1
|
Nguyen T, Lagman C, Chung LK, Chen CHJ, Poon J, Ong V, Voth BL, Yang I. Insights into CCL21's roles in immunosurveillance and immunotherapy for gliomas. J Neuroimmunol 2017; 305:29-34. [PMID: 28284342 DOI: 10.1016/j.jneuroim.2017.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/17/2017] [Indexed: 02/02/2023]
Abstract
Chemokine (C-C) motif ligand 21 (CCL21) is involved in immunosurveillance and has recently garnered the attention of neuro-oncologists and neuroscientists. CCL21 contains an extended C-terminus, which increases binding to lymphatic glycosaminoglycans and provides a mechanism for cell trafficking by forming a stationary chemokine concentration gradient that allows cell migration via haptotaxis. CCL21 is expressed by endothelial cells of the blood-brain barrier in physiologic and pathologic conditions. CCL21 has also been implicated in leukocyte extravasation into the central nervous system. In this review, we summarize the role of CCL21 in immunosurveillance and explore its potential as an immunotherapeutic agent for the treatment of gliomas.
Collapse
Affiliation(s)
- Thien Nguyen
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Carlito Lagman
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lawrance K Chung
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cheng Hao Jacky Chen
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jessica Poon
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Vera Ong
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Brittany L Voth
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Isaac Yang
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States; Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, United States; Department of Head and Neck Surgery, University of California, Los Angeles, Los Angeles, CA, United States; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
3
|
Boato F, Hechler D, Rosenberger K, Lüdecke D, Peters EM, Nitsch R, Hendrix S. Interleukin-1 beta and neurotrophin-3 synergistically promote neurite growth in vitro. J Neuroinflammation 2011; 8:183. [PMID: 22200088 PMCID: PMC3275552 DOI: 10.1186/1742-2094-8-183] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/26/2011] [Indexed: 01/19/2023] Open
Abstract
Pro-inflammatory cytokines such as interleukin-1 beta (IL-1β) are considered to exert detrimental effects during brain trauma and in neurodegenerative disorders. Consistently, it has been demonstrated that IL-1β suppresses neurotrophin-mediated neuronal cell survival rendering neurons vulnerable to degeneration. Since neurotrophins are also well known to strongly influence axonal plasticity, we investigated here whether IL-1β has a similar negative impact on neurite growth. We analyzed neurite density and length of organotypic brain and spinal cord slice cultures under the influence of the neurotrophins NGF, BDNF, NT-3 and NT-4. In brain slices, only NT-3 significantly promoted neurite density and length. Surprisingly, a similar increase of neurite growth was induced by IL-1β. Additionally, both factors increased the number of brain slices displaying maximal neurite growth. Furthermore, the co-administration of IL-1β and NT-3 significantly increased the number of brain slices displaying maximal neurite growth compared to single treatments. These data indicate that these two factors synergistically stimulate two distinct aspects of neurite outgrowth, namely neurite density and neurite length from acute organotypic brain slices.
Collapse
Affiliation(s)
- Francesco Boato
- Dept. of Functional Morphology & BIOMED Institute, Hasselt University, Belgium
| | | | | | | | | | | | | |
Collapse
|
4
|
Ploix CC, Noor S, Crane J, Masek K, Carter W, Lo DD, Wilson EH, Carson MJ. CNS-derived CCL21 is both sufficient to drive homeostatic CD4+ T cell proliferation and necessary for efficient CD4+ T cell migration into the CNS parenchyma following Toxoplasma gondii infection. Brain Behav Immun 2011; 25:883-96. [PMID: 20868739 PMCID: PMC3032828 DOI: 10.1016/j.bbi.2010.09.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/16/2010] [Accepted: 09/16/2010] [Indexed: 12/29/2022] Open
Abstract
Injury, infection and autoimmune triggers increase CNS expression of the chemokine CCL21. Outside the CNS, CCL21 contributes to chronic inflammatory disease and autoimmunity by three mechanisms: recruitment of lymphocytes into injured or infected tissues, organization of inflammatory infiltrates into lymphoid-like structures and promotion of homeostatic CD4+ T-cell proliferation. To test if CCL21 plays the same role in CNS inflammation, we generated transgenic mice with astrocyte-driven expression of CCL21 (GFAP-CCL21 mice). Astrocyte-produced CCL21 was bioavailable and sufficient to support homeostatic CD4+ T-cell proliferation in cervical lymph nodes even in the absence of endogenous CCL19/CCL21. However, lymphocytes and glial-activation were not detected in the brains of uninfected GFAP-CCL21 mice, although CCL21 levels in GFAP-CCL21 brains were higher than levels expressed in inflamed Toxoplasma-infected non-transgenic brains. Following Toxoplasma infection, T-cell extravasation into submeningeal, perivascular and ventricular sites of infected CNS was not CCL21-dependent, occurring even in CCL19/CCL21-deficient mice. However, migration of extravasated CD4+, but not CD8+ T cells from extra-parenchymal CNS sites into the CNS parenchyma was CCL21-dependent. CD4+ T cells preferentially accumulated at perivascular, submeningeal and ventricular spaces in infected CCL21/CCL19-deficient mice. By contrast, greater numbers of CD4+ T cells infiltrated the parenchyma of infected GFAP-CCL21 mice than in wild-type or CCL19/CCL21-deficient mice. Together these data indicate that CCL21 expression within the CNS has the potential to contribute to T cell-mediated CNS pathology via: (a) homeostatic priming of CD4+ T-lymphocytes outside the CNS and (b) by facilitating CD4+ T-cell migration into parenchymal sites following pathogenic insults to the CNS.
Collapse
Affiliation(s)
| | - Shahani Noor
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside
- Graduate Program in Biomedical Sciences, University of California Riverside
| | - Janelle Crane
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside
| | - Kokoechat Masek
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside
| | - Whitney Carter
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside
| | - David D. Lo
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside
| | - Emma H. Wilson
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside
| | - Monica J. Carson
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside
| |
Collapse
|
5
|
Yu WR, Liu T, Kiehl TR, Fehlings MG. Human neuropathological and animal model evidence supporting a role for Fas-mediated apoptosis and inflammation in cervical spondylotic myelopathy. Brain 2011; 134:1277-92. [PMID: 21490053 DOI: 10.1093/brain/awr054] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although cervical spondylotic myelopathy is a common cause of chronic spinal cord dysfunction in humans, little is known about the molecular mechanisms underlying the progressive neural degeneration characterized by this condition. Based on animal models of cervical spondylotic myelopathy and traumatic spinal cord injury, we hypothesized that Fas-mediated apoptosis and inflammation may play an important role in the pathobiology of human cervical spondylotic myelopathy. We further hypothesized that neutralization of the Fas ligand using a function-blocking antibody would reduce cell death, attenuate inflammation, promote axonal repair and enhance functional neurological outcomes in animal models of cervical spondylotic myelopathy. We examined molecular changes in post-mortem human spinal cord tissue from eight patients with cervical spondylotic myelopathy and four control cases. Complementary studies were conducted using a mouse model of cervical spondylotic myelopathy (twy/twy mice that develop spontaneous cord compression at C2-C3). We observed Fas-mediated apoptosis of neurons and oligodendrocytes and an increase in inflammatory cells in the compressed spinal cords of patients with cervical spondylotic myelopathy. Furthermore, neutralization of Fas ligand with a function-blocking antibody in twy/twy mice reduced neural inflammation at the lesion mediated by macrophages and activated microglia, glial scar formation and caspase-9 activation. It was also associated with increased expression of Bcl-2 and promoted dramatic functional neurological recovery. Our data demonstrate, for the first time in humans, the potential contribution of Fas-mediated cell death and inflammation to the pathobiology of cervical spondylotic myelopathy. Complementary data in a murine model of cervical spondylotic myelopathy further suggest that targeting the Fas death receptor pathway is a viable neuroprotective strategy to attenuate neural degeneration and optimize neurological recovery in cervical spondylotic myelopathy. Our findings highlight the possibility of medical treatments for cervical spondylotic myelopathy that are complementary to surgical decompression.
Collapse
Affiliation(s)
- Wen Ru Yu
- Department of Pathology, Toronto Western Research Institute, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, and University of Toronto, Room 4W-449, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | | | | | | |
Collapse
|
6
|
London A, Itskovich E, Benhar I, Kalchenko V, Mack M, Jung S, Schwartz M. Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages. ACTA ACUST UNITED AC 2011; 208:23-39. [PMID: 21220455 PMCID: PMC3023128 DOI: 10.1084/jem.20101202] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
After retinal injury in mice, infiltrating monocyte-derived macrophages preserve retinal ganglion cells and promote retinal progenitor cell renewal. The death of retinal ganglion cells (RGCs) is a hallmark of many retinal neuropathies. Neuroprotection, axonal regeneration, and cell renewal are vital for the integrity of the visual system after insult but are scarce in the adult mammalian retina. We hypothesized that monocyte-derived macrophages, known to promote healing in peripheral tissues, are required after an insult to the visual system, where their role has been largely overlooked. We found that after glutamate eye intoxication, monocyte-derived macrophages infiltrated the damaged retina of mice. Inhibition of this infiltration resulted in reduced survival of RGCs and diminished numbers of proliferating retinal progenitor cells (RPCs) in the ciliary body. Enhancement of the circulating monocyte pool led to increased RGC survival and RPC renewal. The infiltrating monocyte-derived macrophages skewed the milieu of the injured retina toward an antiinflammatory and neuroprotective one and down-regulated accumulation of other immune cells, thereby resolving local inflammation. The beneficial effect on RGC survival depended on expression of interleukin 10 and major histocompatibility complex class II molecules by monocyte-derived macrophages. Thus, we attribute to infiltrating monocyte-derived macrophages a novel role in neuroprotection and progenitor cell renewal in the injured retina, with far-reaching potential implications to retinal neuropathies and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Anat London
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|