1
|
Laurini E, Aulic S, Marson D, Fermeglia M, Pricl S. Cationic Dendrimers for siRNA Delivery: An Overview of Methods for In Vitro/In Vivo Characterization. Methods Mol Biol 2021; 2282:209-244. [PMID: 33928579 DOI: 10.1007/978-1-0716-1298-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This chapter reviews the different techniques for analyzing the chemical-physical properties, transfection efficiency, cytotoxicity, and stability of covalent cationic dendrimers (CCDs) and self-assembled cationic dendrons (ACDs) for siRNA delivery in the presence and absence of their nucleic cargos. On the basis of the reported examples, a standard essential set of techniques is described for each step of a siRNA/nanovector (NV) complex characterization process: (1) analysis of the basic chemical-physical properties of the NV per se; (2) characterization of the morphology, size, strength, and stability of the siRNA/NV ensemble; (3) characterization and quantification of the cellular uptake and release of the siRNA fragment; (4) in vitro and (5) in vivo experiments for the evaluation of the corresponding gene silencing activity; and (6) assessment of the intrinsic toxicity of the NV and the siRNA/NV complex.
Collapse
Affiliation(s)
- Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy.
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Yesudhas D, Anwar MA, Panneerselvam S, Kim HK, Choi S. Evaluation of Sox2 binding affinities for distinct DNA patterns using steered molecular dynamics simulation. FEBS Open Bio 2017; 7:1750-1767. [PMID: 29123983 PMCID: PMC5666385 DOI: 10.1002/2211-5463.12316] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/14/2017] [Accepted: 09/05/2017] [Indexed: 11/29/2022] Open
Abstract
Transcription factors (TFs) are gene expression regulators that bind to DNA in a sequence‐specific manner and determine the functional characteristics of the gene. It is worthwhile to study the unique characteristics of such specific TF‐binding pattern in DNA. Sox2 recognizes a 6‐ to 7‐base pair consensus DNA sequence; the central four bases of the binding site are highly conserved, whereas the two to three flanking bases are variable. Here, we attempted to analyze the binding affinity and specificity of the Sox2 protein for distinct DNA sequence patterns via steered molecular dynamics, in which a pulling force is employed to dissociate Sox2 from Sox2–DNA during simulation to study the behavior of a complex under nonequilibrium conditions. The simulation results revealed that the first two stacking bases of the binding pattern have an exclusive impact on the binding affinity, with the corresponding mutant complexes showing greater binding and longer dissociation time than the experimental complexes do. In contrast, mutation of the conserved bases tends to reduce the affinity, and mutation of the complete conserved region disrupts the binding. It might pave the way to identify the most likely binding pattern recognized by Sox2 based on the affinity of each configuration. The α2‐helix of Sox2 was found to be the key player in the Sox2–DNA association. The characterization of Sox2's binding patterns for the target genes in the genome helps in understanding of its regulatory functions.
Collapse
Affiliation(s)
- Dhanusha Yesudhas
- Department of Molecular Science and Technology Ajou University Suwon Korea
| | | | | | - Han-Kyul Kim
- Department of Molecular Science and Technology Ajou University Suwon Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology Ajou University Suwon Korea
| |
Collapse
|
3
|
Molecular basis for the genome engagement by Sox proteins. Semin Cell Dev Biol 2017; 63:2-12. [DOI: 10.1016/j.semcdb.2016.08.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 01/11/2023]
|
4
|
Vaitiekunas P, Crane-Robinson C, Privalov PL. The energetic basis of the DNA double helix: a combined microcalorimetric approach. Nucleic Acids Res 2015; 43:8577-89. [PMID: 26304541 PMCID: PMC4787831 DOI: 10.1093/nar/gkv812] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 12/23/2022] Open
Abstract
Microcalorimetric studies of DNA duplexes and their component single strands showed that association enthalpies of unfolded complementary strands into completely folded duplexes increase linearly with temperature and do not depend on salt concentration, i.e. duplex formation results in a constant heat capacity decrement, identical for CG and AT pairs. Although duplex thermostability increases with CG content, the enthalpic and entropic contributions of an AT pair to duplex formation exceed that of a CG pair when compared at the same temperature. The reduced contribution of AT pairs to duplex stabilization comes not from their lower enthalpy, as previously supposed, but from their larger entropy contribution. This larger enthalpy and particularly the greater entropy results from water fixed by the AT pair in the minor groove. As the increased entropy of an AT pair exceeds that of melting ice, the water molecule fixed by this pair must affect those of its neighbors. Water in the minor groove is, thus, orchestrated by the arrangement of AT groups, i.e. is context dependent. In contrast, water hydrating exposed nonpolar surfaces of bases is responsible for the heat capacity increment on dissociation and, therefore, for the temperature dependence of all thermodynamic characteristics of the double helix.
Collapse
Affiliation(s)
| | | | - Peter L Privalov
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
5
|
Song C, Zhang S, Huang H. Choosing a suitable method for the identification of replication origins in microbial genomes. Front Microbiol 2015; 6:1049. [PMID: 26483774 PMCID: PMC4588119 DOI: 10.3389/fmicb.2015.01049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 09/14/2015] [Indexed: 12/19/2022] Open
Abstract
As the replication of genomic DNA is arguably the most important task performed by a cell and given that it is controlled at the initiation stage, the events that occur at the replication origin play a central role in the cell cycle. Making sense of DNA replication origins is important for improving our capacity to study cellular processes and functions in the regulation of gene expression, genome integrity in much finer detail. Thus, clearly comprehending the positions and sequences of replication origins which are fundamental to chromosome organization and duplication is the first priority of all. In view of such important roles of replication origins, tremendous work has been aimed at identifying and testing the specificity of replication origins. A number of computational tools based on various skew types have been developed to predict replication origins. Using various in silico approaches such as Ori-Finder, and databases such as DoriC, researchers have predicted the locations of replication origins sites for thousands of bacterial chromosomes and archaeal genomes. Based on the predicted results, we should choose an effective method for identifying and confirming the interactions at origins of replication. Here we describe the main existing experimental methods that aimed to determine the replication origin regions and list some of the many the practical applications of these methods.
Collapse
Affiliation(s)
- Chengcheng Song
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin UniversityTianjin, China
- Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Shaocun Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin UniversityTianjin, China
- Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin UniversityTianjin, China
- Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| |
Collapse
|
6
|
Esue O, Xie AX, Kamerzell TJ, Patapoff TW. Thermodynamic and structural characterization of an antibody gel. MAbs 2013; 5:323-34. [PMID: 23425660 DOI: 10.4161/mabs.23183] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although extensively studied, protein-protein interactions remain highly elusive and are of increasing interest in drug development. We show the assembly of a monoclonal antibody, using multivalent carboxylate ions, into highly-ordered structures. While the presence and function of similar structures in vivo are not known, the results may present a possible unexplored area of antibody structure-function relationships. Using a variety of tools (e.g., mechanical rheology, electron microscopy, isothermal calorimetry, Fourier transform infrared spectroscopy), we characterized the physical, biochemical, and thermodynamic properties of these structures and found that citrate may interact directly with the amino acid residue histidine, after which the individual protein units assemble into a filamentous network gel exhibiting high elasticity and interfilament interactions. Citrate interacts exothermically with the monoclonal antibody with an association constant that is highly dependent on solution pH and temperature. Secondary structure analysis also reveals involvement of hydrophobic and aromatic residues.
Collapse
Affiliation(s)
- Osigwe Esue
- Pharmaceutical Development, Genentech, South San Francisco, CA, USA.
| | | | | | | |
Collapse
|
7
|
Real-Time Analysis of Specific Protein-DNA Interactions with Surface Plasmon Resonance. JOURNAL OF AMINO ACIDS 2012; 2012:816032. [PMID: 22500214 PMCID: PMC3303711 DOI: 10.1155/2012/816032] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/07/2011] [Indexed: 01/04/2023]
Abstract
Several proteins, like transcription factors, bind to certain DNA sequences, thereby regulating biochemical pathways that determine the fate of the corresponding cell. Due to these key positions, it is indispensable to analyze protein-DNA interactions and to identify their mode of action. Surface plasmon resonance is a label-free method that facilitates the elucidation of real-time kinetics of biomolecular interactions. In this article, we focus on this biosensor-based method and provide a detailed guide how SPR can be utilized to study binding of proteins to oligonucleotides. After a description of the physical phenomenon and the instrumental realization including fiber-optic-based SPR and SPR imaging, we will continue with a survey of immobilization methods. Subsequently, we will focus on the optimization of the experiment, expose pitfalls, and introduce how data should be analyzed and published. Finally, we summarize several interesting publications of the last decades dealing with protein-DNA and RNA interaction analysis by SPR.
Collapse
|
8
|
Wilson TJ, Crystal MA, Rohrbaugh MC, Sokolowsky KP, Gindt YM. Evidence from thermodynamics that DNA photolyase recognizes a solvent-exposed CPD lesion. J Phys Chem B 2011; 115:13746-54. [PMID: 22017645 DOI: 10.1021/jp208129a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Binding of a cis,syn-cyclobutane pyrimidine dimer (CPD) to Escherichia coli DNA photolyase was examined as a function of temperature, enzyme oxidation state, salt, and substrate conformation using isothermal titration calorimetry. While the overall ΔG° of binding was relatively insensitive to most of the conditions examined, the enthalpic and entropic terms that make up the free energy of binding are sensitive to the conditions of the experiment. Substrate binding to DNA photolyase is generally driven by a negative change in enthalpy. Electrostatic interactions and protonation are affected by the oxidation state of the required FAD cofactor and substrate conformation. The fully reduced enzyme appears to bind approximately two additional water molecules as part of substrate binding. More significantly, the experimental change in heat capacity strongly suggests that the CPD lesion must be flipped out of the intrahelical base stacking prior to binding to the protein; the DNA repair enzyme appears to recognize a solvent-exposed CPD as part of its damage recognition mechanism.
Collapse
Affiliation(s)
- Thomas J Wilson
- Department of Chemistry, Hugel Science Center, Lafayette College, Easton, Pennsylvania 18042, USA
| | | | | | | | | |
Collapse
|
9
|
Jing M, Bowser MT. Methods for measuring aptamer-protein equilibria: a review. Anal Chim Acta 2011; 686:9-18. [PMID: 21237304 PMCID: PMC3026478 DOI: 10.1016/j.aca.2010.10.032] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/20/2010] [Accepted: 10/21/2010] [Indexed: 12/11/2022]
Abstract
Aptamers are single stranded DNA or RNA molecules that have been selected using in vitro techniques to bind target molecules with high affinity and selectivity, rivaling antibodies in many ways. In order to use aptamers in research and clinical applications, a thorough understanding of aptamer-target binding is necessary. In this article, we review methods for assessing aptamer-protein binding using separation based techniques such as dialysis, ultrafiltration, gel and capillary electrophoresis, and HPLC; as well as mixture based techniques such as fluorescence intensity and anisotropy, UV-vis absorption and circular dichroism, surface plasmon resonance, and isothermal titration calorimetry. For each method the principle, range of application and important features, such as sample consumption, experimental time and complexity, are summarized and compared.
Collapse
Affiliation(s)
- Meng Jing
- University of Minnesota, Department of Chemistry, 207 Pleasant St. SE, Minneapolis, MN 55455-0431, USA
| | | |
Collapse
|
10
|
Falconer RJ, Collins BM. Survey of the year 2009: applications of isothermal titration calorimetry. J Mol Recognit 2010; 24:1-16. [DOI: 10.1002/jmr.1073] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Frankel N, Davis GK, Vargas D, Wang S, Payre F, Stern DL. Phenotypic robustness conferred by apparently redundant transcriptional enhancers. Nature 2010; 466:490-3. [PMID: 20512118 PMCID: PMC2909378 DOI: 10.1038/nature09158] [Citation(s) in RCA: 398] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 05/11/2010] [Indexed: 12/02/2022]
Abstract
Genes include cis-regulatory regions that contain transcriptional enhancers. Recent reports have shown that developmental genes often possess multiple discrete enhancer modules that drive transcription in similar spatio-temporal patterns: primary enhancers located near the basal promoter and secondary, or 'shadow', enhancers located at more remote positions. It has been proposed that the seemingly redundant activity of primary and secondary enhancers contributes to phenotypic robustness. We tested this hypothesis by generating a deficiency that removes two newly discovered enhancers of shavenbaby (svb, a transcript of the ovo locus), a gene encoding a transcription factor that directs development of Drosophila larval trichomes. At optimal temperatures for embryonic development, this deficiency causes minor defects in trichome patterning. In embryos that develop at both low and high extreme temperatures, however, absence of these secondary enhancers leads to extensive loss of trichomes. These temperature-dependent defects can be rescued by a transgene carrying a secondary enhancer driving transcription of the svb cDNA. Finally, removal of one copy of wingless, a gene required for normal trichome patterning, causes a similar loss of trichomes only in flies lacking the secondary enhancers. These results support the hypothesis that secondary enhancers contribute to phenotypic robustness in the face of environmental and genetic variability.
Collapse
Affiliation(s)
- Nicolás Frankel
- Howard Hughes Medical Institute and Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Gregory K. Davis
- Department of Biology, Bryn Mawr College, 101 N. Merion Ave, Bryn Mawr, PA 19010, USA
| | - Diego Vargas
- Howard Hughes Medical Institute and Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Shu Wang
- Howard Hughes Medical Institute and Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - François Payre
- Université de Toulouse and Centre National de la Recherche Scientifique, Centre de Biologie du Développement, UMR5547, Toulouse, F-31062, France
| | - David L. Stern
- Howard Hughes Medical Institute and Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
12
|
Schneider TD. 70% efficiency of bistate molecular machines explained by information theory, high dimensional geometry and evolutionary convergence. Nucleic Acids Res 2010; 38:5995-6006. [PMID: 20562221 PMCID: PMC2952855 DOI: 10.1093/nar/gkq389] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The relationship between information and energy is key to understanding biological systems. We can display the information in DNA sequences specifically bound by proteins by using sequence logos, and we can measure the corresponding binding energy. These can be compared by noting that one of the forms of the second law of thermodynamics defines the minimum energy dissipation required to gain one bit of information. Under the isothermal conditions that molecular machines function this is Emin = Kb T ln 2 joules per bit (kB is Boltzmann's constant and T is the absolute temperature). Then an efficiency of binding can be computed by dividing the information in a logo by the free energy of binding after it has been converted to bits. The isothermal efficiencies of not only genetic control systems, but also visual pigments are near 70%. From information and coding theory, the theoretical efficiency limit for bistate molecular machines is ln 2=0.6931. Evolutionary convergence to maximum efficiency is limited by the constraint that molecular states must be distinct from each other. The result indicates that natural molecular machines operate close to their information processing maximum (the channel capacity), and implies that nanotechnology can attain this goal.
Collapse
Affiliation(s)
- Thomas D Schneider
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|