1
|
Pompermayer E, Ysebaert MP, Vinardell T, Oikawa MA, Johnson JP, Fernandes T, David F. One-stage surgical case management of a two-year-old Arabian horse affected by male-pseudo hermaphroditism. J Equine Vet Sci 2024; 133:105007. [PMID: 38237706 DOI: 10.1016/j.jevs.2024.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
A two-year-old Arabian horse presented for abnormal external genitalia and dangerous stallion-like behavior was diagnosed with disorder of sexual development (DSD), also known as intersex/hermaphroditism. Standing 1-stage surgical procedure performed under sedation, and local anesthesia to concurrently eliminate stallion-like behavior, risk of neoplastic transformation of intraabdominal gonads, and to replace ambiguous external genital with a functional, and cosmetically more acceptable anatomy. Step-1) Laparoscopic abdominal exploration and gonadectomy; Step-2) Rudimentary penis resection and perineal urethrostomy. The horse tolerated surgery well (combined surgery time 185 min) with no complications. At macroscopic examination of the gonads, they resembled hypoplastic testis-like tissues. Microscopic examination confirmed presence of seminiferous tubules, Leydig and Sertoli/granulosa cells. Cytogenetic evaluation revealed a 64,XX karyotype, SRY-negative. The stallion-like behavior subsided within days post-operatively. Long-term follow-up revealed the genitoplasty site healed without urine scalding or urethral stricture. The owner satisfaction was excellent and the horse could be used post-surgery as an athlete.
Collapse
Affiliation(s)
- E Pompermayer
- Equine Veterinary Medical Center - Member of Qatar Foundation, Al Shaqab Street, Al Rayyan, Doha, Qatar
| | - M P Ysebaert
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80523-1601, USA
| | - T Vinardell
- Equine Care Group, Paalstraat 8, 3560 Lummen, Belgium
| | - M-A Oikawa
- Equine Veterinary Medical Center - Member of Qatar Foundation, Al Shaqab Street, Al Rayyan, Doha, Qatar
| | - J P Johnson
- Equine & Camel Hospital, Abu Dhabi, United Arab Emirates
| | - T Fernandes
- Equine Veterinary Medical Center - Member of Qatar Foundation, Al Shaqab Street, Al Rayyan, Doha, Qatar
| | - F David
- EquiTom - Namur, member of the Equine Care Group, 15 Chaussée de Nivelles, 5032 Mazy, Belgium.
| |
Collapse
|
2
|
Noto NT, Raudsepp T, Kolb E, Hague DW, Lara MM, Rosser MF. A rare finding of double Barr bodies and X-monosomy/X-trisomy mosaicism in a dog with presumed idiopathic epilepsy. Vet Clin Pathol 2023; 52:583-587. [PMID: 37448119 DOI: 10.1111/vcp.13261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Accepted: 04/17/2023] [Indexed: 07/15/2023]
Abstract
A 4-year-old spayed female Border Collie dog presented to the Neurology and Neurosurgery service for an approximately five-month history of seizures. A complete neurodiagnostic workup was performed and did not reveal any significant abnormalities. The patient's seizures were well controlled with a combination of anticonvulsants. During a manual blood smear review at a follow-up appointment, double Barr bodies were identified in segmented neutrophils. Karyotyping revealed that the patient is mosaic for X-monosomy and X-trisomy, a finding that has never been reported in a dog and is rarely reported in people. This case demonstrates how the identification of abnormal neutrophil nuclear appendages may correlate with chromosomal abnormalities in dogs.
Collapse
Affiliation(s)
- Nicholas T Noto
- Department of Veterinary Clinical Medicine, University of Illinois College of Veterinary Medicine, Urbana, Illinois, USA
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ellie Kolb
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Devon W Hague
- Department of Veterinary Clinical Medicine, University of Illinois College of Veterinary Medicine, Urbana, Illinois, USA
| | - Melissa M Lara
- Veterinary Diagnostic Laboratory, University of Illinois College of Veterinary Medicine, Urbana, Illinois, USA
| | - Michael F Rosser
- Department of Veterinary Clinical Medicine, University of Illinois College of Veterinary Medicine, Urbana, Illinois, USA
| |
Collapse
|
3
|
Stroupe S, Martone C, McCann B, Juras R, Kjöllerström HJ, Raudsepp T, Beard D, Davis BW, Derr JN. Chromosome-level reference genome for North American bison (Bison bison) and variant database aids in identifying albino mutation. G3 (BETHESDA, MD.) 2023; 13:jkad156. [PMID: 37481261 PMCID: PMC10542314 DOI: 10.1093/g3journal/jkad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/24/2023]
Abstract
We developed a highly contiguous chromosome-level reference genome for North American bison to provide a platform to evaluate the conservation, ecological, evolutionary, and population genomics of this species. Generated from a F1 hybrid between a North American bison dam and a domestic cattle bull, completeness and contiguity exceed that of other published bison genome assemblies. To demonstrate the utility for genome-wide variant frequency estimation, we compiled a genomic variant database consisting of 3 true albino bison and 44 wild-type pelage color bison. Through the examination of genomic variants fixed in the albino cohort and absent in the controls, we identified a nonsynonymous single nucleotide polymorphism (SNP) mutation on chromosome 29 in exon 3 of the tyrosinase gene (c.1114C>T). A TaqMan SNP Genotyping Assay was developed to genotype this SNP in a total of 283 animals across 29 herds. This assay confirmed the absence of homozygous variants in all animals except 7 true albino bison included in this study. In addition, the only heterozygous animals identified were 2 wild-type pelage color dams of albino offspring. Therefore, we propose that this new high-quality bison genome assembly and incipient variant database provides a highly robust and informative resource for genomics investigations for this iconic North American species.
Collapse
Affiliation(s)
- Sam Stroupe
- Department of Veterinary Pathobiology, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| | - Carly Martone
- Department of Veterinary Pathobiology, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| | - Blake McCann
- National Park Service, Theodore Roosevelt National Park, Medora, ND 58645, USA
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| | - Helena Josefina Kjöllerström
- Department of Veterinary Integrative Biosciences, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| | - Donald Beard
- Texas Parks and Wildlife, Caprock Canyons State Park & Trailway, Quitaque, TX 79255, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
- Department of Small Animal Clinical Sciences, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| | - James N Derr
- Department of Veterinary Pathobiology, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| |
Collapse
|
4
|
Poisson W, Prunier J, Carrier A, Gilbert I, Mastromonaco G, Albert V, Taillon J, Bourret V, Droit A, Côté SD, Robert C. Chromosome-level assembly of the Rangifer tarandus genome and validation of cervid and bovid evolution insights. BMC Genomics 2023; 24:142. [PMID: 36959567 PMCID: PMC10037892 DOI: 10.1186/s12864-023-09189-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/14/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Genome assembly into chromosomes facilitates several analyses including cytogenetics, genomics and phylogenetics. Despite rapid development in bioinformatics, however, assembly beyond scaffolds remains challenging, especially in species without closely related well-assembled and available reference genomes. So far, four draft genomes of Rangifer tarandus (caribou or reindeer, a circumpolar distributed cervid species) have been published, but none with chromosome-level assembly. This emblematic northern species is of high interest in ecological studies and conservation since most populations are declining. RESULTS We have designed specific probes based on Oligopaint FISH technology to upgrade the latest published reindeer and caribou chromosome-level genomes. Using this oligonucleotide-based method, we found six mis-assembled scaffolds and physically mapped 68 of the largest scaffolds representing 78% of the most recent R. tarandus genome assembly. Combining physical mapping and comparative genomics, it was possible to document chromosomal evolution among Cervidae and closely related bovids. CONCLUSIONS Our results provide validation for the current chromosome-level genome assembly as well as resources to use chromosome banding in studies of Rangifer tarandus.
Collapse
Affiliation(s)
- William Poisson
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Québec, QC, Canada
- Réseau Québécois en reproduction, QC, Saint-Hyacinthe, Canada
| | - Julien Prunier
- Département de biochimie, microbiologie et bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC, Canada
| | - Alexandra Carrier
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Québec, QC, Canada
- Réseau Québécois en reproduction, QC, Saint-Hyacinthe, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Québec, QC, Canada
- Réseau Québécois en reproduction, QC, Saint-Hyacinthe, Canada
| | | | - Vicky Albert
- Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP), Québec, QC, Canada
| | - Joëlle Taillon
- Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP), Québec, QC, Canada
| | - Vincent Bourret
- Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP), Québec, QC, Canada
| | - Arnaud Droit
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Steeve D Côté
- Caribou Ungava, Département de biologie and Centre d'études nordiques, Faculté des sciences et de génie, Université Laval, Québec, QC, Canada
| | - Claude Robert
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada.
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Québec, QC, Canada.
- Réseau Québécois en reproduction, QC, Saint-Hyacinthe, Canada.
| |
Collapse
|
5
|
Schwartz R, Sugai NJ, Eden K, Castaneda C, Jevit M, Raudsepp T, Cecere JT. Case Report: Disorder of Sexual Development in a Chinese Crested Dog With XX/XY Leukocyte Chimerism and Mixed Cell Testicular Tumors. Front Vet Sci 2022; 9:937991. [PMID: 35898552 PMCID: PMC9309221 DOI: 10.3389/fvets.2022.937991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
A 10-year-old intact female Chinese Crested dog was presented for evaluation and further diagnostics due to persistent symptoms of vulvar swelling, vaginal discharge, and an 8-year history of acyclicity. At presentation, generalized hyperpigmentation and truncal alopecia were identified, with no aberrations of the female phenotype. Vaginal cytology confirmed the influence of estrogen at multiple veterinary visits, and hormonal screening of progesterone and anti-Mullerian hormone indicated gonadal presence. Based on findings from abdominal laparotomy and gonadectomy, the tissue was submitted for histopathology. Histopathologic evaluation identified the gonads to be abnormal testes containing multiple Sertoli and interstitial (Leydig) cell tumors. The histopathologic diagnosis of testes and concurrent normal external female phenotype in the patient lead to a diagnosis of a disorder of sexual development (DSD). Karyotype evaluation by conventional and molecular analysis revealed a two cell line chimeric pattern of 78,XX (80%) and 78,XY (20%) among blood leukocytes, as well as a positive PCR test for the Y-linked SRY gene. Cytogenetic analysis of skin fibroblasts revealed the presence of 78,XX cells exclusively, and PCR tests for the Y-linked SRY gene were negative in the hair and skin samples. These results are consistent with an XX/XY blood chimerism. This is one of the few case reports of a canine with the diagnosis of leukocyte chimerism with normal female phenotypic external genitalia. This case illustrates a distinct presentation for hormonally active Sertoli cell tumorigenesis and demonstrates surgery as a curative treatment option for clinically affected patients.
Collapse
Affiliation(s)
- Rebecca Schwartz
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States
| | - Nicole J. Sugai
- Department of Veterinary Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States
| | - Kristin Eden
- Virginia Tech Animal Laboratory Services, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Caitlin Castaneda
- Department of Veterinary Integrative Biosciences, Molecular Cytogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Matthew Jevit
- Department of Veterinary Integrative Biosciences, Molecular Cytogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Molecular Cytogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Julie T. Cecere
- Department of Veterinary Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States
- *Correspondence: Julie T. Cecere
| |
Collapse
|
6
|
Arroyo E, Patiño C, Ciccarelli M, Raudsepp T, Conley A, Tibary A. Clinical and Histological Features of Ovarian Hypoplasia/Dysgenesis in Alpacas. Front Vet Sci 2022; 9:837684. [PMID: 35400100 PMCID: PMC8990812 DOI: 10.3389/fvets.2022.837684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Alpacas have a high incidence of congenital reproductive tract abnormalities, including ovarian hypoplasia/dysgenesis. Diagnosis of this condition is often challenging. The present study describes the clinical, ultrasonographic, and histologic features of ovarian hypoplasia/dysgenesis syndrome in 5 female alpacas. Additionally, serum AMH levels were compared between female alpacas diagnosed with ovarian hypoplasia/dysgenesis and a group of reproductively sound females (n = 11). The syndrome was suspected based on the presence of an infantile uterus and lack of ovaries by ultrasonography and laparoscopy. All females had normal female karyotype (n = 74 XX), but one presented a minute chromosome. The ovaries from these cases showed 3 main histological classifications: hypoplasia (n = 2), dysgenesis (n = 2), and dysplasia (n = 1). Serum AMH levels in affected females were significantly lower (P < 0.05) than those of reproductively sound control females. In conclusion, Serum AMH level may be helpful in the rapid diagnosis of ovarian hypoplasia/dysgenesis syndrome in alpacas. Furthermore, this syndrome in alpacas presents a variety of histological features. Different mechanisms may be involved in the derangement of ovarian differentiation. Further studies are needed to elucidate the causes of the syndrome.
Collapse
Affiliation(s)
- Eduardo Arroyo
- Comparative Theriogenology Section, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Pullman, WA, United States
| | - Cristian Patiño
- Comparative Theriogenology Section, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Pullman, WA, United States
| | - Michela Ciccarelli
- Comparative Theriogenology Section, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Pullman, WA, United States
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Alan Conley
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Ahmed Tibary
- Comparative Theriogenology Section, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Pullman, WA, United States
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| |
Collapse
|
7
|
Ghosh S, Kjöllerström J, Metcalfe L, Reed S, Juras R, Raudsepp T. The Second Case of Non-Mosaic Trisomy of Chromosome 26 with Homologous Fusion 26q;26q in the Horse. Animals (Basel) 2022; 12:ani12070803. [PMID: 35405793 PMCID: PMC8996834 DOI: 10.3390/ani12070803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary We present chromosome and DNA analysis of a normal Thoroughbred mare and her abnormal foal born with neurologic defects. We show that the foal has an abnormal karyotype with three copies of chromosome 26 (trisomy chr26), instead of the normal two. However, two of the three chr26 have fused, forming an unusual derivative chromosome. Chromosomes of the dam are normal, suggesting that the chromosome abnormality found in the foal happened during egg or sperm formation or after fertilization. Analysis of the foal and the dam with chr26 DNA markers indicates that the extra chr26 in the foal is likely of maternal origin and that the unusual derivative chromosome resulted from the fusion of two parental chr26. We demonstrate that although conventional karyotype analysis can accurately identify chromosome abnormalities, determining the mechanism and parental origin of these abnormalities requires DNA analysis. Most curiously, this is the second case of trisomy chr26 with unusual derivative chromosome in the horse, whereas all other equine trisomies have three separate copies of the chromosome involved. Because horse chr26 shares genetic similarity with human chr21, which trisomy causes Down syndrome, common features between trisomies of horse chr26 and human chr21 are discussed. Abstract We present cytogenetic and genotyping analysis of a Thoroughbred foal with congenital neurologic disorders and its phenotypically normal dam. We show that the foal has non-mosaic trisomy for chromosome 26 (ECA26) but normal 2n = 64 diploid number because two copies of ECA26 form a metacentric derivative chromosome der(26q;26q). The dam has normal 64,XX karyotype indicating that der(26q;26q) in the foal originates from errors in parental meiosis or post-fertilization events. Genotyping ECA26 microsatellites in the foal and its dam suggests that trisomy ECA26 is likely of maternal origin and that der(26q;26q) resulted from Robertsonian fusion. We demonstrate that conventional and molecular cytogenetic approaches can accurately identify aneuploidy with a derivative chromosome but determining the mechanism and parental origin of the rearrangement requires genotyping with chromosome-specific polymorphic markers. Most curiously, this is the second case of trisomy ECA26 with der(26q;26q) in the horse, whereas all other equine autosomal trisomies are ‘traditional’ with three separate chromosomes. We discuss possible ECA26 instability as a contributing factor for the aberration and likely ECA26-specific genetic effects on the clinical phenotype. Finally, because ECA26 shares evolutionary homology with human chromosome 21, which trisomy causes Down syndrome, cytogenetic, molecular, and phenotypic similarities between trisomies ECA26 and HSA21 are discussed.
Collapse
Affiliation(s)
- Sharmila Ghosh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (S.G.); (J.K.); (R.J.)
| | - Josefina Kjöllerström
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (S.G.); (J.K.); (R.J.)
| | - Laurie Metcalfe
- Rood & Riddle Equine Hospital, Lexington, KY 40580, USA; (L.M.); (S.R.)
| | - Stephen Reed
- Rood & Riddle Equine Hospital, Lexington, KY 40580, USA; (L.M.); (S.R.)
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (S.G.); (J.K.); (R.J.)
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (S.G.); (J.K.); (R.J.)
- Correspondence:
| |
Collapse
|
8
|
Molecular Cytogenetic and Y Copy Number Analysis of a Reciprocal ECAY-ECA13 Translocation in a Stallion with Complete Meiotic Arrest. Genes (Basel) 2021; 12:genes12121892. [PMID: 34946841 PMCID: PMC8701272 DOI: 10.3390/genes12121892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
We present a detailed molecular cytogenetic analysis of a reciprocal translocation between horse (ECA) chromosomes Y and 13 in a Friesian stallion with complete meiotic arrest and azoospermia. We use dual-color fluorescence in situ hybridization with select ECAY and ECA13 markers and show that the translocation breakpoint in ECAY is in the multicopy region and in ECA13, at the centromere. One resulting derivative chromosome, Y;13p, comprises of ECAY heterochromatin (ETSTY7 array), a small single copy and partial Y multicopy region, and ECA13p. Another derivative chromosome 13q;Y comprises of ECA13q and most of the single copy ECAY, the pseudoautosomal region and a small part of the Y multicopy region. A copy number (CN) analysis of select ECAY multicopy genes shows that the Friesian stallion has significantly (p < 0.05) reduced CNs of TSPY, ETSTY1, and ETSTY5, suggesting that the translocation may not be completely balanced, and genetic material is lost. We discuss likely meiotic behavior of abnormal chromosomes and theorize about the possible effect of the aberration on Y regulation and the progression of meiosis. The study adds a unique case to equine clinical cytogenetics and contributes to understanding the role of the Y chromosome in male meiosis.
Collapse
|
9
|
Horse Clinical Cytogenetics: Recurrent Themes and Novel Findings. Animals (Basel) 2021; 11:ani11030831. [PMID: 33809432 PMCID: PMC8001954 DOI: 10.3390/ani11030831] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022] Open
Abstract
Clinical cytogenetic studies in horses have been ongoing for over half a century and clearly demonstrate that chromosomal disorders are among the most common non-infectious causes of decreased fertility, infertility, and congenital defects. Large-scale cytogenetic surveys show that almost 30% of horses with reproductive or developmental problems have chromosome aberrations, whereas abnormal karyotypes are found in only 2-5% of the general population. Among the many chromosome abnormalities reported in the horse, most are unique or rare. However, all surveys agree that there are two recurrent conditions: X-monosomy and SRY-negative XY male-to-female sex reversal, making up approximately 35% and 11% of all chromosome abnormalities, respectively. The two are signature conditions for the horse and rare or absent in other domestic species. The progress in equine genomics and the development of molecular tools, have qualitatively improved clinical cytogenetics today, allowing for refined characterization of aberrations and understanding the underlying molecular mechanisms. While cutting-edge genomics tools promise further improvements in chromosome analysis, they will not entirely replace traditional cytogenetics, which still is the most straightforward, cost-effective, and fastest approach for the initial evaluation of potential breeding animals and horses with reproductive or developmental disorders.
Collapse
|
10
|
An 8.22 Mb Assembly and Annotation of the Alpaca ( Vicugna pacos) Y Chromosome. Genes (Basel) 2021; 12:genes12010105. [PMID: 33467186 PMCID: PMC7830431 DOI: 10.3390/genes12010105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 12/26/2022] Open
Abstract
The unique evolutionary dynamics and complex structure make the Y chromosome the most diverse and least understood region in the mammalian genome, despite its undisputable role in sex determination, development, and male fertility. Here we present the first contig-level annotated draft assembly for the alpaca (Vicugna pacos) Y chromosome based on hybrid assembly of short- and long-read sequence data of flow-sorted Y. The latter was also used for cDNA selection providing Y-enriched testis transcriptome for annotation. The final assembly of 8.22 Mb comprised 4.5 Mb of male specific Y (MSY) and 3.7 Mb of the pseudoautosomal region. In MSY, we annotated 15 X-degenerate genes and two novel transcripts, but no transposed sequences. Two MSY genes, HSFY and RBMY, are multicopy. The pseudoautosomal boundary is located between SHROOM2 and HSFY. Comparative analysis shows that the small and cytogenetically distinct alpaca Y shares most of MSY sequences with the larger dromedary and Bactrian camel Y chromosomes. Most of alpaca X-degenerate genes are also shared with other mammalian MSYs, though WWC3Y is Y-specific only in alpaca/camels and the horse. The partial alpaca Y assembly is a starting point for further expansion and will have applications in the study of camelid populations and male biology.
Collapse
|
11
|
Ghosh S, Carden CF, Juras R, Mendoza MN, Jevit MJ, Castaneda C, Phelps O, Dube J, Kelley DE, Varner DD, Love CC, Raudsepp T. Two Novel Cases of Autosomal Translocations in the Horse: Warmblood Family Segregating t(4;30) and a Cloned Arabian with a de novo t(12;25). Cytogenet Genome Res 2020; 160:688-697. [PMID: 33326979 DOI: 10.1159/000512206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/07/2020] [Indexed: 11/19/2022] Open
Abstract
We report 2 novel autosomal translocations in the horse. In Case 1, a breeding stallion with a balanced t(4p;30) had produced normal foals and those with congenital abnormalities. Of his 9 phenotypically normal offspring, 4 had normal karyotypes, 4 had balanced t(4p;30), and 1 carried an unbalanced translocation with tertiary trisomy of 4p. We argue that unbalanced forms of t(4p;30) are more tolerated and result in viable congenital abnormalities, without causing embryonic death like all other known equine autosomal translocations. In Case 2, two stallions produced by somatic cell nuclear transfer from the same donor were karyotyped because of fertility issues. A balanced translocation t(12q;25) was found in one, but not in the other clone. The findings underscore the importance of routine cytogenetic screening of breeding animals and animals produced by assisted reproductive technologies. These cases will contribute to molecular studies of translocation breakpoints and their genetic consequences in the horse.
Collapse
Affiliation(s)
- Sharmila Ghosh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | - Rytis Juras
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mayra N Mendoza
- Estación Experimental Agraria Chincha, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria, Ica, Peru
| | - Matthew J Jevit
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Caitlin Castaneda
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Olivia Phelps
- Powder River Veterinary Hospital & Supply, Kaycee, Wyoming, USA
| | - Jessie Dube
- Powder River Veterinary Hospital & Supply, Kaycee, Wyoming, USA
| | - Dale E Kelley
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Dickson D Varner
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Charley C Love
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA,
| |
Collapse
|
12
|
Hughes JF, Skaletsky H, Pyntikova T, Koutseva N, Raudsepp T, Brown LG, Bellott DW, Cho TJ, Dugan-Rocha S, Khan Z, Kremitzki C, Fronick C, Graves-Lindsay TA, Fulton L, Warren WC, Wilson RK, Owens E, Womack JE, Murphy WJ, Muzny DM, Worley KC, Chowdhary BP, Gibbs RA, Page DC. Sequence analysis in Bos taurus reveals pervasiveness of X-Y arms races in mammalian lineages. Genome Res 2020; 30:1716-1726. [PMID: 33208454 PMCID: PMC7706723 DOI: 10.1101/gr.269902.120] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022]
Abstract
Studies of Y Chromosome evolution have focused primarily on gene decay, a consequence of suppression of crossing-over with the X Chromosome. Here, we provide evidence that suppression of X-Y crossing-over unleashed a second dynamic: selfish X-Y arms races that reshaped the sex chromosomes in mammals as different as cattle, mice, and men. Using super-resolution sequencing, we explore the Y Chromosome of Bos taurus (bull) and find it to be dominated by massive, lineage-specific amplification of testis-expressed gene families, making it the most gene-dense Y Chromosome sequenced to date. As in mice, an X-linked homolog of a bull Y-amplified gene has become testis-specific and amplified. This evolutionary convergence implies that lineage-specific X-Y coevolution through gene amplification, and the selfish forces underlying this phenomenon, were dominatingly powerful among diverse mammalian lineages. Together with Y gene decay, X-Y arms races molded mammalian sex chromosomes and influenced the course of mammalian evolution.
Collapse
Affiliation(s)
| | - Helen Skaletsky
- Whitehead Institute, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA
| | | | | | - Terje Raudsepp
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Laura G Brown
- Whitehead Institute, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA
| | | | - Ting-Jan Cho
- Whitehead Institute, Cambridge, Massachusetts 02142, USA
| | - Shannon Dugan-Rocha
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ziad Khan
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Colin Kremitzki
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Catrina Fronick
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Tina A Graves-Lindsay
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Lucinda Fulton
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Wesley C Warren
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Richard K Wilson
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Elaine Owens
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - James E Womack
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - William J Murphy
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Bhanu P Chowdhary
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - David C Page
- Whitehead Institute, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
13
|
Mendoza MN, Schalnus SA, Thomson B, Bellone RR, Juras R, Raudsepp T. Novel Complex Unbalanced Dicentric X-Autosome Rearrangement in a Thoroughbred Mare with a Mild Effect on the Phenotype. Cytogenet Genome Res 2020; 160:597-609. [PMID: 33152736 DOI: 10.1159/000511236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/11/2020] [Indexed: 11/19/2022] Open
Abstract
Complex structural X chromosome abnormalities are rare in humans and animals, and not recurrent. Yet, each case provides a fascinating opportunity to evaluate X chromosome content and functional status in relation to the effect on the phenotype. Here, we report the first equine case of a complex unbalanced X-autosome rearrangement in a healthy but short in stature Thoroughbred mare. Studies of about 200 cells by chromosome banding and FISH revealed an abnormal 2n = 63,X,der(X;16) karyotype with a large dicentric derivative chromosome (der). The der was comprised of normal Xp material, a palindromic duplication of Xq12q21, and a translocation of chromosome 16 to the inverted Xq12q21 segment by the centromere, whereas the distal Xq22q29 was deleted from the der. Microsatellite genotyping determined a paternal origin of the der. While there was no option to experimentally investigate the status of X chromosome inactivation (XCI), the observed mild phenotype of this case suggested the following scenario to retain an almost normal genetic balance: active normal X, inactivated X-portion of the der, but without XCI spreading into the translocated chromosome 16. Cases like this present unique resources to acquire information about species-specific features of X regulation and the role of X-linked genes in development, health, and disease.
Collapse
Affiliation(s)
- Mayra N Mendoza
- Estación Experimental Agraria Chincha, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria, Ica, Peru
| | - Sam A Schalnus
- Hagyard Equine Medical Institute, Lexington, Kentucky, USA
| | - Bitsy Thomson
- Hagyard Equine Medical Institute, Lexington, Kentucky, USA
| | - Rebecca R Bellone
- Department of Population Health and Reproduction, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Rytis Juras
- Molecular Cytogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences,Texas A&M University, College Station, Texas, USA
| | - Terje Raudsepp
- Molecular Cytogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences,Texas A&M University, College Station, Texas, USA,
| |
Collapse
|
14
|
Cytogenetic Mapping of 35 New Markers in the Alpaca ( Vicugna pacos). Genes (Basel) 2020; 11:genes11050522. [PMID: 32397072 PMCID: PMC7288448 DOI: 10.3390/genes11050522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Alpaca is a camelid species of broad economic, biological and biomedical interest, and an essential part of the cultural and historical heritage of Peru. Recently, efforts have been made to improve knowledge of the alpaca genome, and its genetics and cytogenetics, to develop molecular tools for selection and breeding. Here, we report cytogenetic mapping of 35 new markers to 19 alpaca autosomes and the X chromosome. Twenty-eight markers represent alpaca SNPs, of which 17 are located inside or near protein-coding genes, two are in ncRNA genes and nine are intergenic. The remaining seven markers correspond to candidate genes for fiber characteristics (BMP4, COL1A2, GLI1, SFRP4), coat color (TYR) and development (CHD7, PAX7). The results take the tally of cytogenetically mapped markers in alpaca to 281, covering all 36 autosomes and the sex chromosomes. The new map assignments overall agree with human–camelid conserved synteny data, except for mapping BMP4 to VPA3, suggesting a hitherto unknown homology with HSA14. The findings validate, refine and correct the current alpaca assembly VicPac3.1 by anchoring unassigned sequence scaffolds, and ordering and orienting assigned scaffolds. The study contributes to the improvement in the alpaca reference genome and advances camelid molecular cytogenetics.
Collapse
|
15
|
Pinzon-Arteaga C, Snyder MD, Lazzarotto CR, Moreno NF, Juras R, Raudsepp T, Golding MC, Varner DD, Long CR. Efficient correction of a deleterious point mutation in primary horse fibroblasts with CRISPR-Cas9. Sci Rep 2020; 10:7411. [PMID: 32366884 PMCID: PMC7198616 DOI: 10.1038/s41598-020-62723-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 03/04/2020] [Indexed: 12/26/2022] Open
Abstract
Phenotypic selection during animal domestication has resulted in unwanted incorporation of deleterious mutations. In horses, the autosomal recessive condition known as Glycogen Branching Enzyme Deficiency (GBED) is the result of one of these deleterious mutations (102C > A), in the first exon of the GBE1 gene (GBE1102C>A). With recent advances in genome editing, this type of genetic mutation can be precisely repaired. In this study, we used the RNA-guided nuclease CRISPR-Cas9 (clustered regularly-interspaced short palindromic repeats/CRISPR-associated protein 9) to correct the GBE1102C>A mutation in a primary fibroblast cell line derived from a high genetic merit heterozygous stallion. To correct this mutation by homologous recombination (HR), we designed a series of single guide RNAs (sgRNAs) flanking the mutation and provided different single-stranded donor DNA templates. The distance between the Cas9-mediated double-stranded break (DSB) to the mutation site, rather than DSB efficiency, was the primary determinant for successful HR. This framework can be used for targeting other harmful diseases in animal populations.
Collapse
Affiliation(s)
- Carlos Pinzon-Arteaga
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Matthew D Snyder
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | | | - Nicolas F Moreno
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Michael C Golding
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - Dickson D Varner
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
16
|
Characterization of A Homozygous Deletion of Steroid Hormone Biosynthesis Genes in Horse Chromosome 29 as A Risk Factor for Disorders of Sex Development and Reproduction. Genes (Basel) 2020; 11:genes11030251. [PMID: 32120906 PMCID: PMC7140900 DOI: 10.3390/genes11030251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Disorders of sex development (DSD) and reproduction are not uncommon among horses, though knowledge about their molecular causes is sparse. Here we characterized a ~200 kb homozygous deletion in chromosome 29 at 29.7-29.9 Mb. The region contains AKR1C genes which function as ketosteroid reductases in steroid hormone biosynthesis, including androgens and estrogens. Mutations in AKR1C genes are associated with human DSDs. Deletion boundaries, sequence properties and gene content were studied by PCR and whole genome sequencing of select deletion homozygotes and control animals. Deletion analysis by PCR in 940 horses, including 622 with DSDs and reproductive problems and 318 phenotypically normal controls, detected 67 deletion homozygotes of which 79% were developmentally or reproductively abnormal. Altogether, 8-9% of all abnormal horses were homozygous for the deletion, with the highest incidence (9.4%) among cryptorchids. The deletion was found in ~4% of our phenotypically normal cohort, ~1% of global warmblood horses and ponies, and ~7% of draught breeds of general horse population as retrieved from published data. Based on the abnormal phenotype of the carriers, the functionally relevant gene content, and the low incidence in general population, we consider the deletion in chromosome 29 as a risk factor for equine DSDs and reproductive disorders.
Collapse
|
17
|
Suryamohan K, Krishnankutty SP, Guillory J, Jevit M, Schröder MS, Wu M, Kuriakose B, Mathew OK, Perumal RC, Koludarov I, Goldstein LD, Senger K, Dixon MD, Velayutham D, Vargas D, Chaudhuri S, Muraleedharan M, Goel R, Chen YJJ, Ratan A, Liu P, Faherty B, de la Rosa G, Shibata H, Baca M, Sagolla M, Ziai J, Wright GA, Vucic D, Mohan S, Antony A, Stinson J, Kirkpatrick DS, Hannoush RN, Durinck S, Modrusan Z, Stawiski EW, Wiley K, Raudsepp T, Kini RM, Zachariah A, Seshagiri S. The Indian cobra reference genome and transcriptome enables comprehensive identification of venom toxins. Nat Genet 2020; 52:106-117. [PMID: 31907489 PMCID: PMC8075977 DOI: 10.1038/s41588-019-0559-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/22/2019] [Indexed: 12/30/2022]
Abstract
Snakebite envenoming is a serious and neglected tropical disease that kills ~100,000 people annually. High-quality, genome-enabled comprehensive characterization of toxin genes will facilitate development of effective humanized recombinant antivenom. We report a de novo near-chromosomal genome assembly of Naja naja, the Indian cobra, a highly venomous, medically important snake. Our assembly has a scaffold N50 of 223.35 Mb, with 19 scaffolds containing 95% of the genome. Of the 23,248 predicted protein-coding genes, 12,346 venom-gland-expressed genes constitute the 'venom-ome' and this included 139 genes from 33 toxin families. Among the 139 toxin genes were 19 'venom-ome-specific toxins' (VSTs) that showed venom-gland-specific expression, and these probably encode the minimal core venom effector proteins. Synthetic venom reconstituted through recombinant VST expression will aid in the rapid development of safe and effective synthetic antivenom. Additionally, our genome could serve as a reference for snake genomes, support evolutionary studies and enable venom-driven drug discovery.
Collapse
Affiliation(s)
- Kushal Suryamohan
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
- MedGenome Inc., Foster City, CA, USA
| | | | - Joseph Guillory
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | - Matthew Jevit
- Molecular Cytogenetics laboratory, Texas A&M University, College Station, TX, USA
| | - Markus S Schröder
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | - Meng Wu
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | - Ivan Koludarov
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology, Onna-son, Japan
| | - Leonard D Goldstein
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
- Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Kate Senger
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | | | | | - Derek Vargas
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
- MedGenome Inc., Foster City, CA, USA
| | - Subhra Chaudhuri
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | | | - Ridhi Goel
- AgriGenome Labs Private Ltd, Kochi, India
| | - Ying-Jiun J Chen
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | - Aakrosh Ratan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Peter Liu
- Department of Microchemistry Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Brendan Faherty
- Department of Microchemistry Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Guillermo de la Rosa
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Hiroki Shibata
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuouka, Japan
| | - Miriam Baca
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Meredith Sagolla
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - James Ziai
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Gus A Wright
- College of Veterinary Medicine, Flow Cytometry Shared Resource Laboratory, Texas A&M University, College Station, TX, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, USA
| | - Sangeetha Mohan
- Department of Molecular Biology, SciGenom Labs, Kochi, India
| | - Aju Antony
- Department of Molecular Biology, SciGenom Labs, Kochi, India
| | - Jeremy Stinson
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | - Donald S Kirkpatrick
- Department of Microchemistry Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Rami N Hannoush
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, USA
| | - Steffen Durinck
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
- Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Zora Modrusan
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | - Eric W Stawiski
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
- MedGenome Inc., Foster City, CA, USA
| | | | - Terje Raudsepp
- Molecular Cytogenetics laboratory, Texas A&M University, College Station, TX, USA
| | - R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Arun Zachariah
- SciGenom Research Foundation, Bangalore, India
- Wayanad Wildlife Sanctuary, Sultan Bathery, India
| | - Somasekar Seshagiri
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA.
- SciGenom Research Foundation, Bangalore, India.
| |
Collapse
|
18
|
Azoospermia and Y Chromosome-Autosome Translocation in a Friesian Stallion. J Equine Vet Sci 2019; 82:102781. [PMID: 31732110 DOI: 10.1016/j.jevs.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 01/06/2023]
Abstract
This case report describes spermatogenic arrest and azoospermia in a stallion with a unique Y chromosome-autosome translocation. Clinical diagnosis of azoospermia was based on history of infertility and evaluation of ejaculates collected for artificial insemination. Clinical and ultrasonographic evaluation of the external and internal genitalia did not reveal any abnormalities except for smaller than normal testicular size. Azoospermia of testicular origin was confirmed by determining alkaline phosphatase concentration in semen. Histological evaluation of testicular tissue after castration confirmed early spermatogenic arrest. Cytogenetic evaluation showed the presence of translocation between the Y chromosome and chromosome 13. To the authors' knowledge, this is the first case of azoospermia with a cytogenetically detected Y chromosome abnormality, suggesting that the horse Y chromosome may carry sequences critical for normal spermatogenesis.
Collapse
|
19
|
Mendoza MN, Raudsepp T, Alshanbari F, Gutiérrez G, Ponce de León FA. Chromosomal Localization of Candidate Genes for Fiber Growth and Color in Alpaca ( Vicugna pacos). Front Genet 2019; 10:583. [PMID: 31275359 PMCID: PMC6593342 DOI: 10.3389/fgene.2019.00583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/04/2019] [Indexed: 12/20/2022] Open
Abstract
The alpaca (Vicugna pacos) is an economically important and cultural signature species in Peru. Thus, molecular genomic information about the genes underlying the traits of interest, such as fiber properties and color, is critical for improved breeding and management schemes. Current knowledge about the alpaca genome, particularly the chromosomal location of such genes of interest is limited and lags far behind other livestock species. The main objective of this work was to localize alpaca candidate genes for fiber growth and color using fluorescence in situ hybridization (FISH). We report the mapping of candidate genes for fiber growth COL1A1, CTNNB1, DAB2IP, KRT15, KRTAP13-1, and TNFSF12 to chromosomes 16, 17, 4, 16, 1, and 16, respectively. Likewise, we report the mapping of candidate genes for fiber color ALX3, NCOA6, SOX9, ZIC1, and ZIC5 to chromosomes 9, 19, 16, 1, and 14, respectively. In addition, since KRT15 clusters with five other keratin genes (KRT31, KRT13, KRT9, KRT14, and KRT16) in scaffold 450 (Vic.Pac 2.0.2), the entire gene cluster was assigned to chromosome 16. Similarly, mapping NCOA6 to chromosome 19, anchored scaffold 34 with 8 genes, viz., RALY, EIF2S2, XPOTP1, ASIP, AHCY, ITCH, PIGU, and GGT7 to chromosome 19. These results are concordant with known conserved synteny blocks between camelids and humans, cattle and pigs.
Collapse
Affiliation(s)
- Mayra N. Mendoza
- Programa de Mejoramiento Animal, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Terje Raudsepp
- Molecular Cytogenetics and Genomics Laboratory, Texas A&M University, College Station, TX, United States
| | - Fahad Alshanbari
- Molecular Cytogenetics and Genomics Laboratory, Texas A&M University, College Station, TX, United States
| | - Gustavo Gutiérrez
- Programa de Mejoramiento Animal, Universidad Nacional Agraria La Molina, Lima, Peru
| | - F. Abel Ponce de León
- Department of Animal Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
20
|
Alshanbari F, Castaneda C, Juras R, Hillhouse A, Mendoza MN, Gutiérrez GA, Ponce de León FA, Raudsepp T. Comparative FISH-Mapping of MC1R, ASIP, and TYRP1 in New and Old World Camelids and Association Analysis With Coat Color Phenotypes in the Dromedary ( Camelus dromedarius). Front Genet 2019; 10:340. [PMID: 31040864 PMCID: PMC6477024 DOI: 10.3389/fgene.2019.00340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Melanocortin 1 receptor (MC1R), the agouti signaling protein (ASIP), and tyrosinase related protein 1 (TYRP1) are among the major regulators of pigmentation in mammals. Recently, MC1R and ASIP sequence variants were associated with white and black/dark brown coat colors, respectively, in the dromedary. Here we confirmed this association by independent sequencing and mutation discovery of MC1R and ASIP coding regions and by TaqMan genotyping in 188 dromedaries from Saudi Arabia and United States, including 38 black, 53 white, and 97 beige/brown/red animals. We showed that heterozygosity for a missense mutation c.901C > T in MC1R is sufficient for the white coat color suggesting a possible dominant negative effect. Likewise, we confirmed that the majority of black dromedaries were homozygous for a frameshift mutation in ASIP exon 2, except for 4 animals, which were heterozygous. In search for additional mutations underlying the black color, we identified another frameshift mutation in ASIP exon 4 and 6 new variants in MC1R including a significantly associated SNP in 3'UTR. In pursuit of sequence variants that may modify dromedary wild-type color from dark-reddish brown to light beige, we identified 4 SNPs and one insertion in TYRP1 non-coding regions. However, none of these were associated with variations in wild-type colors. Finally, the three genes were cytogenetically mapped in New World (alpaca) and Old World (dromedary and Bactrian camel) camelids. The MC1R was assigned to chr21, ASIP to chr19 and TYRP1 to chr4 in all 3 species confirming extensive conservation of camelid karyotypes. Notably, while the locations of ASIP and TYRP1 were in agreement with human-camelid comparative map, mapping MC1R identified a new evolutionary conserved synteny segment between camelid chromosome 21 and HSA16. The findings contribute to coat color genomics and the development of molecular tests in camelids and toward the chromosome level reference assemblies of camelid genomes.
Collapse
Affiliation(s)
- Fahad Alshanbari
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Caitlin Castaneda
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Andrew Hillhouse
- Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, United States
| | - Mayra N. Mendoza
- Animal Breeding Program, National Agrarian University La Molina, Lima, Peru
| | | | | | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
21
|
Baily MP, Avila F, Das PJ, Kutzler MA, Raudsepp T. An Autosomal Translocation 73,XY,t(12;20)(q11;q11) in an Infertile Male Llama ( Lama glama) With Teratozoospermia. Front Genet 2019; 10:344. [PMID: 31040865 PMCID: PMC6476961 DOI: 10.3389/fgene.2019.00344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/29/2019] [Indexed: 12/19/2022] Open
Abstract
Structural chromosome abnormalities, such as translocations and inversions occasionally occur in all livestock species and are typically associated with reproductive and developmental disorders. Curiously, only a few structural chromosome aberrations have been reported in camelids, and most involved sex chromosomes. This can be attributed to a high diploid number (2n = 74) and complex chromosome morphology, which makes unambiguous identification of camelid chromosomes difficult. Additionally, molecular tools for camelid cytogenetics are sparse and have become available only recently. Here we present a case report about an infertile male llama with teratozoospermia and abnormal chromosome number 2n = 73,XY. This llama carries an autosomal translocation of chromosomes 12 and 20, which is the likely cause of defective spermatogenesis and infertility in this individual. Our analysis underlines the power of molecular cytogenetics methods over conventional banding-based chromosome analysis for explicit identification of normal and aberrant chromosomes in camelid karyotypes. This is the first case of a translocation and the first autosomal aberration reported in any camelid species. It is proof of principle that, like in other mammalian species, structural chromosome abnormalities contribute to reproductive disorders in camelids.
Collapse
Affiliation(s)
- Malorie P Baily
- School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Felipe Avila
- School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Pranab J Das
- ICAR-National Research Centre on Pig, Assam, India
| | - Michelle A Kutzler
- Department of Animal and Rangeland Sciences, College of Agricultural Science, Oregon State University, Corvallis, OR, United States
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
22
|
Brashear WA, Raudsepp T, Murphy WJ. Evolutionary conservation of Y Chromosome ampliconic gene families despite extensive structural variation. Genome Res 2018; 28:1841-1851. [PMID: 30381290 PMCID: PMC6280758 DOI: 10.1101/gr.237586.118] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/27/2018] [Indexed: 12/20/2022]
Abstract
Despite claims that the mammalian Y Chromosome is on a path to extinction, comparative sequence analysis of primate Y Chromosomes has shown the decay of the ancestral single-copy genes has all but ceased in this eutherian lineage. The suite of single-copy Y-linked genes is highly conserved among the majority of eutherian Y Chromosomes due to strong purifying selection to retain dosage-sensitive genes. In contrast, the ampliconic regions of the Y Chromosome, which contain testis-specific genes that encode the majority of the transcripts on eutherian Y Chromosomes, are rapidly evolving and are thought to undergo species-specific turnover. However, ampliconic genes are known from only a handful of species, limiting insights into their long-term evolutionary dynamics. We used a clone-based sequencing approach employing both long- and short-read sequencing technologies to assemble ∼2.4 Mb of representative ampliconic sequence dispersed across the domestic cat Y Chromosome, and identified the major ampliconic gene families and repeat units. We analyzed fluorescence in situ hybridization, qPCR, and whole-genome sequence data from 20 cat species and revealed that ampliconic gene families are conserved across the cat family Felidae but show high transcript diversity, copy number variation, and structural rearrangement. Our analysis of ampliconic gene evolution unveils a complex pattern of long-term gene content stability despite extensive structural variation on a nonrecombining background.
Collapse
Affiliation(s)
- Wesley A Brashear
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA.,Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas 77843, USA
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA.,Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas 77843, USA
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA.,Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
23
|
Burns EN, Bordbari MH, Mienaltowski MJ, Affolter VK, Barro MV, Gianino F, Gianino G, Giulotto E, Kalbfleisch TS, Katzman SA, Lassaline M, Leeb T, Mack M, Müller EJ, MacLeod JN, Ming-Whitfield B, Alanis CR, Raudsepp T, Scott E, Vig S, Zhou H, Petersen JL, Bellone RR, Finno CJ. Generation of an equine biobank to be used for Functional Annotation of Animal Genomes project. Anim Genet 2018; 49:564-570. [PMID: 30311254 DOI: 10.1111/age.12717] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2018] [Indexed: 12/13/2022]
Abstract
The Functional Annotation of Animal Genomes (FAANG) project aims to identify genomic regulatory elements in both sexes across multiple stages of development in domesticated animals. This study represents the first stage of the FAANG project for the horse, Equus caballus. A biobank of 80 tissue samples, two cell lines and six body fluids was created from two adult Thoroughbred mares. Ante-mortem assessments included full physical examinations, lameness, ophthalmologic and neurologic evaluations. Complete blood counts and serum biochemistries were also performed. At necropsy, in addition to tissue samples, aliquots of serum, ethylenediaminetetraacetic acid (EDTA) plasma, heparinized plasma, cerebrospinal fluid, synovial fluid, urine and microbiome samples from all regions of the gastrointestinal and urogenital tracts were collected. Epidermal keratinocytes and dermal fibroblasts were cultured from skin samples. All tissues were grossly and histologically evaluated by a board-certified veterinary pathologist. The results of the clinical and pathological evaluations identified subclinical eosinophilic and lymphocytic infiltration throughout the length of the gastrointestinal tract as well as a mild clinical lameness in both animals. Each sample was cryo-preserved in multiple ways, and nuclei were extracted from selected tissues. These samples represent the first published systemically healthy equine-specific biobank with extensive clinical phenotyping ante- and post-mortem. The tissues in the biobank are intended for community-wide use in the functional annotation of the equine genome. The use of the biobank will improve the quality of the reference annotation and allow all equine researchers to elucidate unknown genomic and epigenomic causes of disease.
Collapse
Affiliation(s)
- E N Burns
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - M H Bordbari
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - M J Mienaltowski
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, 95616, USA
| | - V K Affolter
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - M V Barro
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - F Gianino
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - G Gianino
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - E Giulotto
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 1, Pavia, I-27100, Italy
| | - T S Kalbfleisch
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, 40292, USA
| | - S A Katzman
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95618, USA
| | - M Lassaline
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95618, USA
| | - T Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - M Mack
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - E J Müller
- Department of Biomedical Research, Molecular Dermatology and Stem Cell Research, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, 3001, Switzerland
| | - J N MacLeod
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - B Ming-Whitfield
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - C R Alanis
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - T Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77845, USA
| | - E Scott
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, 95616, USA
| | - S Vig
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - H Zhou
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, 95616, USA
| | - J L Petersen
- Department of Animal Science, University of Nebraska - Lincoln, Lincoln, NE, 68583, USA
| | - R R Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA.,Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - C J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
24
|
Janečka JE, Davis BW, Ghosh S, Paria N, Das PJ, Orlando L, Schubert M, Nielsen MK, Stout TAE, Brashear W, Li G, Johnson CD, Metz RP, Zadjali AMA, Love CC, Varner DD, Bellott DW, Murphy WJ, Chowdhary BP, Raudsepp T. Horse Y chromosome assembly displays unique evolutionary features and putative stallion fertility genes. Nat Commun 2018; 9:2945. [PMID: 30054462 PMCID: PMC6063916 DOI: 10.1038/s41467-018-05290-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/23/2018] [Indexed: 01/08/2023] Open
Abstract
Dynamic evolutionary processes and complex structure make the Y chromosome among the most diverse and least understood regions in mammalian genomes. Here, we present an annotated assembly of the male specific region of the horse Y chromosome (eMSY), representing the first comprehensive Y assembly in odd-toed ungulates. The eMSY comprises single-copy, equine specific multi-copy, PAR transposed, and novel ampliconic sequence classes. The eMSY gene density approaches that of autosomes with the highest number of retained X-Y gametologs recorded in eutherians, in addition to novel Y-born and transposed genes. Horse, donkey and mule testis RNAseq reveals several candidate genes for stallion fertility. A novel testis-expressed XY ampliconic sequence class, ETSTY7, is shared with the parasite Parascaris genome, providing evidence for eukaryotic horizontal transfer and inter-chromosomal mobility. Our study highlights the dynamic nature of the Y and provides a reference sequence for improved understanding of equine male development and fertility.
Collapse
Affiliation(s)
| | - Brian W Davis
- Texas A&M University, College Station, TX, 77843, USA
| | | | - Nandina Paria
- Texas Scottish Rite Hospital for Children, Dallas, TX, 75219, USA
| | - Pranab J Das
- ICAR-National Research Centre on Pig, Guwahati, Assam, 781131, India
| | - Ludovic Orlando
- Natural History Museum of Denmark, 1350K, Copenhagen, Denmark.,Université de Toulouse, Université Paul Sabatier, 31000, Toulouse, France
| | - Mikkel Schubert
- Natural History Museum of Denmark, 1350K, Copenhagen, Denmark
| | | | | | | | - Gang Li
- Texas A&M University, College Station, TX, 77843, USA
| | | | - Richard P Metz
- Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | | | | | | | | | | | - Bhanu P Chowdhary
- Texas A&M University, College Station, TX, 77843, USA. .,United Arab Emirates University, Al Ain, 15551, UAE.
| | | |
Collapse
|
25
|
Alkhilaiwi F, Wang L, Zhou D, Raudsepp T, Ghosh S, Paul S, Palechor-Ceron N, Brandt S, Luff J, Liu X, Schlegel R, Yuan H. Long-term expansion of primary equine keratinocytes that maintain the ability to differentiate into stratified epidermis. Stem Cell Res Ther 2018; 9:181. [PMID: 29973296 PMCID: PMC6032561 DOI: 10.1186/s13287-018-0918-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Skin injuries in horses frequently lead to chronic wounds that lack a keratinocyte cover essential for healing. The limited proliferation of equine keratinocytes using current protocols has limited their use for regenerative medicine. Previously, equine induced pluripotent stem cells (eiPSCs) have been produced, and eiPSCs could be differentiated into equine keratinocytes suitable for stem cell-based skin constructs. However, the procedure is technically challenging and time-consuming. The present study was designed to evaluate whether conditional reprogramming (CR) could expand primary equine keratinocytes rapidly in an undifferentiated state but retain their ability to differentiate normally and form stratified epithelium. METHODS Conditional reprogramming was used to isolate and propagate two equine keratinocyte cultures. PCR and FISH were employed to evaluate the equine origin of the cells and karyotyping to perform a chromosomal count. FACS analysis and immunofluorescence were used to determine the purity of equine keratinocytes and their proliferative state. Three-dimensional air-liquid interphase method was used to test the ability of cells to differentiate and form stratified squamous epithelium. RESULTS Conditional reprogramming was an efficient method to isolate and propagate two equine keratinocyte cultures. Cells were propagated at the rate of 2.39 days/doubling for more than 40 population doublings. A feeder-free culture method was also developed for long-term expansion. Rock-inhibitor is critical for both feeder and feeder-free conditions and for maintaining the proliferating cells in a stem-like state. PCR and FISH validated equine-specific markers in the cultures. Karyotyping showed normal equine 64, XY chromosomes. FACS using pan-cytokeratin antibodies showed a pure population of keratinocytes. When ROCK inhibitor was withdrawn and the cells were transferred to a three-dimensional air-liquid culture, they formed a well-differentiated stratified squamous epithelium, which was positive for terminal differentiation markers. CONCLUSIONS Our results prove that conditional reprogramming is the first method that allows for the rapid and continued in vitro propagation of primary equine keratinocytes. These unlimited supplies of autologous cells could be used to generate transplants without the risk of immune rejection. This offers the opportunity for treating recalcitrant horse wounds using autologous transplantation.
Collapse
Affiliation(s)
- Faris Alkhilaiwi
- Department of Pathology, Georgetown University Medical School, Washington, DC 20057 USA
- Department of Oncology, Georgetown University Medical School, Washington, DC 20057 USA
- Department of Biochemistry and Molecular Biology, Georgetown University Medical School, Washington, DC 20057 USA
- College of Pharmacy, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Liqing Wang
- Department of Pathology, Georgetown University Medical School, Washington, DC 20057 USA
| | - Dan Zhou
- Department of Pathology, Georgetown University Medical School, Washington, DC 20057 USA
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX USA
| | - Sharmila Ghosh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX USA
| | - Siddartha Paul
- Department of Pathology, Georgetown University Medical School, Washington, DC 20057 USA
| | - Nancy Palechor-Ceron
- Department of Pathology, Georgetown University Medical School, Washington, DC 20057 USA
| | - Sabine Brandt
- Equine Clinic, VetOMICs Core Facility, Veterinary University Vienna, Vienna, Austria
| | - Jennifer Luff
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
| | - Xuefeng Liu
- Department of Pathology, Georgetown University Medical School, Washington, DC 20057 USA
| | - Richard Schlegel
- Department of Pathology, Georgetown University Medical School, Washington, DC 20057 USA
| | - Hang Yuan
- Department of Pathology, Georgetown University Medical School, Washington, DC 20057 USA
| |
Collapse
|
26
|
Abstract
The association between chromosomal abnormalities and reduced fertility in domestic animals is well recorded and has been studied for decades. Chromosome aberrations directly affect meiosis, gametogenesis, and the viability of zygotes and embryos. In some instances, balanced structural rearrangements can be transmitted, causing fertility problems in subsequent generations. Here, we aim to give a comprehensive overview of the current status and future prospects of clinical cytogenetics of animal reproduction by focusing on the advances in molecular cytogenetics during the genomics era. We describe how advancing knowledge about animal genomes has improved our understanding of connections between gross structural or molecular chromosome variations and reproductive disorders. Further, we expand on a key area of reproduction genetics: cytogenetics of animal gametes and embryos. Finally, we describe how traditional cytogenetics is interfacing with advanced genomics approaches, such as array technologies and next-generation sequencing, and speculate about the future prospects.
Collapse
Affiliation(s)
- Terje Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458;
| | | |
Collapse
|
27
|
Ma L, Qin T, Chu D, Cheng X, Wang J, Wang X, Wang P, Han H, Ren L, Aitken R, Hammarström L, Li N, Zhao Y. Internal Duplications of DH, JH, and C Region Genes Create an Unusual IgH Gene Locus in Cattle. THE JOURNAL OF IMMUNOLOGY 2016; 196:4358-66. [PMID: 27053761 DOI: 10.4049/jimmunol.1600158] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/09/2016] [Indexed: 02/03/2023]
Abstract
It has been suspected for many years that cattle possess two functional IgH gene loci, located on Bos taurus autosome (BTA) 21 and BTA11, respectively. In this study, based on fluorescence in situ hybridization and additional experiments, we showed that all functional bovine IgH genes were located on BTA21, and only a truncated μCH2 exon was present on BTA11. By sequencing of seven bacterial artificial chromosome clones screened from a Hostein cow bacterial artificial chromosome library, we generated a 678-kb continuous genomic sequence covering the bovine IGHV, IGHD, IGHJ, and IGHC genes, which are organized as IGHVn-IGHDn-IGHJn-IGHM1-(IGHDP-IGHV3-IGHDn)3-IGHJn-IGHM2-IGHD-IGHG3-IGHG1-IGHG2-IGHE-IGHA. Although both of two functional IGHM genes, IGHM1 and IGHM2, can be expressed via independent VDJ recombinations, the IGHM2 can also be expressed through class switch recombination. Likely because more IGHD segments can be involved in the expression of IGHM2, the IGHM2 gene was shown to be dominantly expressed in most tissues throughout different developmental stages. Based on the length and identity of the coding sequence, the 23 IGHD segments identified in the locus could be divided into nine subgroups (termed IGHD1 to IGHD9). Except two members of IGHD9 (14 nt in size), all other functional IGHD segments are longer than 30 nt, with the IGHD8 gene (149 bp) to be the longest. These remarkably long germline IGHD segments play a pivotal role in generating the exceptionally great H chain CDR 3 length variability in cattle.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Tong Qin
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Dan Chu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xueqian Cheng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xifeng Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Peng Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Robert Aitken
- Faculty of Health and Life Sciences, York St John University, York YO31 7EX, United Kingdom; and
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China;
| |
Collapse
|
28
|
Kjöllerström HJ, do Mar Oom M, Chowdhary BP, Raudsepp T. Fertility Assessment in Sorraia Stallions by Sperm-Fish and Fkbp6 Genotyping. Reprod Domest Anim 2016; 51:351-9. [PMID: 27020485 DOI: 10.1111/rda.12686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 02/27/2016] [Indexed: 01/10/2023]
Abstract
The Sorraia, a critically endangered indigenous Iberian horse breed, is characterized by low genetic variability, high rate of inbreeding, bad sperm quality and subfertility. Here, we studied 11 phenotypically normal but subfertile Sorraia stallions by karyotyping, sex chromosome sperm-FISH and molecular analysis of FKBP6 - a susceptibility locus for impaired acrosome reaction (IAR). The stallions had normal sperm concentration (>300 million cells/ml), but the numbers of progressively motile sperm (21%) and morphologically normal sperm (28%) were invariably low. All stallions had a normal 64,XY karyotype. The majority of sperm (89%) had normal haploid sex chromosome content, although 11% of sperm carried various sex chromosome aneuploidies. No correlation was found between the percentage of sperm sex chromosome abnormalities and inbreeding, sperm morphology or stallion age. Direct sequencing of FKBP6 exon 4 for SNPs g.11040315G>A and g.11040379C>A revealed that none of the stallions had the susceptibility genotype (A/A-A/A) for IAR. Instead, all animals had a G/G-A/A genotype - a testimony of low genetic variability. The findings ruled out chromosomal abnormalities and genetic predisposition for IAR as contributing factors for subfertility. However, low fertility of the Sorraia stallions could be partly attributed to relatively higher rate of sex chromosome aneuploidies in the sperm.
Collapse
Affiliation(s)
- H J Kjöllerström
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - M do Mar Oom
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | | | - T Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
29
|
Staiger EA, Al Abri MA, Pflug KM, Kalla SE, Ainsworth DM, Miller D, Raudsepp T, Sutter NB, Brooks SA. Skeletal variation in Tennessee Walking Horses maps to the LCORL/NCAPG gene region. Physiol Genomics 2016; 48:325-35. [PMID: 26931356 DOI: 10.1152/physiolgenomics.00100.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/19/2016] [Indexed: 11/22/2022] Open
Abstract
Conformation has long been a driving force in horse selection and breed creation as a predictor for performance. The Tennessee Walking Horse (TWH) ranges in size from 1.5 to 1.7 m and is often used as a trail, show, and pleasure horse. To investigate the contribution of genetics to body conformation in the TWH, we collected DNA samples, body measurements, and gait/training information from 282 individuals. We analyzed the 32 body measures with a principal component analysis. Principal component (PC)1 captured 28.5% of the trait variance, while PC2 comprised just 9.5% and PC3 6.4% of trait variance. All 32 measures correlated positively with PC1, indicating that PC1 describes overall body size. We genotyped 109 horses using the EquineSNP70 bead chip and marker association assessed the data using PC1 scores as a phenotype. Mixed-model linear analysis (EMMAX) revealed a well-documented candidate locus on ECA3 (raw P = 3.86 × 10(-9)) near the LCORL gene. A custom genotyping panel enabled fine-mapping of the PC1 body-size trait to the 3'-end of the LCORL gene (P = 7.09 × 10(-10)). This position differs from other reports suggesting single nucleotide polymorphisms (SNPs) upstream of the LCORL coding sequence regulate expression of the gene and, therefore, body size in horses. Fluorescent in situ hybridization analysis defined the position of a highly homologous 5 kb retrogene copy of LCORL (assigned to unplaced contigs of the EquCab 2.0 assembly) at ECA9 q12-q13. This is the first study to identify putative causative SNPs within the LCORL transcript itself, which are associated with skeletal size variation in horses.
Collapse
Affiliation(s)
- E A Staiger
- Department of Animal Science, Cornell University, Ithaca, New York
| | - M A Al Abri
- Department of Animal and Veterinary Sciences, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - K M Pflug
- Department of Animal Science, University of Florida, Gainesville, Florida
| | - S E Kalla
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - D M Ainsworth
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - D Miller
- Baker Institute for Animal Health, Cornell University, Ithaca, New York
| | - T Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; and
| | - N B Sutter
- Department of Biology, La Sierra University, Riverside, California
| | - S A Brooks
- Department of Animal Science, University of Florida, Gainesville, Florida;
| |
Collapse
|
30
|
Seibold-Torres C, Owens E, Chowdhary R, Ferguson-Smith MA, Tizard I, Raudsepp T. Comparative Cytogenetics of the Congo African Grey Parrot (Psittacus erithacus). Cytogenet Genome Res 2016; 147:144-53. [PMID: 26894300 DOI: 10.1159/000444136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2015] [Indexed: 11/19/2022] Open
Abstract
The Congo African grey parrot (Psittacus erithacus, PER) is an endemic species of Central Africa, valued for its intelligence and listed as vulnerable due to poaching and habitat destruction. Improved knowledge about the P. erithacus genome is needed to address key biological questions and conservation of this species. The P. erithacus genome was studied using conventional and molecular cytogenetic approaches including Zoo-FISH. P. erithacus has a 'typical' parrot karyotype with 2n = 62-64 and 8 pairs of macrochromosomes. A distinct feature was a sharp macro-microchromosome boundary. Telomeric sequences were present at all chromosome ends and interstitially in PER2q, the latter coinciding with a C-band. NORs mapped to 4 pairs of microchromosomes which is in contrast to a single NOR in ancestral type avian karyotypes. Zoo-FISH with chicken macrochromosomes GGA1-9 and Z revealed patterns of conserved synteny similar to many other avian groups, though neighboring synteny combinations of GGA6/7, 8/9, and 1/4 were distinctive only to parrots. Overall, P. erithacus shared more Zoo-FISH patterns with neotropical macaws than Australian species such as cockatiel and budgerigar. The observations suggest that Psittaciformes karyotypes have undergone more extensive evolutionary rearrangements compared to the majority of other avian genomes.
Collapse
Affiliation(s)
- Cassandra Seibold-Torres
- Department of Veterinary Integrative Biosciences, Schubot Exotic Bird Health Center, CVM, Texas A&M University, College Station, Tex., USA
| | | | | | | | | | | |
Collapse
|
31
|
Ghosh S, Das PJ, Avila F, Thwaits BK, Chowdhary BP, Raudsepp T. A Non-Reciprocal Autosomal Translocation 64,XX, t(4;10)(q21;p15) in an Arabian Mare with Repeated Early Embryonic Loss. Reprod Domest Anim 2015; 51:171-4. [PMID: 26547799 DOI: 10.1111/rda.12636] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/06/2015] [Indexed: 11/30/2022]
Abstract
Balanced autosomal translocations are a known cause for repeated early embryonic loss (REEL) in horses. In most cases, carriers of such translocations are phenotypically normal, but the chromosomal aberration negatively affects gametogenesis giving rise to both genetically balanced and unbalanced gametes. The latter, if involved in fertilization, result in REEL, whereas gametes with the balanced form of translocation will pass the defect into next generation. Therefore, in order to reduce the incidence of REEL, identification of translocation carriers is critical. Here, we report about a phenotypically normal 3-year-old Arabian mare that had repeated resorption of conceptuses prior to day 45 of gestation and was diagnosed with REEL. Conventional and molecular cytogenetic analyses revealed that the mare had normal chromosome number 64,XX but carried a non-mosaic and non-reciprocal autosomal translocation t(4;10)(q21;p15). This is a novel translocation described in horses with REEL and the first such report in Arabians. Previous cases of REEL due to autosomal translocations have exclusively involved Thoroughbreds. The findings underscore the importance of routine cytogenetic screening of breeding animals.
Collapse
Affiliation(s)
- S Ghosh
- Texas A&M University, College Station, TX, USA
| | - P J Das
- National Research Centre on Yak, Dirang, Arunachal Pradesh, India
| | - F Avila
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | | | | | - T Raudsepp
- Texas A&M University, College Station, TX, USA
| |
Collapse
|
32
|
Sotero-Caio CG, Volleth M, Hoffmann FG, Scott L, Wichman HA, Yang F, Baker RJ. Integration of molecular cytogenetics, dated molecular phylogeny, and model-based predictions to understand the extreme chromosome reorganization in the Neotropical genus Tonatia (Chiroptera: Phyllostomidae). BMC Evol Biol 2015; 15:220. [PMID: 26444412 PMCID: PMC4594642 DOI: 10.1186/s12862-015-0494-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/22/2015] [Indexed: 11/18/2022] Open
Abstract
Background Defining factors that contributed to the fixation of a high number of underdominant chromosomal rearrangements is a complex task because not only molecular mechanisms must be considered, but also the uniqueness of natural history attributes of each taxon. Ideally, detailed investigation of the chromosome architecture of an organism and related groups, placed within a phylogenetic context, is required. We used multiple approaches to investigate the dynamics of chromosomal evolution in lineages of bats with considerable karyotypic variation, focusing on the different facets contributing to fixation of the exceptional chromosomal changes in Tonatia saurophila. Integration of empirical data with proposed models of chromosome evolution was performed to understand the probable conditions for Tonatia’s karyotypic evolution. Results The trajectory of reorganization of chromosome blocks since the common ancestor of Glossophaginae and Phyllostominae subfamilies suggests that multiple tandem fusions, as well as disruption and fusions of conserved phyllostomid chromosomes were major drivers of karyotypic reshuffling in Tonatia. Considerable variation in the rates of chromosomal evolution between phyllostomid lineages was observed. Thirty–nine unique fusions and fission events reached fixation in Tonatia over a short period of time, followed by ~12 million years of chromosomal stasis. Physical mapping of repetitive DNA revealed an unusual accumulation of LINE-1 sequences on centromeric regions, probably associated with the chromosomal dynamics of this genus. Conclusions Multiple rearrangements have reached fixation in a wave-like fashion in phyllostomid bats. Different biological features of Tonatia support distinct models of rearrangement fixation, and it is unlikely that the fixations were a result of solely stochastic processes in small ancient populations. Increased recombination rates were probably facilitated by expansion of repetitive DNA, reinforced by aspects of taxon reproduction and ecology. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0494-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Marianne Volleth
- Department of Human Genetics, Otto-von-Guericke University, Magdeburg, Germany.
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi, MS, USA. .,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS, USA.
| | - LuAnn Scott
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
| | - Holly A Wichman
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
| | - Fengtang Yang
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK.
| | - Robert J Baker
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
33
|
Avila F, Baily MP, Perelman P, Das PJ, Pontius J, Chowdhary R, Owens E, Johnson WE, Merriwether DA, Raudsepp T. A comprehensive whole-genome integrated cytogenetic map for the alpaca (Lama pacos). Cytogenet Genome Res 2015; 144:196-207. [PMID: 25662411 DOI: 10.1159/000370329] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2014] [Indexed: 11/19/2022] Open
Abstract
Genome analysis of the alpaca (Lama pacos, LPA) has progressed slowly compared to other domestic species. Here, we report the development of the first comprehensive whole-genome integrated cytogenetic map for the alpaca using fluorescence in situ hybridization (FISH) and CHORI-246 BAC library clones. The map is comprised of 230 linearly ordered markers distributed among all 36 alpaca autosomes and the sex chromosomes. For the first time, markers were assigned to LPA14, 21, 22, 28, and 36. Additionally, 86 genes from 15 alpaca chromosomes were mapped in the dromedary camel (Camelus dromedarius, CDR), demonstrating exceptional synteny and linkage conservation between the 2 camelid genomes. Cytogenetic mapping of 191 protein-coding genes improved and refined the known Zoo-FISH homologies between camelids and humans: we discovered new homologous synteny blocks (HSBs) corresponding to HSA1-LPA/CDR11, HSA4-LPA/CDR31 and HSA7-LPA/CDR36, and revised the location of breakpoints for others. Overall, gene mapping was in good agreement with the Zoo-FISH and revealed remarkable evolutionary conservation of gene order within many human-camelid HSBs. Most importantly, 91 FISH-mapped markers effectively integrated the alpaca whole-genome sequence and the radiation hybrid maps with physical chromosomes, thus facilitating the improvement of the sequence assembly and the discovery of genes of biological importance.
Collapse
Affiliation(s)
- Felipe Avila
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Tex., USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Avila F, Baily MP, Merriwether DA, Trifonov VA, Rubes J, Kutzler MA, Chowdhary R, Janečka J, Raudsepp T. A cytogenetic and comparative map of camelid chromosome 36 and the minute in alpacas. Chromosome Res 2015; 23:237-51. [PMID: 25634498 DOI: 10.1007/s10577-014-9463-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/03/2014] [Accepted: 12/18/2014] [Indexed: 01/22/2023]
Abstract
Recent advances in camelid genomics have provided draft sequence assemblies and the first comparative and gene maps for the dromedary (CDR) and the alpaca (LPA). However, no map information is currently available for the smallest camelid autosome-chr36. The chromosome is also of clinical interest because of its involvement in the minute chromosome syndrome (MCS) in infertile alpacas. Here, we developed molecular markers for camelid chr36 by direct sequencing CDR36 and LPA minute and by bioinformatics analysis of alpaca unplaced sequence scaffolds. We constructed a cytogenetic map for chr36 in the alpaca, llama, and dromedary and showed its homology to human chromosome 7 (HSA7) at 49.8-55.5 Mb. The chr36 map comprised seven markers, including two genes-ZPBP and WVC2. Comparative status of HSA7 was further refined by cytogenetic mapping of 16 HSA7 orthologs in camelid chromosomes 7 and 18 and by the analysis of HSA7-conserved synteny blocks across 11 vertebrate species. Finally, mapping chr36 markers in infertile alpacas confirmed that the minute chromosome was a derivative of chr36, but the small size was not a result of a large deletion or a translocation. Instead, cytogenetic mapping of 5.8S, 18S, and 28S rRNA genes (nucleolus organizer region (NOR)) revealed that the size difference between chr36 homologs in infertile alpacas was due to a heterozygous presence of NOR, whereas chr36 in fertile alpacas had no NOR. We theorized that the heterozygous NOR might affect chr36 pairing, recombination, and segregation in meiosis and, thus fertility.
Collapse
Affiliation(s)
- Felipe Avila
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
We constructed a 400K WG tiling oligoarray for the horse and applied it for the discovery of copy number variations (CNVs) in 38 normal horses of 16 diverse breeds, and the Przewalski horse. Probes on the array represented 18,763 autosomal and X-linked genes, and intergenic, sub-telomeric and chrY sequences. We identified 258 CNV regions (CNVRs) across all autosomes, chrX and chrUn, but not in chrY. CNVs comprised 1.3% of the horse genome with chr12 being most enriched. American Miniature horses had the highest and American Quarter Horses the lowest number of CNVs in relation to Thoroughbred reference. The Przewalski horse was similar to native ponies and draft breeds. The majority of CNVRs involved genes, while 20% were located in intergenic regions. Similar to previous studies in horses and other mammals, molecular functions of CNV-associated genes were predominantly in sensory perception, immunity and reproduction. The findings were integrated with previous studies to generate a composite genome-wide dataset of 1476 CNVRs. Of these, 301 CNVRs were shared between studies, while 1174 were novel and require further validation. Integrated data revealed that to date, 41 out of over 400 breeds of the domestic horse have been analyzed for CNVs, of which 11 new breeds were added in this study. Finally, the composite CNV dataset was applied in a pilot study for the discovery of CNVs in 6 horses with XY disorders of sexual development. A homozygous deletion involving AKR1C gene cluster in chr29 in two affected horses was considered possibly causative because of the known role of AKR1C genes in testicular androgen synthesis and sexual development. While the findings improve and integrate the knowledge of CNVs in horses, they also show that for effective discovery of variants of biomedical importance, more breeds and individuals need to be analyzed using comparable methodological approaches. Genomes of individuals in a species vary in many ways, one of which is DNA copy number variation (CNV). This includes deletions, duplications, and complex rearrangements typically larger than 50 base-pairs. CNVs are part of normal genetic variation contributing to phenotypic diversity but can also be pathogenic and associated with diseases and disorders. In order to distinguish between the two, detailed knowledge about CNVs in the species of interest is needed. Here we studied the genomes of 38 normal horses of 16 diverse breeds, and identified 258 CNV regions. We integrated our findings with previously published horse CNVs and generated a composite dataset of ∼1400 CNVRs. Despite this large number, our analysis shows that CNV research in horses needs further improvement because the current data are based on 10% of horse breeds and that most CNVRs are study-specific and require validation. Finally, we analyzed CNVs in horses with disorders of sexual development and found in two male pseudo-hermaphrodites a large deletion disrupting a group of genes involved in sex hormone metabolism and sexual differentiation. The findings underline the possible role of CNVs in complex disorders such as development and reproduction.
Collapse
|
36
|
Lear TL, Raudsepp T, Lundquist JM, Brown SE. Repeated Early Embryonic Loss in a Thoroughbred Mare with a Chromosomal Translocation [64,XX,t(2;13)]. J Equine Vet Sci 2014. [DOI: 10.1016/j.jevs.2014.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Wang F, Ekiert DC, Ahmad I, Yu W, Zhang Y, Bazirgan O, Torkamani A, Raudsepp T, Mwangi W, Criscitiello MF, Wilson IA, Schultz PG, Smider VV. Reshaping antibody diversity. Cell 2013; 153:1379-93. [PMID: 23746848 DOI: 10.1016/j.cell.2013.04.049] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/15/2013] [Accepted: 04/23/2013] [Indexed: 11/16/2022]
Abstract
Some species mount a robust antibody response despite having limited genome-encoded combinatorial diversity potential. Cows are unusual in having exceptionally long CDR H3 loops and few V regions, but the mechanism for creating diversity is not understood. Deep sequencing reveals that ultralong CDR H3s contain a remarkable complexity of cysteines, suggesting that disulfide-bonded minidomains may arise during repertoire development. Indeed, crystal structures of two cow antibodies reveal that these CDR H3s form a very unusual architecture composed of a β strand "stalk" that supports a structurally diverse, disulfide-bonded "knob" domain. Diversity arises from somatic hypermutation of an ultralong DH with a severe codon bias toward mutation to cysteine. These unusual antibodies can be elicited to recognize defined antigens through the knob domain. Thus, the bovine immune system produces an antibody repertoire composed of ultralong CDR H3s that fold into a diversity of minidomains generated through combinations of somatically generated disulfides.
Collapse
Affiliation(s)
- Feng Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Das PJ, Mishra DK, Ghosh S, Avila F, Johnson GA, Chowdhary BP, Raudsepp T. Comparative organization and gene expression profiles of the porcine pseudoautosomal region. Cytogenet Genome Res 2013; 141:26-36. [PMID: 23735614 DOI: 10.1159/000351310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2013] [Indexed: 11/19/2022] Open
Abstract
The pseudoautosomal region (PAR) has important biological functions in spermatogenesis, male fertility and early development. Even though pig (Sus scrofa, SSC) is an agriculturally and biomedically important species, and its genome is sequenced, current knowledge about the porcine PAR is sparse. Here we defined the PAR in SSCXp/Yp by demarcating the sequence of the pseudoautosomal boundary at X:6,743,567 bp in intron 3-4 of SHROOM2 and showed that SHROOM2 is truncated in SSCY. Cytogenetic mapping of 20 BAC clones containing 15 PAR and X-specific genes revealed that the pig PAR is largely collinear with other mammalian PARs or Xp terminal regions. The results improved the current SSCX sequence assembly and facilitated distinction between the PAR and X-specific genes to study their expression in adult and embryonic tissues. A pilot analysis showed that the PAR genes are expressed at higher levels than X-specific genes during early development, whereas the expression of PAR genes was higher at day 60 compared to day 26, and higher in embryonic tissues compared to placenta. The findings advance the knowledge about the comparative organization of the PAR in mammals and suggest that the region might have important functions in early development in pigs.
Collapse
Affiliation(s)
- P J Das
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Pereira CSA, Ráb P, Collares-Pereira MJ. Chromosomes of European cyprinid fishes: comparative cytogenetics and chromosomal characteristics of ribosomal DNAs in nine Iberian chondrostomine species (Leuciscinae). Genetica 2013; 140:485-95. [PMID: 23329299 DOI: 10.1007/s10709-013-9697-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 01/04/2013] [Indexed: 12/01/2022]
Abstract
Karyotypes and chromosomal features of both minor and major ribosomal RNA genes (rDNA) were investigated in nine Iberian chondrostomine species by fluorescent in situ hybridization (FISH) with 5S and 45S rDNA probes. All species presented invariably diploid values of 2n = 50 and the characteristic leuciscin karyotype pattern with 6-7 metacentric (m), 15-16 submetacentric (sm) and 3-4 subtelo- to acrocentric (st/a) chromosome pairs. The largest chromosome pair of the set was st/a as typical of Leuciscinae and no heteromorphic chromosomes could be unequivocally associated to sex determination. Achondrostoma occidentale and Pseudochondrostoma willkommii were cytogenetically characterized for the first time while Achondrostoma arcasii and Iberochondrostoma lemmingii were revisited regarding previous karyotype descriptions. Remarkable variability in number and location was observed for both molecular chromosome markers, especially within Achondrostoma and Iberochondrostoma genera. Clusters of 5S rDNA were mostly terminally associated to st/a chromosomes varying from four to eight positive signals, whilst NOR sites directly detected by the 45S rDNA probe were identified in sm chromosomes varying from three to six independent clusters. Frequent population bottlenecks in Mediterranean-type semiarid habitats were hypothesized to explain not only such extensive polymorphism which seems unique among leuciscin cyprinids but also the increased probability of fixation of rDNA translocation events.
Collapse
Affiliation(s)
- Carla Sofia A Pereira
- Faculty of Sciences, Department of Animal Biology, Centre of Environmental Biology, University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal.
| | | | | |
Collapse
|
40
|
Stafuzza NB, Greco AJ, Grant JR, Abbey CA, Gill CA, Raudsepp T, Skow LC, Womack JE, Riggs PK, Amaral MEJ. A high-resolution radiation hybrid map of the river buffalo major histocompatibility complex and comparison with BoLA. Anim Genet 2012; 44:369-76. [PMID: 23216319 DOI: 10.1111/age.12015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2012] [Indexed: 02/03/2023]
Abstract
The major histocompatibility complex (MHC) in mammals codes for antigen-presenting proteins. For this reason, the MHC is of great importance for immune function and animal health. Previous studies revealed this gene-dense and polymorphic region in river buffalo to be on the short arm of chromosome 2, which is homologous to cattle chromosome 23. Using cattle-derived STS markers and a river buffalo radiation hybrid (RH) panel (BBURH5000 ), we generated a high-resolution RH map of the river buffalo MHC region. The buffalo MHC RH map (cR5000 ) was aligned with the cattle MHC RH map (cR12000 ) to compare gene order. The buffalo MHC had similar organization to the cattle MHC, with class II genes distributed in two segments, class IIa and class IIb. Class IIa was closely associated with the class I and class III regions, and class IIb was a separate cluster. A total of 53 markers were distributed into two linkage groups based on a two-point LOD score threshold of ≥8. The first linkage group included 32 markers from class IIa, class I and class III. The second linkage group included 21 markers from class IIb. Bacterial artificial chromosome clones for seven loci were mapped by fluorescence in situ hybridization on metaphase chromosomes using single- and double-color hybridizations. The order of cytogenetically mapped markers in the region corroborated the physical order of markers obtained from the RH map and served as anchor points to align and orient the linkage groups.
Collapse
Affiliation(s)
- N B Stafuzza
- Department of Biology, UNESP - São Paulo State University, IBILCE, Sao Jose do Rio Preto, SP, 15054-000, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Avila F, Das PJ, Kutzler M, Owens E, Perelman P, Rubes J, Hornak M, Johnson WE, Raudsepp T. Development and application of camelid molecular cytogenetic tools. J Hered 2012; 105:858-69. [PMID: 23109720 DOI: 10.1093/jhered/ess067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cytogenetic chromosome maps offer molecular tools for genome analysis and clinical cytogenetics and are of particular importance for species with difficult karyotypes, such as camelids (2n = 74). Building on the available human-camel zoo-fluorescence in situ hybridization (FISH) data, we developed the first cytogenetic map for the alpaca (Lama pacos, LPA) genome by isolating and identifying 151 alpaca bacterial artificial chromosome (BAC) clones corresponding to 44 specific genes. The genes were mapped by FISH to 31 alpaca autosomes and the sex chromosomes; 11 chromosomes had 2 markers, which were ordered by dual-color FISH. The STS gene mapped to Xpter/Ypter, demarcating the pseudoautosomal region, whereas no markers were assigned to chromosomes 14, 21, 22, 28, and 36. The chromosome-specific markers were applied in clinical cytogenetics to identify LPA20, the major histocompatibility complex (MHC)-carrying chromosome, as a part of an autosomal translocation in a sterile male llama (Lama glama, LGL; 2n = 73,XY). FISH with LPAX BACs and LPA36 paints, as well as comparative genomic hybridization, were also used to investigate the origin of the minute chromosome, an abnormally small LPA36 in infertile female alpacas. This collection of cytogenetically mapped markers represents a new tool for camelid clinical cytogenetics and has applications for the improvement of the alpaca genome map and sequence assembly.
Collapse
Affiliation(s)
- Felipe Avila
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Pranab J Das
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Michelle Kutzler
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Elaine Owens
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Polina Perelman
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Jiri Rubes
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Miroslav Hornak
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Warren E Johnson
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Terje Raudsepp
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak).
| |
Collapse
|
42
|
Fellows E, Kutzler M, Avila F, Das PJ, Raudsepp T. Ovarian dysgenesis in an alpaca with a minute chromosome 36. J Hered 2012; 105:870-4. [PMID: 23008444 DOI: 10.1093/jhered/ess069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A 4-year-old female alpaca (Lama pacos [LPA]) was presented to the Oregon State Veterinary Teaching Hospital for failure to display receptive behavior to males. Although no abnormalities were found on physical examination, transrectal ultrasonographic examination of the reproductive tract revealed uterine hypoplasia and ovarian dysgenesis. Cytogenetic analysis demonstrated a normal female 74,XX karyotype with 1 exceptionally small (minute) homologue of autosome LPA36. Chromosome analysis by Giemsa staining and DAPI- and C-banding revealed that the minute LPA36 was submetacentric, AT-rich, and largely heterochromatic. Because of the small size and lack of molecular markers, it was not possible to identify the origin of the minute. There is a need to improve molecular cytogenetic tools to further study the phenomenon of this minute chromosome and its relation to female reproduction in alpacas and llamas.
Collapse
Affiliation(s)
- Elizabeth Fellows
- From the Department of Animal and Rangeland Science, Oregon State University, 315 Withycombe Hall, Corvallis, OR 97331 (Fellows and Kutzler); and the Department of Veterinary Integrative Biosciences, Molecular Cytogenetics Laboratory, Texas A&M University, College Station, TX (Avila, Das, and Raudsepp).
| | - Michelle Kutzler
- From the Department of Animal and Rangeland Science, Oregon State University, 315 Withycombe Hall, Corvallis, OR 97331 (Fellows and Kutzler); and the Department of Veterinary Integrative Biosciences, Molecular Cytogenetics Laboratory, Texas A&M University, College Station, TX (Avila, Das, and Raudsepp)
| | - Felipe Avila
- From the Department of Animal and Rangeland Science, Oregon State University, 315 Withycombe Hall, Corvallis, OR 97331 (Fellows and Kutzler); and the Department of Veterinary Integrative Biosciences, Molecular Cytogenetics Laboratory, Texas A&M University, College Station, TX (Avila, Das, and Raudsepp)
| | - Pranab J Das
- From the Department of Animal and Rangeland Science, Oregon State University, 315 Withycombe Hall, Corvallis, OR 97331 (Fellows and Kutzler); and the Department of Veterinary Integrative Biosciences, Molecular Cytogenetics Laboratory, Texas A&M University, College Station, TX (Avila, Das, and Raudsepp)
| | - Terje Raudsepp
- From the Department of Animal and Rangeland Science, Oregon State University, 315 Withycombe Hall, Corvallis, OR 97331 (Fellows and Kutzler); and the Department of Veterinary Integrative Biosciences, Molecular Cytogenetics Laboratory, Texas A&M University, College Station, TX (Avila, Das, and Raudsepp)
| |
Collapse
|
43
|
Das PJ, Lyle SK, Beehan D, Chowdhary BP, Raudsepp T. Cytogenetic and molecular characterization of Y isochromosome in a 63XO/64Xi(Yq) mosaic karyotype of an intersex horse. Sex Dev 2011; 6:117-27. [PMID: 22005008 DOI: 10.1159/000332212] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sex chromosome aberrations commonly lead to abnormal sexual development. Here we cytogenetically and molecularly characterized Y isochromosome in an intersex horse. Blood lymphocyte analysis showed a mosaic karyotype with 96% 63,XO and 4% 64,Xi(Y) cells. Molecular analysis of the isochromosome was carried out by fluorescence in situ hybridization and polymerase chain reaction with male-specific and pseudoautosomal markers from the horse Y chromosome. We found that the isochromosome was monocentric, composed of 2 long arms, carrying 2 sets of genes of the pseudoautosomal region (PAR) and the male-specific region of the Y (MSY), including the SRY - thus being genetically equivalent to Y disomy. Sequence analysis of a 1,955-bp region including the SRY exon, the promoter and the UTRs, revealed no mutations in the aberrant Y. The presence of an intact SRY in a small proportion of cells is the proposed cause for the intersex phenotype. Given that the i(Yq) was present in a mosaic form, both post-zygotic and meiotic mechanisms of its origin were proposed. We speculated that nonmosaic 64,Xi(Yq) karyotypes might be rare or absent because of the likely instability of the i(Yq) during cell division. Genetic and phenotypic implications of Y isochromosome formation in other mammals are discussed in the light of the diversity of Y chromosome organization between species.
Collapse
Affiliation(s)
- P J Das
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
44
|
Paria N, Raudsepp T, Pearks Wilkerson AJ, O'Brien PCM, Ferguson-Smith MA, Love CC, Arnold C, Rakestraw P, Murphy WJ, Chowdhary BP. A gene catalogue of the euchromatic male-specific region of the horse Y chromosome: comparison with human and other mammals. PLoS One 2011; 6:e21374. [PMID: 21799735 PMCID: PMC3143126 DOI: 10.1371/journal.pone.0021374] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 05/27/2011] [Indexed: 11/30/2022] Open
Abstract
Studies of the Y chromosome in primates, rodents and carnivores provide compelling evidence that the male specific region of Y (MSY) contains functional genes, many of which have specialized roles in spermatogenesis and male-fertility. Little similarity, however, has been found between the gene content and sequence of MSY in different species. This hinders the discovery of species-specific male fertility genes and limits our understanding about MSY evolution in mammals. Here, a detailed MSY gene catalogue was developed for the horse – an odd-toed ungulate. Using direct cDNA selection from horse testis, and sequence analysis of Y-specific BAC clones, 37 horse MSY genes/transcripts were identified. The genes were mapped to the MSY BAC contig map, characterized for copy number, analyzed for transcriptional profiles by RT-PCR, examined for the presence of ORFs, and compared to other mammalian orthologs. We demonstrate that the horse MSY harbors 20 X-degenerate genes with known orthologs in other eutherian species. The remaining 17 genes are acquired or novel and have so far been identified only in the horse or donkey Y chromosomes. Notably, 3 transcripts were found in the heterochromatic part of the Y. We show that despite substantial differences between the sequence, gene content and organization of horse and other mammalian Y chromosomes, the functions of MSY genes are predominantly related to testis and spermatogenesis. Altogether, 10 multicopy genes with testis-specific expression were identified in the horse MSY, and considered likely candidate genes for stallion fertility. The findings establish an important foundation for the study of Y-linked genetic factors governing fertility in stallions, and improve our knowledge about the evolutionary processes that have shaped Y chromosomes in different mammalian lineages.
Collapse
Affiliation(s)
- Nandina Paria
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (BPC); (TR)
| | - Alison J. Pearks Wilkerson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | | | | | - Charles C. Love
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Carolyn Arnold
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Peter Rakestraw
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Bhanu P. Chowdhary
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (BPC); (TR)
| |
Collapse
|
45
|
|
46
|
Jiang Z, Rokhsar DS, Harland RM. Old can be new again: HAPPY whole genome sequencing, mapping and assembly. Int J Biol Sci 2009; 5:298-303. [PMID: 19381348 PMCID: PMC2669597 DOI: 10.7150/ijbs.5.298] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 04/12/2009] [Indexed: 11/05/2022] Open
Abstract
During the last three decades, both genome mapping and sequencing methods have advanced significantly to provide a foundation for scientists to understand genome structures and functions in many species. Generally speaking, genome mapping relies on genome sequencing to provide basic materials, such as DNA probes and markers for their localizations, thus constructing the maps. On the other hand, genome sequencing often requires a high-resolution map as a skeleton for whole genome assembly. However, both genome mapping and sequencing have never come together in one pipeline. After reviewing mapping and next-generation sequencing methods, we would like to share our thoughts with the genome community on how to combine the HAPPY mapping technique with the new-generation sequencing, thus integrating two systems into one pipeline, called HAPPY pipeline. The pipeline starts with preparation of a HAPPY panel, followed by multiple displacement amplification for producing a relatively large quantity of DNA. Instead of conventional marker genotyping, the amplified panel DNA samples are subject to new-generation sequencing with barcode method, which allows us to determine the presence/absence of a sequence contig as a traditional marker in the HAPPY panel. Statistical analysis will then be performed to infer how close or how far away from each other these contigs are within a genome and order the whole genome sequence assembly as well. We believe that such a universal approach will play an important role in genome sequencing, mapping, and assembly of many species; thus advancing genome science and its applications in biomedicine and agriculture.
Collapse
Affiliation(s)
- Zhihua Jiang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164-6351, USA.
| | | | | |
Collapse
|
47
|
Abstract
Alternating patches of black and yellow pigment are a ubiquitous feature of mammalian color variation that contributes to camouflage, species recognition, and morphologic diversity. X-linked determinants of this pattern--recognized by variegation in females but not in males--have been described in the domestic cat as Orange, and in the Syrian hamster as Sex-linked yellow (Sly), but are curiously absent from other vertebrate species. Using a comparative genomic approach, we develop molecular markers and a linkage map for the euchromatic region of the Syrian hamster X chromosome that places Sly in a region homologous to the centromere-proximal region of human Xp. Comparison to analogous work carried out for Orange in domestic cats indicates, surprisingly, that the cat and hamster mutations lie in nonhomologous regions of the X chromosome. We also identify the molecular cause of recessively inherited black coat color in hamsters (historically referred to as nonagouti) as a Cys115Tyr mutation in the Agouti gene. Animals doubly mutant for Sly and nonagouti exhibit a Sly phenotype. Our results indicate that Sly represents a melanocortin pathway component that acts similarly to, but is genetically distinct from, Mc1r and that has implications for understanding both the evolutionary history and the mutational mechanisms of pigment-type switching.
Collapse
|