1
|
Babu N, Bhat MY, John AE, Chatterjee A. The role of proteomics in the multiplexed analysis of gene alterations in human cancer. Expert Rev Proteomics 2021; 18:737-756. [PMID: 34602018 DOI: 10.1080/14789450.2021.1984884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Proteomics has played a pivotal role in identifying proteins perturbed in disease conditions when compared with healthy samples. Study of dysregulated proteins aids in identifying diagnostic markers and potential therapeutic targets. Cancer is an outcome of interplay of several such disarrayed proteins and molecular pathways which perturb cellular homeostasis, resulting in transformation. In this review, we discuss various facets of proteomic approaches, including tools and technological advancements, aiding in understanding differentially expressed molecules and signaling mechanisms. AREAS COVERED In this review, we have taken the approach of documenting the different methods of proteomic studies, ranging from labeling techniques, data analysis methods, and the nature of molecule detected. We summarize each technique and provide a glimpse of cancer research carried out using them, highlighting the advantages and drawbacks in comparison with others. Literature search using online resources, such as PubMed and Google Scholar were carried out for this approach. EXPERT OPINION Technological advancements in proteomics studies have come a long way from the study of two-dimensional mapping of proteins separated on gels in the early 1970s. Higher precision in molecular identification and quantification (high throughput), and greater number of samples analyzed have been the focus of researchers.
Collapse
Affiliation(s)
- Niraj Babu
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Mohd Younis Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India
| | | | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
2
|
Identification of unexplored substrates of the serine protease, thrombin, using N-terminomics strategy. Int J Biol Macromol 2019; 144:449-459. [PMID: 31862363 DOI: 10.1016/j.ijbiomac.2019.12.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022]
Abstract
The function and regulation of thrombin is a complex as well as an intriguing aspect of evolution and has captured the interest of many investigators over the years. The reported substrates of thrombin are coagulation factors V, VIII, XI, XIII, protein C and fibrinogen. However, these may not be all the substrate of thrombin and therefore its functional role(s), may not have been completely comprehended. The purpose of our study was to identify hitherto unreported substrates of thrombin from human plasma using a N-terminomics protease substrate identification method. We identified 54 putative substrates of thrombin of which 12 are already known and 42 are being reported for the first time. Amongst the proteins identified, recombinant siglec-6 and purified serum alpha-1-acid glycoprotein were validated by cleavage with thrombin. We have discussed the probable relevance of siglec-6 cleavage by thrombin in human placenta mostly because an upregulation in the expression of siglec-6 and thrombin has been reported in the placenta of preeclampsia patients. We also speculate the role of alpha-1-acid glycoprotein cleavage by thrombin in the acute phase as alpha-1-acid glycoprotein is known to be an inhibitor of platelet aggregation whereas thrombin is known to trigger platelet aggregation.
Collapse
|
3
|
Hardy-Rando E, Fernandez-Patron C. Emerging pathways of communication between the heart and non-cardiac organs. J Biomed Res 2019; 33:145-155. [PMID: 29970623 PMCID: PMC6551427 DOI: 10.7555/jbr.32.20170137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The breakthrough discovery of cardiac natriuretic peptides provided the first direct demonstration of the connection between the heart and the kidneys for the maintenance of sodium and volume homeostasis in health and disease. Yet, little is still known about how the heart and other organs cross-talk. Here, we review three physiological mechanisms of communication linking the heart to other organs through: i) cardiac natriuretic peptides, ii) the microRNA-208a/mediator complex subunit-13 axis and iii) the matrix metalloproteinase-2 (MMP-2)/C-C motif chemokine ligand-7/cardiac secreted phospholipase A2 (sPLA2) axis – a pathway which likely applies to the many cytokines, which are cleaved and regulated by MMP-2. We also suggest experimental strategies to answer still open questions on the latter pathway. In short, we review evidence showing how the cardiac secretome influences the metabolic and inflammatory status of non-cardiac organs as well as the heart.
Collapse
Affiliation(s)
- Eugenio Hardy-Rando
- Biotechnology Laboratory, Study Center for Research and Biological Evaluations, Institute of Pharmacy and Foods, University of Havana, Havana PO Box 430, Cuba
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
4
|
Lindsey ML, Jung M, Hall ME, DeLeon-Pennell KY. Proteomic analysis of the cardiac extracellular matrix: clinical research applications. Expert Rev Proteomics 2018; 15:105-112. [PMID: 29285949 DOI: 10.1080/14789450.2018.1421947] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The cardiac extracellular matrix (ECM) provides anatomical, biochemical, and physiological support to the left ventricle. ECM proteins are difficult to detect using unbiased proteomic approaches due to solubility issues and a relatively low abundance compared to cytoplasmic and mitochondrial proteins present in highly prevalent cardiomyocytes. Areas covered: Proteomic capabilities have dramatically improved over the past 20 years, due to enhanced sample preparation protocols and increased capabilities in mass spectrometry (MS), database searching, and bioinformatics analysis. This review summarizes technological advancements made in proteomic applications that make ECM proteomics highly feasible. Expert commentary: Proteomic analysis of the ECM provides an important contribution to our understanding of the molecular and cellular processes associated with cardiovascular disease. Using results generated from proteomics approaches in basic science applications and integrating proteomics templates into clinical research protocols will aid in efforts to personalize medicine.
Collapse
Affiliation(s)
- Merry L Lindsey
- a Research Service , G.V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson , MS , USA.,b Mississippi Center for Heart Research, Department of Physiology and Biophysics , University of Mississippi Medical Center , Jackson , MS , USA
| | - Mira Jung
- b Mississippi Center for Heart Research, Department of Physiology and Biophysics , University of Mississippi Medical Center , Jackson , MS , USA
| | - Michael E Hall
- b Mississippi Center for Heart Research, Department of Physiology and Biophysics , University of Mississippi Medical Center , Jackson , MS , USA.,c Division of Cardiology , University of Mississippi Medical Center , Jackson , MS , USA
| | - Kristine Y DeLeon-Pennell
- a Research Service , G.V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson , MS , USA.,b Mississippi Center for Heart Research, Department of Physiology and Biophysics , University of Mississippi Medical Center , Jackson , MS , USA
| |
Collapse
|
5
|
Tanco S, Aviles FX, Gevaert K, Lorenzo J, Van Damme P. Identification of Carboxypeptidase Substrates by C-Terminal COFRADIC. Methods Mol Biol 2017; 1574:115-133. [PMID: 28315247 DOI: 10.1007/978-1-4939-6850-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We here present a detailed procedure for studying protein C-termini and their posttranslational modifications by C-terminal COFRADIC. In fact, this procedure can enrich for both C-terminal and N-terminal peptides through a combination of a strong cation exchange fractionation step at low pH, which removes the majority of nonterminal peptides in whole-proteome digests, while the actual COFRADIC step segregates C-terminal peptides from N-terminal peptides. When used in a differential mode, C-terminal COFRADIC allows for the identification of neo-C-termini generated by the action of proteases, which in turn leads to the identification of protease substrates. More specifically, this technology can be applied to determine the natural substrate repertoire of carboxypeptidases on a proteome-wide scale.
Collapse
Affiliation(s)
- Sebastian Tanco
- VIB-UGent Center for Medical Biotechnology, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000, Ghent, Belgium
| | - Francesc Xavier Aviles
- Institut de Biotecnologia i Biomedicina (IBB), Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, IBB-Campus de la UAB, Bellaterra, 08193, Barcelona, Spain
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000, Ghent, Belgium
| | - Julia Lorenzo
- Institut de Biotecnologia i Biomedicina (IBB), Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, IBB-Campus de la UAB, Bellaterra, 08193, Barcelona, Spain.
| | - Petra Van Damme
- VIB-UGent Center for Medical Biotechnology, B-9000, Ghent, Belgium.
- Department of Biochemistry, Ghent University, B-9000, Ghent, Belgium.
| |
Collapse
|
6
|
Yuan Y, Lau WB, Su H, Sun Y, Yi W, Du Y, Christopher T, Lopez B, Wang Y, Ma XL. C1q-TNF-related protein-9, a novel cardioprotetcive cardiokine, requires proteolytic cleavage to generate a biologically active globular domain isoform. Am J Physiol Endocrinol Metab 2015; 308:E891-8. [PMID: 25783894 PMCID: PMC4436995 DOI: 10.1152/ajpendo.00450.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/10/2015] [Indexed: 12/23/2022]
Abstract
Prevalence and severity of postmyocardial infarction heart failure continually escalate in type 2 diabetes via incompletely understood mechanisms. The discovery of the cardiac secretomes, collectively known as "cardiokines", has significantly enhanced appreciation of the local microenvironment's influence on disease development. Recent studies demonstrated that C1q-TNF-related protein-9 (CTRP9), a newly discovered adiponectin (APN) paralog, is highly expressed in the heart. However, its relationship with APN (concerning diabetic cardiovascular injury in particular) remains unknown. Plasma CTRP9 levels are elevated in APN knockout and reduced in diabetic mice. In contrast to APN, which circulates as full-length multimers, CTRP9 circulates in the plasma primarily in the globular domain isoform (gCTRP9). Recombinant full-length CTRP9 (fCTRP9) was cleaved when incubated with cardiac tissue extracts, generating gCTRP9, a process inhibited by protease inhibitor cocktail. gCTRP9 rapidly activates cardiac survival kinases, including AMPK, Akt, and endothelial NOS. However, fCTRP9-mediated kinase activation is much less potent and significantly delayed. Kinase activation by fCTRP9, but not gCTRP9, is inhibited by protease inhibitor cocktail. These results demonstrate for the first time that the novel cardiokine CTRP9 undergoes proteolytic cleavage to generate gCTRP9, the dominant circulatory and actively cardioprotective isoform. Enhancing cardiac CTRP9 production and/or its proteolytic posttranslational modification are of therapeutic potential, attenuating diabetic cardiac injury.
Collapse
Affiliation(s)
- Yuexing Yuan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; Zhejiang Provincial Hospital of Chinese Traditional Medicine, Hangzhou, Zhejiang Province, China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hui Su
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yunhui Du
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Theodore Christopher
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Bernard Lopez
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| |
Collapse
|
7
|
auf dem Keller U, Prudova A, Eckhard U, Fingleton B, Overall CM. Systems-level analysis of proteolytic events in increased vascular permeability and complement activation in skin inflammation. Sci Signal 2013; 6:rs2. [PMID: 23322905 DOI: 10.1126/scisignal.2003512] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During inflammation, vascular permeability is increased by various proteolytic events, such as the generation of bradykinin, that augment local tissue responses by enabling tissue penetration of serum proteins, including complement and acute-phase proteins. Proteases also govern inflammatory responses by processing extracellular matrix proteins and soluble bioactive mediators. We quantified changes in the proteome and the nature of protein amino termini (the N-terminome) and the altered abundance of murine proteases and inhibitors during skin inflammation. Through analysis of the N-terminome by iTRAQ-TAILS, we identified cotranslational and posttranslational αN-acetylation motifs, quantitative increases in protein abundance, and qualitative changes in the proteolytic signature during inflammation. Of the proteins identified in normal skin, about half were cleaved, and phorbol ester-induced inflammation increased the proportion of cleaved proteins, including chemokines and complement proteins, that were processed at previously uncharacterized sites. In response to phorbol ester-induced inflammation, mice deficient in matrix metalloproteinase 2 (MMP2) showed reduced accumulation of serum proteins in the skin and exhibited different proteolytic networks from those of wild-type mice. We found that the complement 1 (C1) inhibitor attenuated the increase in serum protein accumulation in inflamed skin. Cleavage and inactivation of the C1 inhibitor by MMP2 increased complement activation and bradykinin generation in wild-type mice, leading to increased vessel permeability during inflammation, which was diminished in Mmp2(-/-) mice. Thus, our systems-level analysis of proteolysis dissected cleavage events associated with skin inflammation and demonstrated that loss of a single protease could perturb the proteolytic signaling network and enhance inflammation.
Collapse
Affiliation(s)
- Ulrich auf dem Keller
- Department of Oral Biological and Medical Sciences, 4.401 Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
8
|
Lindsey ML, Weintraub ST, Lange RA. Using extracellular matrix proteomics to understand left ventricular remodeling. CIRCULATION. CARDIOVASCULAR GENETICS 2012; 5:o1-7. [PMID: 22337931 PMCID: PMC3282021 DOI: 10.1161/circgenetics.110.957803] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Survival following myocardial infarction (MI) has improved substantially over the last 40 years; however, the incidence of subsequent congestive heart failure has dramatically increased as a consequence. Discovering plasma markers that signify adverse cardiac remodeling may allow high-risk patients to be recognized earlier and may provide an improved way to assess treatment efficacy. Alterations in extracellular matrix (ECM) regulate cardiac remodeling following MI and potentially provide a large array of candidate indicators. The field of cardiac proteomics has progressed rapidly over the past 20 years, since publication of the first two-dimensional electrophoretic gels of left ventricle proteins. Proteomic approaches are now routinely utilized to better understand how the left ventricle responds to injury. In this review, we will discuss how methods have developed to allow comprehensive evaluation of the ECM proteome. We will explain how ECM proteomic data can be used to predict adverse remodeling for an individual patient and highlight future directions. Although this review will focus on the use of ECM proteomics to better understand post-MI remodeling responses, these approaches have applicability to a wide-range of cardiac pathologies, including pressure overload hypertrophy, viral myocarditis, and non-ischemic heart failure.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Medicine and Department of Biochemistry, University of Texas Health Science Center at San Antonio, TX, USA.
| | | | | |
Collapse
|
9
|
Klingler D, Hardt M. Profiling protease activities by dynamic proteomics workflows. Proteomics 2012; 12:587-96. [PMID: 22246865 DOI: 10.1002/pmic.201100399] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/15/2011] [Accepted: 09/27/2011] [Indexed: 01/01/2023]
Abstract
Proteases play prominent roles in many physiological processes and the pathogenesis of various diseases, which makes them interesting drug targets. To fully understand the functional role of proteases in these processes, it is necessary to characterize the target specificity of the enzymes, identify endogenous substrates and cleavage products as well as protease activators and inhibitors. The complexity of these proteolytic networks presents a considerable analytic challenge. To comprehensively characterize these systems, quantitative methods that capture the spatial and temporal distributions of the network members are needed. Recently, activity-based workflows have come to the forefront to tackle the dynamic aspects of proteolytic processing networks in vitro, ex vivo and in vivo. In this review, we will discuss how mass spectrometry-based approaches can be used to gain new insights into protease biology by determining substrate specificities, profiling the activity-states of proteases, monitoring proteolysis in vivo, measuring reaction kinetics and defining in vitro and in vivo proteolytic events. In addition, examples of future aspects of protease research that go beyond mass spectrometry-based applications are given.
Collapse
Affiliation(s)
- Diana Klingler
- Boston Biomedical Research Institute, Watertown, MA 02472, USA
| | | |
Collapse
|
10
|
Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat Protoc 2011; 6:1578-611. [PMID: 21959240 DOI: 10.1038/nprot.2011.382] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for performing terminal amine isotopic labeling of substrates (TAILS), a 2- to 3-d (depending on method of labeling) high-throughput method to identify and distinguish protease-generated neo-N termini from mature protein N termini with all natural modifications with high confidence. TAILS uses negative selection to enrich for all N-terminal peptides and uses primary amine labeling-based quantification as the discriminating factor. Labeling is versatile and suited to many applications, including biochemical and cell culture analyses in vitro; in vivo analyses using tissue samples from animal and human sources can also be readily performed. At the protein level, N-terminal and lysine amines are blocked by dimethylation (formaldehyde/sodium cyanoborohydride) and isotopically labeled by incorporating heavy and light dimethylation reagents or stable isotope labeling with amino acids in cell culture labels. Alternatively, easy multiplex sample analysis can be achieved using amine blocking and labeling with isobaric tags for relative and absolute quantification, also known as iTRAQ. After tryptic digestion, N-terminal peptide separation is achieved using a high-molecular-weight dendritic polyglycerol aldehyde polymer that binds internal tryptic and C-terminal peptides that now have N-terminal alpha amines. The unbound naturally blocked (acetylation, cyclization, methylation and so on) or labeled mature N-terminal and neo-N-terminal peptides are recovered by ultrafiltration and analyzed by tandem mass spectrometry (MS/MS). Hierarchical substrate winnowing discriminates substrates from the background proteolysis products and non-cleaved proteins by peptide isotope quantification and bioinformatics search criteria.
Collapse
|
11
|
auf dem Keller U, Schilling O. Proteomic techniques and activity-based probes for the system-wide study of proteolysis. Biochimie 2010; 92:1705-14. [PMID: 20493233 DOI: 10.1016/j.biochi.2010.04.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 04/29/2010] [Indexed: 11/17/2022]
Abstract
Proteolysis constitutes a major post-translational modification but specificity and substrate selectivity of numerous proteases have remained elusive. In this review, we highlight how advanced techniques in the areas of proteomics and activity-based probes can be used to investigate i) protease active site specificity; ii) protease in vivo substrates; iii) protease contribution to proteome homeostasis and composition; and iv) detection and localization of active proteases. Peptide libraries together with genetical or biochemical selection have traditionally been used for active site profiling of proteases. These are now complemented by proteome-derived peptide libraries that simultaneously determine prime and non-prime specificity and characterize subsite cooperativity. Cell-contextual discovery of protease substrates is rendered possible by techniques that isolate and quantitate protein termini. Here, a novel approach termed Terminal Amine Isotopic Labeling of Substrates (TAILS) provides an integrated platform for substrate discovery and appropriate statistical evaluation of terminal peptide identification and quantification. Proteolytically generated carboxy-termini can now also be analyzed on a proteome-wide level. Proteolytic regulation of proteome composition is monitored by quantitative proteomic approaches employing stable isotope coding or label free quantification. Activity-based probes specifically recognize active proteases. In proteomic screens, they can be used to detect and quantitate proteolytic activity while their application in cellular histology allows to locate proteolytic activity in situ. Activity-based probes - especially in conjunction with positron emission tomography - are also promising tools to monitor proteolytic activities on an organism-wide basis with a focus on in vivo tumor imaging. Together, this array of methodological possibilities enables unveiling physiological protease substrate repertoires and defining protease function in the cellular- and organism-wide context.
Collapse
Affiliation(s)
- Ulrich auf dem Keller
- ETH Zürich Institute of Cell Biology, Schafmattstrasse 18, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
12
|
Prudova A, auf dem Keller U, Butler GS, Overall CM. Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol Cell Proteomics 2010; 9:894-911. [PMID: 20305284 PMCID: PMC2871422 DOI: 10.1074/mcp.m000050-mcp201] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proteolysis is a major protein posttranslational modification that, by altering protein structure, affects protein function and, by truncating the protein sequence, alters peptide signatures of proteins analyzed by proteomics. To identify such modified and shortened protease-generated neo-N-termini on a proteome-wide basis, we developed a whole protein isobaric tag for relative and absolute quantitation (iTRAQ) labeling method that simultaneously labels and blocks all primary amines including protein N- termini and lysine side chains. Blocking lysines limits trypsin cleavage to arginine, which effectively elongates the proteolytically truncated peptides for improved MS/MS analysis and peptide identification. Incorporating iTRAQ whole protein labeling with terminal amine isotopic labeling of substrates (iTRAQ-TAILS) to enrich the N-terminome by negative selection of the blocked mature original N-termini and neo-N-termini has many advantages. It enables simultaneous characterization of the natural N-termini of proteins, their N-terminal modifications, and proteolysis product and cleavage site identification. Furthermore, iTRAQ-TAILS also enables multiplex N-terminomics analysis of up to eight samples and allows for quantification in MS2 mode, thus preventing an increase in spectral complexity and extending proteome coverage by signal amplification of low abundance proteins. We compared the substrate degradomes of two closely related matrix metalloproteinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), in fibroblast secreted proteins. Among 3,152 unique N-terminal peptides identified corresponding to 1,054 proteins, we detected 201 cleavage products for MMP-2 and unexpectedly only 19 for the homologous MMP-9 under identical conditions. Novel substrates identified and biochemically validated include insulin-like growth factor binding protein-4, complement C1r component A, galectin-1, dickkopf-related protein-3, and thrombospondin-2. Hence, N-terminomics analyses using iTRAQ-TAILS links gelatinases with new mechanisms of action in angiogenesis and reveals unpredicted restrictions in substrate repertoires for these two very similar proteases.
Collapse
Affiliation(s)
- Anna Prudova
- Department of Biochemistry and Molecular Biology, Centre for Blood Research, University of British Columbia, 4.401 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
13
|
auf dem Keller U, Prudova A, Gioia M, Butler GS, Overall CM. A statistics-based platform for quantitative N-terminome analysis and identification of protease cleavage products. Mol Cell Proteomics 2010; 9:912-27. [PMID: 20305283 PMCID: PMC2871423 DOI: 10.1074/mcp.m000032-mcp201] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Terminal amine isotopic labeling of substrates (TAILS), our recently introduced platform for quantitative N-terminome analysis, enables wide dynamic range identification of original mature protein N-termini and protease cleavage products. Modifying TAILS by use of isobaric tag for relative and absolute quantification (iTRAQ)-like labels for quantification together with a robust statistical classifier derived from experimental protease cleavage data, we report reliable and statistically valid identification of proteolytic events in complex biological systems in MS2 mode. The statistical classifier is supported by a novel parameter evaluating ion intensity-dependent quantification confidences of single peptide quantifications, the quantification confidence factor (QCF). Furthermore, the isoform assignment score (IAS) is introduced, a new scoring system for the evaluation of single peptide-to-protein assignments based on high confidence protein identifications in the same sample prior to negative selection enrichment of N-terminal peptides. By these approaches, we identified and validated, in addition to known substrates, low abundance novel bioactive MMP-2 targets including the plasminogen receptor S100A10 (p11) and the proinflammatory cytokine proEMAP/p43 that were previously undescribed.
Collapse
Affiliation(s)
- Ulrich auf dem Keller
- Department of Biochemistry and Molecular Biology, Centre for Blood Research, University of British Columbia, 4.401 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
14
|
Li M, Aliotta JM, Asara JM, Wu Q, Dooner MS, Tucker LD, Wells A, Quesenberry PJ, Ramratnam B. Intercellular transfer of proteins as identified by stable isotope labeling of amino acids in cell culture. J Biol Chem 2010; 285:6285-97. [PMID: 20026604 PMCID: PMC2825424 DOI: 10.1074/jbc.m109.057943] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 12/15/2009] [Indexed: 12/24/2022] Open
Abstract
We tracked the extracellular fate of proteins of pulmonary origin using the technique of stable isotope labeling of amino acids in cell culture (SILAC) in cell-impermeable Transwell culture systems. We find that irradiation to murine lung and lung-derived cells induces their release of proteins that are capable of entering neighboring cells, including primary murine bone marrow cells as well as prostate cancer and hematopoietic cell lines. The functional classification of transferred proteins was broad and included transcription factors, mediators of basic cellular processes and components of the nucleosome remodeling and deacetylase complex, including metastasis associated protein 3 and retinoblastoma-binding protein 7. In further analysis we find that retinoblastoma-binding protein 7 is a transcriptional activator of E-cadherin and that its intercellular transfer leads to decreased gene expression of downstream targets such as N-cadherin and vimentin. SILAC-generated data sets offer a valuable tool to identify and validate potential paracrine networks that may impact relevant biologic processes associated with phenotypic and genotypic signatures of health and disease.
Collapse
Affiliation(s)
- Ming Li
- From the Laboratory of Retrovirology, Division of Infectious Diseases, Department of Medicine, The Warren Alpert Medical School of Brown University, and
| | - Jason M. Aliotta
- the Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital, and The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903
| | - John M. Asara
- the Mass Spectrometry Core, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts 02215, and
| | - Qian Wu
- the Department of Pathology, Pittsburgh Veterans Administration Medical Center, and University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Mark S. Dooner
- the Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital, and The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903
| | - Lynne D. Tucker
- From the Laboratory of Retrovirology, Division of Infectious Diseases, Department of Medicine, The Warren Alpert Medical School of Brown University, and
| | - Alan Wells
- the Department of Pathology, Pittsburgh Veterans Administration Medical Center, and University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Peter J. Quesenberry
- the Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital, and The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903
| | - Bharat Ramratnam
- From the Laboratory of Retrovirology, Division of Infectious Diseases, Department of Medicine, The Warren Alpert Medical School of Brown University, and
| |
Collapse
|