6SS-dependent fitness cost was between 11 and 23%. Such a fitness cost could influence the prevalence and biogeography of T6SSs in animal-associated bacteria. While the T6SS may be required in kill or be killed scenarios, once the competitor is eliminated there is no longer selective pressure to maintain the weapon. Our findings indicate an evolved genotype lacking the T6SS would have a growth advantage over its parent, resulting in the eventual dominance of the unarmed population.
Collapse
Affiliation(s)
- Alecia N. Septer
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - Garrett Sharpe
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC 27599
- Environment, Ecology & Energy Program, University of North Carolina, Chapel Hill, NC 27599
| | - Erika A. Shook
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
6
|
Whole-Cell Display of Phosphotransferase in Escherichia coli for High-Efficiency Extracellular ATP Production. Biomolecules 2022; 12:biom12010139. [PMID: 35053287 PMCID: PMC8773482 DOI: 10.3390/biom12010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Adenosine triphosphate (ATP), as a universal energy currency, takes a central role in many biochemical reactions with potential for the synthesis of numerous high-value products. However, the high cost of ATP limits industrial ATP-dependent enzyme-catalyzed reactions. Here, we investigated the effect of cell-surface display of phosphotransferase on ATP regeneration in recombinant Escherichia coli. By N-terminal fusion of the super-folder green fluorescent protein (sfGFP), we successfully displayed the phosphotransferase of Pseudomonas brassicacearum (PAP-Pb) on the surface of E. coli cells. The catalytic activity of sfGFP-PAP-Pb intact cells was 2.12 and 1.47 times higher than that of PAP-Pb intact cells, when the substrate was AMP and ADP, respectively. The conversion of ATP from AMP or ADP were up to 97.5% and 80.1% respectively when catalyzed by the surface-displayed enzyme at 37 °C for only 20 min. The whole-cell catalyst was very stable, and the enzyme activity of the whole cell was maintained above 40% after 40 rounds of recovery. Under this condition, 49.01 mg/mL (96.66 mM) ATP was accumulated for multi-rounds reaction. This ATP regeneration system has the characteristics of low cost, long lifetime, flexible compatibility, and great robustness.
Collapse
|
7
|
Brookwell A, Oza JP, Caschera F. Biotechnology Applications of Cell-Free Expression Systems. Life (Basel) 2021; 11:life11121367. [PMID: 34947898 PMCID: PMC8705439 DOI: 10.3390/life11121367] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cell-free systems are a rapidly expanding platform technology with an important role in the engineering of biological systems. The key advantages that drive their broad adoption are increased efficiency, versatility, and low cost compared to in vivo systems. Traditionally, in vivo platforms have been used to synthesize novel and industrially relevant proteins and serve as a testbed for prototyping numerous biotechnologies such as genetic circuits and biosensors. Although in vivo platforms currently have many applications within biotechnology, they are hindered by time-constraining growth cycles, homeostatic considerations, and limited adaptability in production. Conversely, cell-free platforms are not hindered by constraints for supporting life and are therefore highly adaptable to a broad range of production and testing schemes. The advantages of cell-free platforms are being leveraged more commonly by the biotechnology community, and cell-free applications are expected to grow exponentially in the next decade. In this study, new and emerging applications of cell-free platforms, with a specific focus on cell-free protein synthesis (CFPS), will be examined. The current and near-future role of CFPS within metabolic engineering, prototyping, and biomanufacturing will be investigated as well as how the integration of machine learning is beneficial to these applications.
Collapse
Affiliation(s)
- August Brookwell
- Department of Chemistry & Biochemistry, College of Science & Mathematics, California Polytechnic State University, San Luis Obispo, CA 93407, USA;
| | - Javin P. Oza
- Department of Chemistry & Biochemistry, College of Science & Mathematics, California Polytechnic State University, San Luis Obispo, CA 93407, USA;
- Correspondence: (J.P.O.); (F.C.)
| | - Filippo Caschera
- Nuclera Nucleics Ltd., Cambridge CB4 0GD, UK
- Correspondence: (J.P.O.); (F.C.)
| |
Collapse
|
8
|
Abstract
Proteins are the main source of drug targets and some of them possess therapeutic potential themselves. Among them, membrane proteins constitute approximately 50% of the major drug targets. In the drug discovery pipeline, rapid methods for producing different classes of proteins in a simple manner with high quality are important for structural and functional analysis. Cell-free systems are emerging as an attractive alternative for the production of proteins due to their flexible nature without any cell membrane constraints. In a bioproduction context, open systems based on cell lysates derived from different sources, and with batch-to-batch consistency, have acted as a catalyst for cell-free synthesis of target proteins. Most importantly, proteins can be processed for downstream applications like purification and functional analysis without the necessity of transfection, selection, and expansion of clones. In the last 5 years, there has been an increased availability of new cell-free lysates derived from multiple organisms, and their use for the synthesis of a diverse range of proteins. Despite this progress, major challenges still exist in terms of scalability, cost effectiveness, protein folding, and functionality. In this review, we present an overview of different cell-free systems derived from diverse sources and their application in the production of a wide spectrum of proteins. Further, this article discusses some recent progress in cell-free systems derived from Chinese hamster ovary and Sf21 lysates containing endogenous translocationally active microsomes for the synthesis of membrane proteins. We particularly highlight the usage of internal ribosomal entry site sequences for more efficient protein production, and also the significance of site-specific incorporation of non-canonical amino acids for labeling applications and creation of antibody drug conjugates using cell-free systems. We also discuss strategies to overcome the major challenges involved in commercializing cell-free platforms from a laboratory level for future drug development.
Collapse
Affiliation(s)
- Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| |
Collapse
|
9
|
Enzyme alchemy: cell-free synthetic biochemistry for natural products. Emerg Top Life Sci 2019; 3:529-535. [PMID: 33523168 DOI: 10.1042/etls20190083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022]
Abstract
Cell-free synthetic biochemistry aims to engineer chemical biology by exploiting biosynthetic dexterity outside of the constraints of a living cell. One particular use is for making natural products, where cell-free systems have initially demonstrated feasibility in the biosynthesis of a range of complex natural products classes. This has shown key advantages over total synthesis, such as increased yield, enhanced regioselectivity, use of reduced temperatures and less reaction steps. Uniquely, cell-free synthetic biochemistry represents a new area that seeks to advance upon these efforts and is particularly useful for defining novel synthetic pathways to replace natural routes and optimising the production of complex natural product targets from low-cost precursors. Key challenges and opportunities will include finding solutions to scaled-up cell-free biosynthesis, as well as the targeting of high value and toxic natural products that remain challenging to make either through whole-cell biotransformation platforms or total synthesis routes. Although underexplored, cell-free synthetic biochemistry could also be used to develop 'non-natural' natural products or so-called xenobiotics for novel antibiotics and drugs, which can be difficult to engineer directly within a living cell.
Collapse
|
10
|
Sikkema HR, Gaastra BF, Pols T, Poolman B. Cell Fuelling and Metabolic Energy Conservation in Synthetic Cells. Chembiochem 2019; 20:2581-2592. [PMID: 31381223 DOI: 10.1002/cbic.201900398] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 12/14/2022]
Abstract
We are aiming for a blue print for synthesizing (moderately complex) subcellular systems from molecular components and ultimately for constructing life. However, without comprehensive instructions and design principles, we rely on simple reaction routes to operate the essential functions of life. The first forms of synthetic life will not make every building block for polymers de novo according to complex pathways, rather they will be fed with amino acids, fatty acids and nucleotides. Controlled energy supply is crucial for any synthetic cell, no matter how complex. Herein, we describe the simplest pathways for the efficient generation of ATP and electrochemical ion gradients. We have estimated the demand for ATP by polymer synthesis and maintenance processes in small cell-like systems, and we describe circuits to control the need for ATP. We also present fluorescence-based sensors for pH, ionic strength, excluded volume, ATP/ADP, and viscosity, which allow the major physicochemical conditions inside cells to be monitored and tuned.
Collapse
Affiliation(s)
- Hendrik R Sikkema
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bauke F Gaastra
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Tjeerd Pols
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
11
|
Yim SS, Johns NI, Park J, Gomes ALC, McBee RM, Richardson M, Ronda C, Chen SP, Garenne D, Noireaux V, Wang HH. Multiplex transcriptional characterizations across diverse bacterial species using cell-free systems. Mol Syst Biol 2019; 15:e8875. [PMID: 31464371 PMCID: PMC6692573 DOI: 10.15252/msb.20198875] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Cell-free expression systems enable rapid prototyping of genetic programs in vitro. However, current throughput of cell-free measurements is limited by the use of channel-limited fluorescent readouts. Here, we describe DNA Regulatory element Analysis by cell-Free Transcription and Sequencing (DRAFTS), a rapid and robust in vitro approach for multiplexed measurement of transcriptional activities from thousands of regulatory sequences in a single reaction. We employ this method in active cell lysates developed from ten diverse bacterial species. Interspecies analysis of transcriptional profiles from > 1,000 diverse regulatory sequences reveals functional differences in promoter activity that can be quantitatively modeled, providing a rich resource for tuning gene expression in diverse bacterial species. Finally, we examine the transcriptional capacities of dual-species hybrid lysates that can simultaneously harness gene expression properties of multiple organisms. We expect that this cell-free multiplex transcriptional measurement approach will improve genetic part prototyping in new bacterial chassis for synthetic biology.
Collapse
Affiliation(s)
- Sung Sun Yim
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
| | - Nathan I Johns
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Integrated Program in Cellular, Molecular, and Biomedical StudiesColumbia UniversityNew YorkNYUSA
- Present address:
Department of BioengineeringStanford UniversityStanfordCAUSA
| | - Jimin Park
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Integrated Program in Cellular, Molecular, and Biomedical StudiesColumbia UniversityNew YorkNYUSA
| | - Antonio LC Gomes
- Department of ImmunologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Ross M McBee
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Department of Biological SciencesColumbia UniversityNew YorkNYUSA
| | - Miles Richardson
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Integrated Program in Cellular, Molecular, and Biomedical StudiesColumbia UniversityNew YorkNYUSA
| | - Carlotta Ronda
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
| | - Sway P Chen
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Integrated Program in Cellular, Molecular, and Biomedical StudiesColumbia UniversityNew YorkNYUSA
| | - David Garenne
- School of Physics and AstronomyUniversity of MinnesotaMinneapolisMNUSA
| | - Vincent Noireaux
- School of Physics and AstronomyUniversity of MinnesotaMinneapolisMNUSA
| | - Harris H Wang
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNYUSA
| |
Collapse
|
12
|
Otrin L, Kleineberg C, Caire da Silva L, Landfester K, Ivanov I, Wang M, Bednarz C, Sundmacher K, Vidaković-Koch T. Artificial Organelles for Energy Regeneration. ACTA ACUST UNITED AC 2019; 3:e1800323. [PMID: 32648709 DOI: 10.1002/adbi.201800323] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/11/2019] [Indexed: 01/03/2023]
Abstract
One of the critical steps in sustaining life-mimicking processes in synthetic cells is energy, i.e., adenosine triphosphate (ATP) regeneration. Previous studies have shown that the simple addition of ATP or ATP regeneration systems, which do not regenerate ATP directly from ADP and Pi , have no or only limited success due to accumulation of ATP hydrolysis products. In general, ATP regeneration can be achieved by converting light or chemical energy into ATP, which may also involve redox transformations of cofactors. The present contribution provides an overview of the existing ATP regeneration strategies and the related nicotinamide adenine dinucleotide (NAD+ ) redox cycling, with a focus on compartmentalized systems. Special attention is being paid to those approaches where so-called artificial organelles are developed. They comprise a semipermeable membrane functionalized by biological or man-made components and employ external energy in the form of light or nutrients in order to generate a transmembrane proton gradient, which is further utilized for ATP synthesis.
Collapse
Affiliation(s)
- Lado Otrin
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Christin Kleineberg
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Lucas Caire da Silva
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ivan Ivanov
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Minhui Wang
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Claudia Bednarz
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Kai Sundmacher
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Tanja Vidaković-Koch
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| |
Collapse
|
13
|
Rapid acquisition and model-based analysis of cell-free transcription-translation reactions from nonmodel bacteria. Proc Natl Acad Sci U S A 2018; 115:E4340-E4349. [PMID: 29666238 PMCID: PMC5948957 DOI: 10.1073/pnas.1715806115] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Native cell-free transcription-translation systems offer a rapid route to characterize the regulatory elements (promoters, transcription factors) for gene expression from nonmodel microbial hosts, which can be difficult to assess through traditional in vivo approaches. One such host, Bacillus megaterium, is a giant Gram-positive bacterium with potential biotechnology applications, although many of its regulatory elements remain uncharacterized. Here, we have developed a rapid automated platform for measuring and modeling in vitro cell-free reactions and have applied this to B. megaterium to quantify a range of ribosome binding site variants and previously uncharacterized endogenous constitutive and inducible promoters. To provide quantitative models for cell-free systems, we have also applied a Bayesian approach to infer ordinary differential equation model parameters by simultaneously using time-course data from multiple experimental conditions. Using this modeling framework, we were able to infer previously unknown transcription factor binding affinities and quantify the sharing of cell-free transcription-translation resources (energy, ribosomes, RNA polymerases, nucleotides, and amino acids) using a promoter competition experiment. This allows insights into resource limiting-factors in batch cell-free synthesis mode. Our combined automated and modeling platform allows for the rapid acquisition and model-based analysis of cell-free transcription-translation data from uncharacterized microbial cell hosts, as well as resource competition within cell-free systems, which potentially can be applied to a range of cell-free synthetic biology and biotechnology applications.
Collapse
|
14
|
Failmezger J, Rauter M, Nitschel R, Kraml M, Siemann-Herzberg M. Cell-free protein synthesis from non-growing, stressed Escherichia coli. Sci Rep 2017; 7:16524. [PMID: 29184159 PMCID: PMC5705671 DOI: 10.1038/s41598-017-16767-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/16/2017] [Indexed: 01/01/2023] Open
Abstract
Cell-free protein synthesis is a versatile protein production system. Performance of the protein synthesis depends on highly active cytoplasmic extracts. Extracts from E. coli are believed to work best; they are routinely obtained from exponential growing cells, aiming to capture the most active translation system. Here, we report an active cell-free protein synthesis system derived from cells harvested at non-growth, stressed conditions. We found a downshift of ribosomes and proteins. However, a characterization revealed that the stoichiometry of ribosomes and key translation factors was conserved, pointing to a fully intact translation system. This was emphasized by synthesis rates, which were comparable to those of systems obtained from fast-growing cells. Our approach is less laborious than traditional extract preparation methods and multiplies the yield of extract per cultivation. This simplified growth protocol has the potential to attract new entrants to cell-free protein synthesis and to broaden the pool of applications. In this respect, a translation system originating from heat stressed, non-growing E. coli enabled an extension of endogenous transcription units. This was demonstrated by the sigma factor depending activation of parallel transcription. Our cell-free expression platform adds to the existing versatility of cell-free translation systems and presents a tool for cell-free biology.
Collapse
Affiliation(s)
- Jurek Failmezger
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Michael Rauter
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Robert Nitschel
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Michael Kraml
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
15
|
Moore SJ, MacDonald JT, Freemont PS. Cell-free synthetic biology for in vitro prototype engineering. Biochem Soc Trans 2017; 45:785-791. [PMID: 28620040 PMCID: PMC5473021 DOI: 10.1042/bst20170011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/24/2017] [Accepted: 03/31/2017] [Indexed: 12/21/2022]
Abstract
Cell-free transcription-translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells.
Collapse
Affiliation(s)
- Simon J Moore
- Department of Medicine, Centre for Synthetic Biology and Innovation, South Kensington Campus, London, U.K
| | - James T MacDonald
- Department of Medicine, Centre for Synthetic Biology and Innovation, South Kensington Campus, London, U.K
| | - Paul S Freemont
- Department of Medicine, Centre for Synthetic Biology and Innovation, South Kensington Campus, London, U.K.
| |
Collapse
|
16
|
Caschera F. Bacterial cell-free expression technology to in vitro systems engineering and optimization. Synth Syst Biotechnol 2017; 2:97-104. [PMID: 29062966 PMCID: PMC5637228 DOI: 10.1016/j.synbio.2017.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/26/2022] Open
Abstract
Cell-free expression system is a technology for the synthesis of proteins in vitro. The system is a platform for several bioengineering projects, e.g. cell-free metabolic engineering, evolutionary design of experiments, and synthetic minimal cell construction. Bacterial cell-free protein synthesis system (CFPS) is a robust tool for synthetic biology. The bacteria lysate, the DNA, and the energy module, which are the three optimized sub-systems for in vitro protein synthesis, compose the integrated system. Currently, an optimized E. coli cell-free expression system can produce up to ∼2.3 mg/mL of a fluorescent reporter protein. Herein, I will describe the features of ATP-regeneration systems for in vitro protein synthesis, and I will present a machine-learning experiment for optimizing the protein yield of E. coli cell-free protein synthesis systems. Moreover, I will introduce experiments on the synthesis of a minimal cell using liposomes as dynamic containers, and E. coli cell-free expression system as biochemical platform for metabolism and gene expression. CFPS can be further integrated with other technologies for novel applications in environmental, medical and material science.
Collapse
|
17
|
Failmezger J, Nitschel R, Sánchez-Kopper A, Kraml M, Siemann-Herzberg M. Site-Specific Cleavage of Ribosomal RNA in Escherichia coli-Based Cell-Free Protein Synthesis Systems. PLoS One 2016; 11:e0168764. [PMID: 27992588 PMCID: PMC5167549 DOI: 10.1371/journal.pone.0168764] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023] Open
Abstract
Cell-free protein synthesis, which mimics the biological protein production system, allows rapid expression of proteins without the need to maintain a viable cell. Nevertheless, cell-free protein expression relies on active in vivo translation machinery including ribosomes and translation factors. Here, we examined the integrity of the protein synthesis machinery, namely the functionality of ribosomes, during (i) the cell-free extract preparation and (ii) the performance of in vitro protein synthesis by analyzing crucial components involved in translation. Monitoring the 16S rRNA, 23S rRNA, elongation factors and ribosomal protein S1, we show that processing of a cell-free extract results in no substantial alteration of the translation machinery. Moreover, we reveal that the 16S rRNA is specifically cleaved at helix 44 during in vitro translation reactions, resulting in the removal of the anti-Shine-Dalgarno sequence. These defective ribosomes accumulate in the cell-free system. We demonstrate that the specific cleavage of the 16S rRNA is triggered by the decreased concentrations of Mg2+. In addition, we provide evidence that helix 44 of the 30S ribosomal subunit serves as a point-of-entry for ribosome degradation in Escherichia coli. Our results suggest that Mg2+ homeostasis is fundamental to preserving functional ribosomes in cell-free protein synthesis systems, which is of major importance for cell-free protein synthesis at preparative scale, in order to create highly efficient technical in vitro systems.
Collapse
MESH Headings
- Cell-Free System/chemistry
- Cell-Free System/metabolism
- Escherichia coli/chemistry
- Escherichia coli/metabolism
- Magnesium/chemistry
- Magnesium/metabolism
- Protein Biosynthesis
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- Ribosome Subunits, Small, Bacterial/chemistry
- Ribosome Subunits, Small, Bacterial/metabolism
Collapse
Affiliation(s)
- Jurek Failmezger
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Robert Nitschel
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | | | - Michael Kraml
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
18
|
Chen TR, Urban PL. Mass spectrometry-guided refinement of chemical energy buffers. Proc Math Phys Eng Sci 2016; 472:20150812. [PMID: 27436961 PMCID: PMC4950186 DOI: 10.1098/rspa.2015.0812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/24/2016] [Indexed: 11/12/2022] Open
Abstract
Biocatalytic reactions often require supplying chemical energy and phosphate groups in the form of adenosine triphosphate (ATP). Auxiliary enzymes can be used to convert a reaction by-product-adenosine diphosphate (ADP)-back to ATP. By employing real-time mass spectrometry (RTMS), one can gain an insight into inter-conversions of reactants in multi-enzyme reaction systems and optimize the reaction conditions. In this study, temporal traces of ions corresponding to adenosine monophosphate (AMP), ADP and ATP provided vital information that could be used to adjust activities of the 'buffering enzymes'. Using the RTMS results as a feedback, we also characterized a bienzymatic energy buffer that enables the recovery of ATP in the cases where it is directly hydrolysed to AMP in the main enzymatic reaction. The significance of careful selection of enzyme activities-guided by RTMS-is exemplified in the synthesis of glucose-6-phosphate by hexokinase in the presence of a buffering enzyme, pyruvate kinase. Relative activities of the two enzymes, present in the reaction mixture, influence biosynthetic reaction yields. This observation supports the conclusion that optimization of chemical energy recycling procedures is critical for the biosynthetic reaction economy.
Collapse
Affiliation(s)
- T.-R. Chen
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan
| | - P. L. Urban
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan
- Institute of Molecular Science, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan
| |
Collapse
|
19
|
Neti SS, Poulter CD. Site-Selective Synthesis of (15)N- and (13)C-Enriched Flavin Mononucleotide Coenzyme Isotopologues. J Org Chem 2016; 81:5087-92. [PMID: 27176708 DOI: 10.1021/acs.joc.6b00640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flavin mononucleotide (FMN) is a coenzyme for numerous proteins involved in key cellular and physiological processes. Isotopically labeled flavin is a powerful tool for studying the structure and mechanism of flavoenzyme-catalyzed reactions by a variety of techniques, including NMR, IR, Raman, and mass spectrometry. In this report, we describe the preparation of labeled FMN isotopologues enriched with (15)N and (13)C isotopes at various sites in the pyrazine and pyrimidine rings of the isoalloxazine core of the cofactor from readily available precursors by a five-step chemo-enzymatic synthesis.
Collapse
Affiliation(s)
- Syam Sundar Neti
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - C Dale Poulter
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
20
|
Kwon YC, Jewett MC. High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Sci Rep 2015; 5:8663. [PMID: 25727242 PMCID: PMC4345344 DOI: 10.1038/srep08663] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/15/2015] [Indexed: 12/24/2022] Open
Abstract
Crude extract based cell-free protein synthesis (CFPS) has emerged as a powerful technology platform for high-throughput protein production and genetic part characterization. Unfortunately, robust preparation of highly active extracts generally requires specialized and costly equipment and can be labor and time intensive. Moreover, cell lysis procedures can be hard to standardize, leading to different extract performance across laboratories. These challenges limit new entrants to the field and new applications, such as comprehensive genome engineering programs to improve extract performance. To address these challenges, we developed a generalizable and easily accessible high-throughput crude extract preparation method for CFPS based on sonication. To validate our approach, we investigated two Escherichia coli strains: BL21 Star™ (DE3) and a K12 MG1655 variant, achieving similar productivity (defined as CFPS yield in g/L) by varying only a few parameters. In addition, we observed identical productivity of cell extracts generated from culture volumes spanning three orders of magnitude (10 mL culture tubes to 10 L fermentation). We anticipate that our rapid and robust extract preparation method will speed-up screening of genomically engineered strains for CFPS applications, make possible highly active extracts from non-model organisms, and promote a more general use of CFPS in synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Yong-Chan Kwon
- 1] Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA [2] Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Michael C Jewett
- 1] Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA [2] Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA [3] Robert H. Lurie Comprehensive Cancer Center, Medicine Northwestern University, Chicago, IL 60611, USA [4] Institute of Bionanotechnology in Medicine Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
21
|
Smith MT, Wilding KM, Hunt JM, Bennett AM, Bundy BC. The emerging age of cell-free synthetic biology. FEBS Lett 2014; 588:2755-61. [PMID: 24931378 DOI: 10.1016/j.febslet.2014.05.062] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 01/16/2023]
Abstract
The engineering of and mastery over biological parts has catalyzed the emergence of synthetic biology. This field has grown exponentially in the past decade. As increasingly more applications of synthetic biology are pursued, more challenges are encountered, such as delivering genetic material into cells and optimizing genetic circuits in vivo. An in vitro or cell-free approach to synthetic biology simplifies and avoids many of the pitfalls of in vivo synthetic biology. In this review, we describe some of the innate features that make cell-free systems compelling platforms for synthetic biology and discuss emerging improvements of cell-free technologies. We also select and highlight recent and emerging applications of cell-free synthetic biology.
Collapse
Affiliation(s)
- Mark Thomas Smith
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Kristen M Wilding
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Jeremy M Hunt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Anthony M Bennett
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
22
|
Gagnon KT, Li L, Chu Y, Janowski BA, Corey DR. RNAi factors are present and active in human cell nuclei. Cell Rep 2014; 6:211-21. [PMID: 24388755 PMCID: PMC3916906 DOI: 10.1016/j.celrep.2013.12.013] [Citation(s) in RCA: 295] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/12/2013] [Accepted: 12/06/2013] [Indexed: 12/21/2022] Open
Abstract
RNAi is widely appreciated as a powerful regulator of mRNA translation in the cytoplasm of mammalian cells. However, the presence and activity of RNAi factors in the mammalian nucleus has been the subject of considerable debate. Here, we show that Argonaute-2 (Ago2) and RNAi factors Dicer, TRBP, and TRNC6A/GW182 are in the human nucleus and associate together in multiprotein complexes. Small RNAs can silence nuclear RNA and guide site-specific cleavage of the targeted RNA, demonstrating that RNAi can function in the human nucleus. Nuclear Dicer is active and miRNAs are bound to nuclear Ago2, consistent with the existence of nuclear miRNA pathways. Notably, we do not detect loading of duplex small RNAs in nuclear extracts and known loading factors are absent. These results extend RNAi into the mammalian nucleus and suggest that regulation of RNAi via small RNA loading of Ago2 differs between the cytoplasm and the nucleus.
Collapse
Affiliation(s)
- Keith T Gagnon
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA
| | - Liande Li
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA
| | - Yongjun Chu
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA
| | - Bethany A Janowski
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA
| | - David R Corey
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA.
| |
Collapse
|
23
|
Whittaker JW. Cell-free protein synthesis: the state of the art. Biotechnol Lett 2013; 35:143-52. [PMID: 23086573 PMCID: PMC3553302 DOI: 10.1007/s10529-012-1075-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
Cell-free protein synthesis harnesses the synthetic power of biology, programming the ribosomal translational machinery of the cell to create macromolecular products. Like PCR, which uses cellular replication machinery to create a DNA amplifier, cell-free protein synthesis is emerging as a transformative technology with broad applications in protein engineering, biopharmaceutical development, and post-genomic research. By breaking free from the constraints of cell-based systems, it takes the next step towards synthetic biology. Recent advances in reconstituted cell-free protein synthesis (Protein synthesis Using Recombinant Elements expression systems) are creating new opportunities to tailor the reactions for specialized applications including in vitro protein evolution, printing protein microarrays, isotopic labeling, and incorporating nonnatural amino acids.
Collapse
Affiliation(s)
- James W Whittaker
- Division of Environmental and Biomolecular Systems, Institute for Environmental Health, Oregon Health and Science University, 20000 N.W. Walker Road, Beaverton, OR 97006-8921, USA.
| |
Collapse
|
24
|
Yang WC, Patel KG, Wong HE, Swartz JR. Simplifying and streamlining Escherichia coli-based cell-free protein synthesis. Biotechnol Prog 2012; 28:413-20. [DOI: 10.1002/btpr.1509] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/28/2011] [Indexed: 11/07/2022]
|
25
|
Abstract
Crude cell-free extracts are useful tools for investigating biochemical phenomena and exploiting complex enzymatic processes such as protein synthesis. Extracts derived from E. coli have been used for over 50 years to study the mechanism of protein synthesis. In addition, these S30 extracts are commonly used as a laboratory tool for protein production. The preparation of S30 extract has been streamlined over the years and now it is a relatively simple process. The procedure described here includes some suggestions for extracts to be used for ribosome display.
Collapse
|
26
|
Caschera F, Bedau MA, Buchanan A, Cawse J, de Lucrezia D, Gazzola G, Hanczyc MM, Packard NH. Coping with complexity: Machine learning optimization of cell-free protein synthesis. Biotechnol Bioeng 2011; 108:2218-28. [DOI: 10.1002/bit.23178] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 03/29/2011] [Accepted: 04/04/2011] [Indexed: 11/12/2022]
|
27
|
Schmidt M, Pei L. Synthetic toxicology: where engineering meets biology and toxicology. Toxicol Sci 2011; 120 Suppl 1:S204-24. [PMID: 21068213 DOI: 10.1093/toxsci/kfq339] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This article examines the implications of synthetic biology (SB) for toxicological sciences. Starting with a working definition of SB, we describe its current subfields, namely, DNA synthesis, the engineering of DNA-based biological circuits, minimal genome research, attempts to construct protocells and synthetic cells, and efforts to diversify the biochemistry of life through xenobiology. Based on the most important techniques, tools, and expected applications in SB, we describe the ramifications of SB for toxicology under the label of synthetic toxicology. We differentiate between cases where SB offers opportunities for toxicology and where SB poses challenges for toxicology. Among the opportunities, we identified the assistance of SB to construct novel toxicity testing platforms, define new toxicity-pathway assays, explore the potential of SB to improve in vivo biotransformation of toxins, present novel biosensors developed by SB for environmental toxicology, discuss cell-free protein synthesis of toxins, reflect on the contribution to toxic use reduction, and the democratization of toxicology through do-it-yourself biology. Among the identified challenges for toxicology, we identify synthetic toxins and novel xenobiotics, biosecurity and dual-use considerations, the potential bridging of toxic substances and infectious agents, and do-it-yourself toxin production.
Collapse
Affiliation(s)
- Markus Schmidt
- Organization for International Dialogue and Conflict Management, Biosafety Working Group, 1070 Vienna, Austria.
| | | |
Collapse
|
28
|
Directed evolution of angiotensin II-inhibiting peptides using a microbead display. J Biosci Bioeng 2009; 109:411-7. [PMID: 20226387 DOI: 10.1016/j.jbiosc.2009.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 10/10/2009] [Accepted: 10/13/2009] [Indexed: 11/22/2022]
Abstract
Angiotensin II (ang II), an octapeptide (DRVYVHPF), can regulate blood pressure by binding specifically to its receptor, AT1. A peptide (VVIVIY) in the first transmembrane of AT1 has been found, via peptide array technology, to have an affinity for ang II. In this study, the peptide P2, which contained the VVIVIY sequence, was mutated and screened using microbead display technology that utilized emulsion PCR and cell-free protein synthesis. After one round of screening, the binding activities of collected mutants were estimated using flow cytometry and a peptide array. Two of these exhibited improved association rate constants to ang II, compared to the P2 peptide.
Collapse
|
29
|
Abstract
Reversible protein phosphorylation on multiple sites is a key regulatory mechanism in most cellular processes. We consider here a kinase-phosphatase-substrate system with two sites, under mass-action kinetics, with no restrictions on the order of phosphorylation or dephosphorylation. We show that the concentrations of the four phosphoforms at steady state satisfy an algebraic formula-an invariant-that is independent of the other chemical species, such as free enzymes or enzyme-substrate complexes, and holds irrespective of the starting conditions and the total amounts of enzymes and substrate. Such invariants allow stringent quantitative predictions to be made without requiring any knowledge of site-specific parameter values. We introduce what we believe are novel methods from algebraic geometry-Gröbner bases, rational curves-to calculate invariants. These methods are particularly significant because they make it possible to treat parameters symbolically without having to specify their numerical values, and thereby allow us to sidestep the parameter problem. We anticipate that this approach will have much wider applications in biological modeling.
Collapse
|