1
|
Xu X, Zou R, Liu X, Su Q. Alternative splicing signatures of congenital heart disease and induced pluripotent stem cell-derived cardiomyocytes from congenital heart disease patients. Medicine (Baltimore) 2022; 101:e30123. [PMID: 35984151 PMCID: PMC9388029 DOI: 10.1097/md.0000000000030123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Congenital heart disease (CHD) is the most serious congenital defect in newborns with higher mortality. Alternative splicing (AS) plays an essential role in numerous heart diseases. However, our understanding of the link between mRNA splicing and CHD in humans is limited. Here, we try to investigate the genome-wide AS events in CHD using bioinformatics methods. We collected available RNA-seq datasets of CHD-induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) (including single ventricle disease [SVD] and tetralogy of Fallot [TOF]) and non-CHD from the Gene Expression Omnibus database. Then, we unprecedentedly performed AS profiles in CHD-iPSC-CMs and non-CHD-iPSC-CMs. The rMAPS was used to generate RNA-maps for the analysis of RNA-binding proteins' (RBPs) binding sites. We used StringTie to identify and quantify the transcripts from aligned RNA-Seq reads. A quantification matrix was generated with respect to different groups by extracting the transcripts per million values from StringTie outputs. Then, this matrix was used for correlation analysis between the expression level of RBP and AS level. Finally, we validated our AS results using RNA-seq data from CHD and non-CHD patient tissue samples. We identified CHD-related AS events using CHD-iPSC-CMs and CHD samples from patients. The results showed that functional enrichment of abnormal AS in SVD and TOF was transcription factor-related. Using rMAPS, RNA-binding proteins which regulated these AS were also determined, and RBP-AS regulatory network was constructed. Overall, we identified abnormal AS in CHD-iPSC-CMs and CHD samples from patients. We predicted AS regulators in SVD and TOF, respectively. At last, we concluded that AS played a key role in the pathogenesis of CHD.
Collapse
Affiliation(s)
- Xiang Xu
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, China
| | - Renchao Zou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming City, China
| | - Xiaoyong Liu
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, China
| | - Qianqian Su
- Department of Laboratory Animal Science, Kunming Medical University, Kunming City, China
- *Correspondence: Qianqian Su, Department of Laboratory Animal Science, Kunming Medical University, Kunming City, Yunnan Province, China (e-mail: )
| |
Collapse
|
2
|
Li JL, Lee NC, Chen PS, Lee GH, Wu RM. Leukoencephalopathy with Brainstem and Spinal Cord Involvement and Lactate Elevation: A Novel DARS2 Mutation and Intra-Familial Heterogeneity. Mov Disord Clin Pract 2021; 8:1116-1122. [PMID: 34631948 PMCID: PMC8485606 DOI: 10.1002/mdc3.13281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/28/2021] [Accepted: 06/27/2021] [Indexed: 11/06/2022] Open
Abstract
Background Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) is characterized by slowly progressive spastic gait, cerebellar symptoms, and posterior cord dysfunction. DARS2, which encodes mitochondrial aspartyl tRNA synthase, is associated with the rare disease. Cases The proband had gait disturbance since age 56, while her younger brother had the gait problem since his 20s and needed cane‐assistance at age 45. Both cases showed typical demyelinating features of LBSL on the magnetic resonance imaging (MRI) involving the periventricular white matter, brainstem, cerebellum and spinal cord. Sequencing of both cases showed compound heterozygous mutations: c.228‐16C>A and c.508C>T in DARS2. The c.228‐16C>A is a common mutation in splicing site of intron 2, which causes alternative splicing defect of exon 3, while the c.508C>T at the exon 6 is novel. Our patients are unique in the relative late onset and the apparent difference in disease progression. Literature Review Literatures from PubMed were reviewed. Five families showed intra‐familial heterogeneity on age at onset or clinical severity. Conclusion We identified a family of LBSL with compound heterozygous mutations, and c.508C>T at the exon 6 is a novel one. Clinical heterogeneity was observed in the family and other literatures. Further research for underlying mechanism is required.
Collapse
Affiliation(s)
- Jeng-Lin Li
- Department of Neurology National Taiwan University Hospital Taipei Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics National Taiwan University Hospital Taipei Taiwan
| | - Pin-Shiuan Chen
- Department of Neurology National Taiwan University Hospital Taipei Taiwan
| | - Gin Hoong Lee
- Department of Neurology National Taiwan University Hospital Taipei Taiwan.,Department of Medical Education National Taiwan University Hospital Taipei Taiwan
| | - Ruey-Meei Wu
- Department of Neurology National Taiwan University Hospital Taipei Taiwan.,Department of Neurology, College of Medicine National Taiwan University Taipei Taiwan
| |
Collapse
|
3
|
Shih CY, Chattopadhyay A, Wu CH, Tien YW, Lu TP. Transcript annotation tool (TransAT): an R package for retrieving annotations for transcript-specific genetic variants. BMC Bioinformatics 2021; 22:350. [PMID: 34182919 PMCID: PMC8240296 DOI: 10.1186/s12859-021-04243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An individual's genetics play a role in how RNA transcripts are generated from DNA and consequently in their translation into protein. Transcriptional and translational profiling of patients furnishes the information that a specific marker is present; however, it fails to provide evidence whether the marker correlates with response to a therapeutic agent. A comparative analysis of the frequency of genetic variants, such as single nucleotide polymorphisms (SNPs), in diseased and general populations can identify pathogenic variants in individual patients. This is in part because SNPs have considerable effects on protein function and gene expression when they occur in coding regions and regulatory sequences, respectively. Therefore, a tool that can help users to obtain the allele frequency for a corresponding transcript is the need of the day. Several annotation tools such as SNPnexus and VariED are publicly available; however, none of them can use transcript IDs as input and provide the corresponding genomic positions of variants. RESULTS In this study, we developed an R package, called transcript annotation tool (TransAT), that provides (i) SNP ID and genomic position for a user-provided transcript ID from patients, and (ii) allele frequencies for the SNPs from publicly available global populations. All data elements are extracted, collected, and displayed in an easily downloadable format in two simple command lines. TransAT is available on Windows/Linux/MacOS and is operative for R version 4.0.4 or later. It is available at https://github.com/ShihChingYu/TransAT and can be downloaded and installed using devtools::install_github("ShihChingYu/TransAT", force=T) on the R execution page. Thereafter, all functions can be executed by loading the package into R with library(TransAT). CONCLUSIONS TransAT is a novel tool that seamlessly provides genetic annotations for queried transcripts. Such easily obtainable information would be greatly advantageous for physicians, assisting them to make individualized decisions about specific drug treatments. Moreover, allele frequencies from user-chosen global ethnic populations will highlight the importance of ethnicity and its effect on patient pathogenicity.
Collapse
Affiliation(s)
- Ching-Yu Shih
- Bioinformatics and Biostatistics Core, Centre of Genomic and Precision Medicine, National Taiwan University, Taipei, 10055, Taiwan
| | - Amrita Chattopadhyay
- Bioinformatics and Biostatistics Core, Centre of Genomic and Precision Medicine, National Taiwan University, Taipei, 10055, Taiwan
| | - Chien-Hui Wu
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, 10055, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Pin Lu
- Bioinformatics and Biostatistics Core, Centre of Genomic and Precision Medicine, National Taiwan University, Taipei, 10055, Taiwan.
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, 10055, Taiwan.
| |
Collapse
|
4
|
Blomeier T, Fischbach P, Koch LA, Andres J, Miñambres M, Beyer HM, Zurbriggen MD. Blue Light-Operated CRISPR/Cas13b-Mediated mRNA Knockdown (Lockdown). Adv Biol (Weinh) 2021; 5:e2000307. [PMID: 34028208 DOI: 10.1002/adbi.202000307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/14/2021] [Indexed: 12/26/2022]
Abstract
The introduction of optogenetics into cell biology has furnished systems to control gene expression at the transcriptional and protein stability level, with a high degree of spatial, temporal, and dynamic light-regulation capabilities. Strategies to downregulate RNA currently rely on RNA interference and CRISPR/Cas-related methods. However, these approaches lack the key characteristics and advantages provided by optical control. "Lockdown" introduces optical control of RNA levels utilizing a blue light-dependent switch to induce expression of CRISPR/Cas13b, which mediates sequence-specific mRNA knockdown. Combining Lockdown with optogenetic tools to repress gene-expression and induce protein destabilization with blue light yields efficient triple-controlled downregulation of target proteins. Implementing Lockdown to degrade endogenous mRNA levels of the cyclin-dependent kinase 1 (hCdk1) leads to blue light-induced G2/M cell cycle arrest and inhibition of cell growth in mammalian cells.
Collapse
Affiliation(s)
- Tim Blomeier
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany
| | - Patrick Fischbach
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany
| | - Leonie-Alexa Koch
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany
| | - Jennifer Andres
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany
| | - Miguel Miñambres
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany.,Institute of Plant Biochemistry and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany
| | - Hannes Michael Beyer
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany
| | | |
Collapse
|
5
|
Wrist A, Sun W, Summers RM. The Theophylline Aptamer: 25 Years as an Important Tool in Cellular Engineering Research. ACS Synth Biol 2020; 9:682-697. [PMID: 32142605 DOI: 10.1021/acssynbio.9b00475] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The theophylline aptamer was isolated from an oligonucleotide library in 1994. Since that time, the aptamer has found wide utility, particularly in synthetic biology, cellular engineering, and diagnostic applications. The primary application of the theophylline aptamer is in the construction and characterization of synthetic riboswitches for regulation of gene expression. These riboswitches have been used to control cellular motility, regulate carbon metabolism, construct logic gates, screen for mutant enzymes, and control apoptosis. Other applications of the theophylline aptamer in cellular engineering include regulation of RNA interference and genome editing through CRISPR systems. Here we describe the uses of the theophylline aptamer for cellular engineering over the past 25 years. In so doing, we also highlight important synthetic biology applications to control gene expression in a ligand-dependent manner.
Collapse
Affiliation(s)
- Alexandra Wrist
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Wanqi Sun
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Ryan M. Summers
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
6
|
Yeoh LM, Goodman CD, Hall NE, van Dooren GG, McFadden GI, Ralph SA. A serine-arginine-rich (SR) splicing factor modulates alternative splicing of over a thousand genes in Toxoplasma gondii. Nucleic Acids Res 2015; 43:4661-75. [PMID: 25870410 PMCID: PMC4482073 DOI: 10.1093/nar/gkv311] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/27/2015] [Indexed: 11/12/2022] Open
Abstract
Single genes are often subject to alternative splicing, which generates alternative mature mRNAs. This phenomenon is widespread in animals, and observed in over 90% of human genes. Recent data suggest it may also be common in Apicomplexa. These parasites have small genomes, and economy of DNA is evolutionarily favoured in this phylum. We investigated the mechanism of alternative splicing in Toxoplasma gondii, and have identified and localized TgSR3, a homologue of ASF/SF2 (alternative-splicing factor/splicing factor 2, a serine-arginine–rich, or SR protein) to a subnuclear compartment. In addition, we conditionally overexpressed this protein, which was deleterious to growth. qRT-PCR was used to confirm perturbation of splicing in a known alternatively-spliced gene. We performed high-throughput RNA-seq to determine the extent of splicing modulated by this protein. Current RNA-seq algorithms are poorly suited to compact parasite genomes, and hence we complemented existing tools by writing a new program, GeneGuillotine, that addresses this deficiency by segregating overlapping reads into distinct genes. In order to identify the extent of alternative splicing, we released another program, JunctionJuror, that detects changes in intron junctions. Using this program, we identified about 2000 genes that were constitutively alternatively spliced in T. gondii. Overexpressing the splice regulator TgSR3 perturbed alternative splicing in over 1000 genes.
Collapse
Affiliation(s)
- Lee M Yeoh
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christopher D Goodman
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nathan E Hall
- Department of Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton, Victoria 3010, Australia
| | - Giel G van Dooren
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Geoffrey I McFadden
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
7
|
Dery KJ, Kujawski M, Grunert D, Wu X, Ngyuen T, Cheung C, Yim JH, Shively JE. IRF-1 regulates alternative mRNA splicing of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in breast epithelial cells generating an immunoreceptor tyrosine-based inhibition motif (ITIM) containing isoform. Mol Cancer 2014; 13:64. [PMID: 24650050 PMCID: PMC4113144 DOI: 10.1186/1476-4598-13-64] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/07/2014] [Indexed: 11/17/2022] Open
Abstract
Background Interferon regulatory factor-1 (IRF-1) is a master regulator of IFN-γ induced gene transcription. Previously we have shown that IRF-1 transcriptionally induces CEACAM1 via an ISRE (Interferon-Stimulated Response Element) in its promoter. CEACAM1 pre-mRNA undergoes extensive alternative splicing (AS) generating isoforms to produce either a short (S) cytoplasmic domain expressed primarily in epithelial cells or as an ITIM-containing long (L) isoform in immune cells. Methods The transcriptional and molecular mechanism of CEACAM1 minigenes AS containing promoter ISREs mutations in the breast epithelial, MDA-MB-468, cell line was detected using flow cytometry. In addition, transcriptome sequencing was utilized to determine whether IRF-1 could direct the AS of other genes as well. Tumor xenografts were used to evaluate CEACAM1 isoform expression on the leading edge of breast tumor cells. Results In the present study, we provide evidence that CEACAM1’s promoter and variable exon 7 cross-talk allowing IRF-1 to direct AS events. Transcriptome sequencing shows that IRF-1 can also induce the global AS of genes involved in regulation of growth and differentiation as well as genes of the cytokine family. Furthermore, MDA-MB-468 cells grown as tumor xenografts exhibit an AS switch to the L-isoform of CEACAM1, demonstrating that an in vivo inflammatory milieu is also capable of generating the AS switch, similar to that found in human breast cancers Mol Cancer 7:46, 2008. Conclusions The novel AS regulatory activities attributed to IRF-1 indicate that the IFN-γ response involves a global change in both gene transcription and AS in breast epithelial cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John E Shively
- Departments of Immunology, Beckman Research Institute, City of Hope, Duarte, California, USA.
| |
Collapse
|
8
|
Juárez-Méndez S, Zentella-Dehesa A, Villegas-Ruíz V, Pérez-González OA, Salcedo M, López-Romero R, Román-Basaure E, Lazos-Ochoa M, Montes de Oca-Fuentes VE, Vázquez-Ortiz G, Moreno J. Splice variants of zinc finger protein 695 mRNA associated to ovarian cancer. J Ovarian Res 2013; 6:61. [PMID: 24007497 PMCID: PMC3847372 DOI: 10.1186/1757-2215-6-61] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/24/2013] [Indexed: 12/22/2022] Open
Abstract
Background Studies of alternative mRNA splicing (AS) in health and disease have yet to yield the complete picture of protein diversity and its role in physiology and pathology. Some forms of cancer appear to be associated to certain alternative mRNA splice variants, but their role in the cancer development and outcome is unclear. Methods We examined AS profiles by means of whole genome exon expression microarrays (Affymetrix GeneChip 1.0) in ovarian tumors and ovarian cancer-derived cell lines, compared to healthy ovarian tissue. Alternatively spliced genes expressed predominantly in ovarian tumors and cell lines were confirmed by RT-PCR. Results Among several significantly overexpressed AS genes in malignant ovarian tumors and ovarian cancer cell lines, the most significant one was that of the zinc finger protein ZNF695, with two previously unknown mRNA splice variants identified in ovarian tumors and cell lines. The identity of ZNF695 AS variants was confirmed by cloning and sequencing of the amplicons obtained from ovarian cancer tissue and cell lines. Conclusions Alternative ZNF695 mRNA splicing could be a marker of ovarian cancer with possible implications on its pathogenesis.
Collapse
|
9
|
Benmoyal-Segal L, Soreq L, Ben-Shaul Y, Ben-Ari S, Ben-Moshe T, Aviel S, Bergman H, Soreq H. Adaptive alternative splicing correlates with less environmental risk of parkinsonism. NEURODEGENER DIS 2011; 9:87-98. [PMID: 22042332 DOI: 10.1159/000331328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/27/2011] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND/OBJECTIVE Environmental exposure to anti-acetylcholinesterases (AChEs) aggravates the risk of Parkinsonism due to currently unclear mechanism(s). We explored the possibility that the brain's capacity to induce a widespread adaptive alternative splicing response to such exposure may be involved. METHODS Following exposure to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), brain region transcriptome profiles were tested. RESULTS Changes in transcript profiles, alternative splicing patterns and splicing-related gene categories were identified. Engineered mice over-expressing the protective AChE-R splice variant showed less total changes but more splicing-related ones than hypersensitive AChE-S over-expressors with similarly increased hydrolytic activities. Following MPTP exposure, the substantia nigra and prefrontal cortex (PFC) of both strains showed a nuclear increase in the splicing factor ASF/SF2 protein. Furthermore, intravenous injection with highly purified recombinant human AChE-R changed transcript profiles in the striatum. CONCLUSIONS Our findings are compatible with the working hypothesis that inherited or acquired alternative splicing deficits may promote parkinsonism, and we propose adaptive alternative splicing as a strategy for attenuating its progression.
Collapse
Affiliation(s)
- Liat Benmoyal-Segal
- Department of Biological Chemistry, Life Sciences Institute, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Dery KJ, Gaur S, Gencheva M, Yen Y, Shively JE, Gaur RK. Mechanistic control of carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) splice isoforms by the heterogeneous nuclear ribonuclear proteins hnRNP L, hnRNP A1, and hnRNP M. J Biol Chem 2011; 286:16039-51. [PMID: 21398516 PMCID: PMC3091213 DOI: 10.1074/jbc.m110.204057] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 02/14/2011] [Indexed: 11/06/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) is expressed in a variety of cell types and is implicated in carcinogenesis. Alternative splicing of CEACAM1 pre-mRNA generates two cytoplasmic domain splice variants characterized by the inclusion (L-isoform) or exclusion (S-isoform) of exon 7. Here we show that the alternative splicing of CEACAM1 pre-mRNA is regulated by novel cis elements residing in exon 7. We report the presence of three exon regulatory elements that lead to the inclusion or exclusion of exon 7 CEACAM1 mRNA in ZR75 breast cancer cells. Heterologous splicing reporter assays demonstrated that the maintenance of authentic alternative splicing mechanisms were independent of the CEACAM1 intron sequence context. We show that forced expression of these exon regulatory elements could alter CEACAM1 splicing in HEK-293 cells. Using RNA affinity chromatography, three members of the heterogeneous nuclear ribonucleoprotein family (hnRNP L, hnRNP A1, and hnRNP M) were identified. RNA immunoprecipitation of hnRNP L and hnRNP A1 revealed a binding motif located central and 3' to exon 7, respectively. Depletion of hnRNP A1 or L by RNAi in HEK-293 cells promoted exon 7 inclusion, whereas overexpression led to exclusion of the variable exon. By contrast, overexpression of hnRNP M showed exon 7 inclusion and production of CEACAM1-L mRNA. Finally, stress-induced cytoplasmic accumulation of hnRNP A1 in MDA-MB-468 cells dynamically alters the CEACAM1-S:CEACAM1:L ratio in favor of the l-isoform. Thus, we have elucidated the molecular factors that control the mechanism of splice-site recognition in the alternative splicing regulation of CEACAM1.
Collapse
Affiliation(s)
| | - Shikha Gaur
- Clinical and Molecular Pharmacology Beckman Research Institute of the City of Hope, Duarte, California 91010
| | | | - Yun Yen
- Clinical and Molecular Pharmacology Beckman Research Institute of the City of Hope, Duarte, California 91010
| | | | | |
Collapse
|