1
|
Banerjee T, Matsuoka S, Biswas D, Miao Y, Pal DS, Kamimura Y, Ueda M, Devreotes PN, Iglesias PA. A dynamic partitioning mechanism polarizes membrane protein distribution. Nat Commun 2023; 14:7909. [PMID: 38036511 PMCID: PMC10689845 DOI: 10.1038/s41467-023-43615-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The plasma membrane is widely regarded as the hub of the numerous signal transduction activities. Yet, the fundamental biophysical mechanisms that spatiotemporally compartmentalize different classes of membrane proteins remain unclear. Using multimodal live-cell imaging, here we first show that several lipid-anchored membrane proteins are consistently depleted from the membrane regions where the Ras/PI3K/Akt/F-actin network is activated. The dynamic polarization of these proteins does not depend upon the F-actin-based cytoskeletal structures, recurring shuttling between membrane and cytosol, or directed vesicular trafficking. Photoconversion microscopy and single-molecule measurements demonstrate that these lipid-anchored molecules have substantially dissimilar diffusion profiles in different regions of the membrane which enable their selective segregation. When these diffusion coefficients are incorporated into an excitable network-based stochastic reaction-diffusion model, simulations reveal that the altered affinity mediated selective partitioning is sufficient to drive familiar propagating wave patterns. Furthermore, normally uniform integral and lipid-anchored membrane proteins partition successfully when membrane domain-specific peptides are optogenetically recruited to them. We propose "dynamic partitioning" as a new mechanism that can account for large-scale compartmentalization of a wide array of lipid-anchored and integral membrane proteins during various physiological processes where membrane polarizes.
Collapse
Affiliation(s)
- Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Satomi Matsuoka
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Debojyoti Biswas
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Takebayashi K, Kamimura Y, Ueda M. Field model for multistate lateral diffusion of various transmembrane proteins observed in living Dictyostelium cells. J Cell Sci 2023; 136:jcs260280. [PMID: 36655427 PMCID: PMC10022678 DOI: 10.1242/jcs.260280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
The lateral diffusion of transmembrane proteins on plasma membranes is a fundamental process for various cellular functions. Diffusion properties specific for individual protein species have been extensively studied, but the common features among protein species are poorly understood. Here, we systematically studied the lateral diffusion of various transmembrane proteins in the lower eukaryote Dictyostelium discoideum cells using a hidden Markov model for single-molecule trajectories obtained experimentally. As common features, all membrane proteins that had from one to ten transmembrane regions adopted three free diffusion states with similar diffusion coefficients regardless of their structural variability. All protein species reduced their mobility similarly upon the inhibition of microtubule or actin cytoskeleton dynamics, or myosin II. The relationship between protein size and the diffusion coefficient was consistent with the Saffman-Delbrück model, meaning that membrane viscosity is a major determinant of lateral diffusion, but protein size is not. These protein species-independent properties of multistate free diffusion were explained simply and quantitatively by free diffusion on the three membrane regions with different viscosities, which is in sharp contrast to the complex diffusion behavior of transmembrane proteins in higher eukaryotes.
Collapse
Affiliation(s)
- Kazutoshi Takebayashi
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
| | - Yoichiro Kamimura
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
| | - Masahiro Ueda
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Banerjee T, Matsuoka S, Biswas D, Miao Y, Pal DS, Kamimura Y, Ueda M, Devreotes PN, Iglesias PA. A dynamic partitioning mechanism polarizes membrane protein distribution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522496. [PMID: 36712016 PMCID: PMC9881856 DOI: 10.1101/2023.01.03.522496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The plasma membrane is widely regarded as the hub of the signal transduction network activities that drives numerous physiological responses, including cell polarity and migration. Yet, the symmetry breaking process in the membrane, that leads to dynamic compartmentalization of different proteins, remains poorly understood. Using multimodal live-cell imaging, here we first show that multiple endogenous and synthetic lipid-anchored proteins, despite maintaining stable tight association with the inner leaflet of the plasma membrane, were unexpectedly depleted from the membrane domains where the signaling network was spontaneously activated such as in the new protrusions as well as within the propagating ventral waves. Although their asymmetric patterns resembled those of standard peripheral "back" proteins such as PTEN, unlike the latter, these lipidated proteins did not dissociate from the membrane upon global receptor activation. Our experiments not only discounted the possibility of recurrent reversible translocation from membrane to cytosol as it occurs for weakly bound peripheral membrane proteins, but also ruled out the necessity of directed vesicular trafficking and cytoskeletal supramolecular structure-based restrictions in driving these dynamic symmetry breaking events. Selective photoconversion-based protein tracking assays suggested that these asymmetric patterns instead originate from the inherent ability of these membrane proteins to "dynamically partition" into distinct domains within the plane of the membrane. Consistently, single-molecule measurements showed that these lipid-anchored molecules have substantially dissimilar diffusion profiles in different regions of the membrane. When these profiles were incorporated into an excitable network-based stochastic reaction-diffusion model of the system, simulations revealed that our proposed "dynamic partitioning" mechanism is sufficient to give rise to familiar asymmetric propagating wave patterns. Moreover, we demonstrated that normally uniform integral and lipid-anchored membrane proteins in Dictyostelium and mammalian neutrophil cells can be induced to partition spatiotemporally to form polarized patterns, by optogenetically recruiting membrane domain-specific peptides to these proteins. Together, our results indicate "dynamic partitioning" as a new mechanism of plasma membrane organization, that can account for large-scale compartmentalization of a wide array of lipid-anchored and integral membrane proteins in different physiological processes.
Collapse
|
4
|
Tripathy SP, Ponnapati M, Bhat S, Jacobson J, Chatterjee P. Femtomolar detection of SARS-CoV-2 via peptide beacons integrated on a miniaturized TIRF microscope. SCIENCE ADVANCES 2022; 8:eabn2378. [PMID: 36001655 PMCID: PMC9401610 DOI: 10.1126/sciadv.abn2378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 07/13/2022] [Indexed: 05/29/2023]
Abstract
The novel coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) continues to pose a substantial global health threat. Along with vaccines and targeted therapeutics, there is a critical need for rapid diagnostic solutions. In this work, we use computational protein modeling tools to suggest molecular beacon architectures that function as conformational switches for high-sensitivity detection of the SARS-CoV-2 spike protein receptor binding domain (S-RBD). Integrating these beacons on a miniaturized total internal reflection fluorescence (mini-TIRF) microscope, we detect the S-RBD and pseudotyped SARS-CoV-2 with limits of detection in the femtomolar range. We envision that our designed mini-TIRF platform will serve as a robust platform for point-of-care diagnostics for SARS-CoV-2 and future emergent viral threats.
Collapse
Affiliation(s)
- Soumya P. Tripathy
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manvitha Ponnapati
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Suhaas Bhat
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Joseph Jacobson
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pranam Chatterjee
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
5
|
Kamimura Y, Ueda M. Different Heterotrimeric G Protein Dynamics for Wide-Range Chemotaxis in Eukaryotic Cells. Front Cell Dev Biol 2021; 9:724797. [PMID: 34414196 PMCID: PMC8369479 DOI: 10.3389/fcell.2021.724797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
Chemotaxis describes directional motility along ambient chemical gradients and has important roles in human physiology and pathology. Typical chemotactic cells, such as neutrophils and Dictyostelium cells, can detect spatial differences in chemical gradients over a background concentration of a 105 scale. Studies of Dictyostelium cells have elucidated the molecular mechanisms of gradient sensing involving G protein coupled receptor (GPCR) signaling. GPCR transduces spatial information through its cognate heterotrimeric G protein as a guanine nucleotide change factor (GEF). More recently, studies have revealed unconventional regulation of heterotrimeric G protein in the gradient sensing. In this review, we explain how multiple mechanisms of GPCR signaling ensure the broad range sensing of chemical gradients in Dictyostelium cells as a model for eukaryotic chemotaxis.
Collapse
Affiliation(s)
- Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, RIKEN, Center for Biosystems Dynamics Research (BDR), Suita, Japan.,Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN, Center for Biosystems Dynamics Research (BDR), Suita, Japan.,Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
6
|
Yanagawa M, Sako Y. Workflows of the Single-Molecule Imaging Analysis in Living Cells: Tutorial Guidance to the Measurement of the Drug Effects on a GPCR. Methods Mol Biol 2021; 2274:391-441. [PMID: 34050488 DOI: 10.1007/978-1-0716-1258-3_32] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Single-molecule imaging (SMI) is a powerful method to measure the dynamics of membrane proteins on the cell membrane. The single-molecule tracking (SMT) analysis provides information about the diffusion dynamics, the oligomer size distribution, and the particle density change. The affinity and on/off-rate of a protein-protein interaction can be estimated from the dual-color SMI analysis. However, it is difficult for trainees to determine quantitative information from the SMI movies. The present protocol guides the detailed workflows to measure the drug-activated dynamics of a G protein-coupled receptor (GPCR) and metabotropic glutamate receptor 3 (mGluR3), by using the total internal reflection fluorescence microscopy (TIRFM). This tutorial guidance comprises an open-source software, named smDynamicsAnalyzer, with which one can easily analyze the SMT dataset by just following the workflows after building a designated folder structure ( https://github.com/masataka-yanagawa/IgorPro8-smDynamicsAnalyzer ).
Collapse
Affiliation(s)
- Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan.
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| |
Collapse
|
7
|
Talukder MSU, Pervin MS, Tanvir MIO, Fujimoto K, Tanaka M, Itoh G, Yumura S. Ca 2+-Calmodulin Dependent Wound Repair in Dictyostelium Cell Membrane. Cells 2020; 9:cells9041058. [PMID: 32340342 PMCID: PMC7226253 DOI: 10.3390/cells9041058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
Wound repair of cell membrane is a vital physiological phenomenon. We examined wound repair in Dictyostelium cells by using a laserporation, which we recently invented. We examined the influx of fluorescent dyes from the external medium and monitored the cytosolic Ca2+ after wounding. The influx of Ca2+ through the wound pore was essential for wound repair. Annexin and ESCRT components accumulated at the wound site upon wounding as previously described in animal cells, but these were not essential for wound repair in Dictyostelium cells. We discovered that calmodulin accumulated at the wound site upon wounding, which was essential for wound repair. The membrane accumulated at the wound site to plug the wound pore by two-steps, depending on Ca2+ influx and calmodulin. From several lines of evidence, the membrane plug was derived from de novo generated vesicles at the wound site. Actin filaments also accumulated at the wound site, depending on Ca2+ influx and calmodulin. Actin accumulation was essential for wound repair, but microtubules were not essential. A molecular mechanism of wound repair will be discussed.
Collapse
Affiliation(s)
- Md. Shahabe Uddin Talukder
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan; (M.S.U.T.); (M.S.P.); (M.I.O.T.); (K.F.); (M.T.)
- Institute of Food and Radiation Biology, AERE, Bangladesh Atomic Energy Commission, Savar, Dhaka 3787, Bangladesh
| | - Mst. Shaela Pervin
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan; (M.S.U.T.); (M.S.P.); (M.I.O.T.); (K.F.); (M.T.)
- Rajshahi Diabetic Association General Hospital, Luxmipur, Jhautala, Rajshahi 6000, Bangladesh
| | - Md. Istiaq Obaidi Tanvir
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan; (M.S.U.T.); (M.S.P.); (M.I.O.T.); (K.F.); (M.T.)
| | - Koushiro Fujimoto
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan; (M.S.U.T.); (M.S.P.); (M.I.O.T.); (K.F.); (M.T.)
| | - Masahito Tanaka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan; (M.S.U.T.); (M.S.P.); (M.I.O.T.); (K.F.); (M.T.)
| | - Go Itoh
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan; (M.S.U.T.); (M.S.P.); (M.I.O.T.); (K.F.); (M.T.)
- Correspondence: yumura@yamaguchi–u.ac.jp; Tel./Fax: +81-83-933-5717
| |
Collapse
|
8
|
Yoshioka D, Fukushima S, Koteishi H, Okuno D, Ide T, Matsuoka S, Ueda M. Single-molecule imaging of PI(4,5)P 2 and PTEN in vitro reveals a positive feedback mechanism for PTEN membrane binding. Commun Biol 2020; 3:92. [PMID: 32111929 PMCID: PMC7048775 DOI: 10.1038/s42003-020-0818-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/10/2020] [Indexed: 01/21/2023] Open
Abstract
PTEN, a 3-phosphatase of phosphoinositide, regulates asymmetric PI(3,4,5)P3 signaling for the anterior-posterior polarization and migration of motile cells. PTEN acts through posterior localization on the plasma membrane, but the mechanism for this accumulation is poorly understood. Here we developed an in vitro single-molecule imaging assay with various lipid compositions and use it to demonstrate that the enzymatic product, PI(4,5)P2, stabilizes PTEN's membrane-binding. The dissociation kinetics and lateral mobility of PTEN depended on the PI(4,5)P2 density on artificial lipid bilayers. The basic residues of PTEN were responsible for electrostatic interactions with anionic PI(4,5)P2 and thus the PI(4,5)P2-dependent stabilization. Single-molecule imaging in living Dictyostelium cells revealed that these interactions were indispensable for the stabilization in vivo, which enabled efficient cell migration by accumulating PTEN posteriorly to restrict PI(3,4,5)P3 distribution to the anterior. These results suggest that PI(4,5)P2-mediated positive feedback and PTEN-induced PI(4,5)P2 clustering may be important for anterior-posterior polarization.
Collapse
Affiliation(s)
- Daisuke Yoshioka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 565-0043, Japan
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Seiya Fukushima
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 565-0043, Japan
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiroyasu Koteishi
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
| | - Daichi Okuno
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
| | - Toru Ide
- Graduate School of Natural Science and Technology, Okayama University, Okayama-shi, Okayama, 700-8530, Japan
| | - Satomi Matsuoka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 565-0043, Japan.
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Masahiro Ueda
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 565-0043, Japan.
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
9
|
Hörning M, Shibata T. Three-Dimensional Cell Geometry Controls Excitable Membrane Signaling in Dictyostelium Cells. Biophys J 2019; 116:372-382. [PMID: 30635124 PMCID: PMC6350023 DOI: 10.1016/j.bpj.2018.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/16/2018] [Accepted: 12/13/2018] [Indexed: 01/13/2023] Open
Abstract
Phosphatidylinositol (3-5)-trisphosphate (PtdInsP3) is known to propagate as waves on the plasma membrane and is related to the membrane-protrusive activities in Dictyostelium and mammalian cells. Although there have been a few attempts to study the three-dimensional (3D) dynamics of these processes, most studies have focused on the dynamics extracted from single focal planes. However, the relation between the dynamics and 3D cell shape remains elusive because of the lack of signaling information about the unobserved part of the membrane. Here, we show that PtdInsP3 wave dynamics are directly regulated by the 3D geometry (i.e., size and shape) of the plasma membrane. By introducing an analysis method that extracts the 3D spatiotemporal activities on the entire cell membrane, we show that PtdInsP3 waves self-regulate their dynamics within the confined membrane area. This leads to changes in speed, orientation, and pattern evolution, following the underlying excitability of the signal transduction system. Our findings emphasize the role of the plasma membrane topology in reaction-diffusion-driven biological systems and indicate its importance in other mammalian systems.
Collapse
Affiliation(s)
- Marcel Hörning
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan.
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| |
Collapse
|
10
|
Miyanaga Y, Kamimura Y, Kuwayama H, Devreotes PN, Ueda M. Chemoattractant receptors activate, recruit and capture G proteins for wide range chemotaxis. Biochem Biophys Res Commun 2018; 507:304-310. [PMID: 30454895 DOI: 10.1016/j.bbrc.2018.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 11/19/2022]
Abstract
The wide range sensing of extracellular signals is a common feature of various sensory cells. Eukaryotic chemotactic cells driven by GPCRs and their cognate G proteins are one example. This system endows the cells directional motility towards their destination over long distances. There are several mechanisms to achieve the long dynamic range, including negative regulation of the receptors upon ligand interaction and spatial regulation of G proteins, as we found recently. However, these mechanisms are insufficient to explain the 105-fold range of chemotaxis seen in Dictyostelium. Here, we reveal that the receptor-mediated activation, recruitment, and capturing of G proteins mediate chemotactic signaling at the lower, middle and higher concentration ranges, respectively. These multiple mechanisms of G protein dynamics can successfully cover distinct ranges of ligand concentrations, resulting in seamless and broad chemotaxis. Furthermore, single-molecule imaging analysis showed that the activated Gα subunit forms an unconventional complex with the agonist-bound receptor. This complex formation of GPCR-Gα increased the membrane-binding time of individual Gα molecules and therefore resulted in the local accumulation of Gα. Our findings provide an additional chemotactic dynamic range mechanism in which multiple G protein dynamics positively contribute to the production of gradient information.
Collapse
Affiliation(s)
- Yukihiro Miyanaga
- Laboratory for Single Molecular Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, 565-0874, Japan
| | - Hidekazu Kuwayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Peter N Devreotes
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., 114 WBSB, Baltimore, MD, 21205, USA
| | - Masahiro Ueda
- Laboratory for Single Molecular Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan; Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, 565-0874, Japan.
| |
Collapse
|
11
|
Matsuoka S, Ueda M. Mutual inhibition between PTEN and PIP3 generates bistability for polarity in motile cells. Nat Commun 2018; 9:4481. [PMID: 30367048 PMCID: PMC6203803 DOI: 10.1038/s41467-018-06856-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022] Open
Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PIP3) and PIP3 phosphatase (PTEN) are enriched mutually exclusively on the anterior and posterior membranes of eukaryotic motile cells. However, the mechanism that causes this spatial separation between the two molecules is unknown. Here we develop a method to manipulate PIP3 levels in living cells and used it to show PIP3 suppresses the membrane localization of PTEN. Single-molecule measurements of membrane-association and -dissociation kinetics and of lateral diffusion reveal that PIP3 suppresses the PTEN binding site required for stable PTEN membrane binding. Mutual inhibition between PIP3 and PTEN provides a mechanistic basis for bistability that creates a PIP3-enriched/PTEN-excluded state and a PTEN-enriched/PIP3-excluded state underlying the strict spatial separation between PIP3 and PTEN. The PTEN binding site also mediates the suppression of PTEN membrane localization in chemotactic signaling. These results illustrate that the PIP3-PTEN bistable system underlies a cell's decision-making for directional movement irrespective of the environment.
Collapse
Affiliation(s)
- Satomi Matsuoka
- Laboratory for Cell Signaling Dynamics, RIKEN QBiC, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan.
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Laboratory for Cell Signaling Dynamics, RIKEN BDR, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan.
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN QBiC, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Laboratory of Single Molecule Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Laboratory for Cell Signaling Dynamics, RIKEN BDR, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan
| |
Collapse
|
12
|
Yanagawa M, Hiroshima M, Togashi Y, Abe M, Yamashita T, Shichida Y, Murata M, Ueda M, Sako Y. Single-molecule diffusion-based estimation of ligand effects on G protein-coupled receptors. Sci Signal 2018; 11:11/548/eaao1917. [PMID: 30228224 DOI: 10.1126/scisignal.aao1917] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
G protein-coupled receptors (GPCRs) are major drug targets. Developing a method to measure the activities of GPCRs is essential for pharmacology and drug screening. However, it is difficult to measure the effects of a drug by monitoring the receptor on the cell surface; thus, changes in the concentrations of downstream signaling molecules, which depend on the signaling pathway selectivity of the receptor, are often used as an index of receptor activity. We show that single-molecule imaging analysis provides an alternative method for assessing the effects of ligands on GPCRs. Using total internal reflection fluorescence microscopy (TIRFM), we monitored the dynamics of the diffusion of metabotropic glutamate receptor 3 (mGluR3), a class C GPCR, under various ligand conditions. Our single-molecule tracking analysis demonstrated that increases and decreases in the average diffusion coefficient of mGluR3 quantitatively reflected the ligand-dependent inactivation and activation of receptors, respectively. Through experiments with inhibitors and dual-color single-molecule imaging analysis, we found that the diffusion of receptor molecules was altered by common physiological events associated with GPCRs, including G protein binding, and receptor accumulation in clathrin-coated pits. We also confirmed that agonist also decreased the average diffusion coefficient for class A and B GPCRs, demonstrating that this parameter is a good index for estimating ligand effects on many GPCRs regardless of their phylogenetic groups, the chemical properties of the ligands, or G protein-coupling selectivity.
Collapse
Affiliation(s)
- Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Michio Hiroshima
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan.,Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Saitama, Japan
| | - Yuichi Togashi
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan.,Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Cybermedia Center, Osaka University, 5-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Mitsuhiro Abe
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.,Research Organization for Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Masayuki Murata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan.,Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
13
|
Matsuoka S, Miyanaga Y, Ueda M. Multi-State Transition Kinetics of Intracellular Signaling Molecules by Single-Molecule Imaging Analysis. Methods Mol Biol 2016; 1407:361-379. [PMID: 27271914 DOI: 10.1007/978-1-4939-3480-5_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The chemotactic signaling of eukaryotic cells is based on a chain of interactions between signaling molecules diffusing on the cell membrane and those shuttling between the membrane and cytoplasm. In this chapter, we describe methods to quantify lateral diffusion and reaction kinetics on the cell membrane. By the direct visualization and statistic analyses of molecular Brownian movement achieved by single-molecule imaging techniques, multiple states of membrane-bound molecules are successfully revealed with state transition kinetics. Using PTEN, a phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) 3'-phosphatase, in Dictyostelium discoideum undergoing chemotaxis as a model, each process of the analysis is described in detail. The identified multiple state kinetics provides an essential clue to elucidating the molecular mechanism of chemoattractant-induced dynamic redistribution of the signaling molecule asymmetrically on the cell membrane. Quantitative parameters for molecular reactions and diffusion complement a conventional view of the chemotactic signaling system, where changing a static network of molecules connected by causal relationships into a spatiotemporally dynamic one permits a mathematical description of stochastic migration of the cell along a shallow chemoattractant gradient.
Collapse
Affiliation(s)
- Satomi Matsuoka
- Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
| | - Yukihiro Miyanaga
- Laboratory of Single Molecule Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Masahiro Ueda
- Laboratory of Single Molecule Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
14
|
Komatsuzaki A, Ohyanagi T, Tsukasaki Y, Miyanaga Y, Ueda M, Jin T. Compact halo-ligand-conjugated quantum dots for multicolored single-molecule imaging of overcrowding GPCR proteins on cell membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:1396-1401. [PMID: 25504902 DOI: 10.1002/smll.201402508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/19/2014] [Indexed: 06/04/2023]
Abstract
To detect single molecules within the optical diffraction limit (< ca. 200 nm), a multicolored imaging technique is developed using Halo-ligand conjugated quantum dots (Halo-QDs; <6 nm in diameter). Using three types of Halo-QDs, multicolored single-molecule fluorescence imaging of GPCR proteins in Dictyostelium cells is achieved.
Collapse
Affiliation(s)
- Akihito Komatsuzaki
- Laboratory for Nano-Bio Probes, Quantitative Biology Center, Riken, Suita, 565-0874, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Chemotaxis, or directed motion in chemical gradients, is critical for various biological processes. Many eukaryotic cells perform spatial sensing, i.e. they detect gradients by comparing spatial differences in binding occupancy of chemosensory receptors across their membrane. In many theoretical models of spatial sensing, it is assumed, for the sake of simplicity, that the receptors concerned do not move. However, in reality, receptors undergo diverse modes of diffusion, and can traverse considerable distances in the time it takes such cells to turn in an external gradient. This sets a physical limit on the accuracy of spatial sensing, which we explore using a model in which receptors diffuse freely over the membrane. We find that the Fisher information carried in binding and unbinding events decreases monotonically with the diffusion constant of the receptors.
Collapse
|
16
|
Yasui M, Matsuoka S, Ueda M. PTEN hopping on the cell membrane is regulated via a positively-charged C2 domain. PLoS Comput Biol 2014; 10:e1003817. [PMID: 25211206 PMCID: PMC4161299 DOI: 10.1371/journal.pcbi.1003817] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 07/17/2014] [Indexed: 11/19/2022] Open
Abstract
PTEN, a tumor suppressor that is frequently mutated in a wide spectrum of cancers, exerts PI(3,4,5)P3 phosphatase activities that are regulated by its dynamic shuttling between the membrane and cytoplasm. Direct observation of PTEN in the interfacial environment can offer quantitative information about the shuttling dynamics, but remains elusive. Here we show that positively charged residues located in the cα2 helix of the C2 domain are necessary for the membrane localization of PTEN via stable electrostatic interactions in Dictyostelium discoideum. Single-molecule imaging analyses revealed that PTEN molecules moved distances much larger than expected had they been caused by lateral diffusion, a phenomenon we call “hopping.” Our novel single-particle tracking analysis method found that the cα2 helix aids in regulating the hopping and stable-binding states. The dynamically established membrane localization of PTEN was revealed to be essential for developmental processes and clarified a fundamental regulation mechanism of the protein quantity and activity on the plasma membrane. The plasma membrane is a major chemical reaction field in living cells, and the molecular mechanisms of protein-membrane interactions are important for many cellular functions. In this report, we have discovered that the PTEN protein, which transits between the cytoplasm and membrane, hops along the plasma membrane of living cells. We tracked individual PTEN molecules on the membrane by single molecule imaging and analyzed the hopping behavior by developing a novel analysis method, which measures the rebinding probability of membrane-bound proteins after detaching from the membrane. We found that positively charged amino acids in the C2 domain of PTEN, which were reported to be important for its phosphatase activity on the membrane, are required to suppress excessive hopping and stabilize PTEN membrane binding. The stable electrostatic interactions localize PTEN to the plasma membrane and play an indispensable role in regulating the size of the multicellular structures formed under a starving environment. Our results suggest electrostatic interactions between the protein and membrane regulate protein quantity and activity.
Collapse
Affiliation(s)
- Masato Yasui
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Laboratory for Cell Signaling Dynamics, QBiC (Quantitative Biology Center), RIKEN, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Satomi Matsuoka
- Laboratory for Cell Signaling Dynamics, QBiC (Quantitative Biology Center), RIKEN, Suita, Osaka, Japan
- * E-mail:
| | - Masahiro Ueda
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Laboratory for Cell Signaling Dynamics, QBiC (Quantitative Biology Center), RIKEN, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
17
|
Okamoto M, Namba T, Shinoda T, Kondo T, Watanabe T, Inoue Y, Takeuchi K, Enomoto Y, Ota K, Oda K, Wada Y, Sagou K, Saito K, Sakakibara A, Kawaguchi A, Nakajima K, Adachi T, Fujimori T, Ueda M, Hayashi S, Kaibuchi K, Miyata T. TAG-1-assisted progenitor elongation streamlines nuclear migration to optimize subapical crowding. Nat Neurosci 2013. [PMID: 24056697 DOI: 10.1038/nn.3525.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neural progenitors exhibit cell cycle-dependent interkinetic nuclear migration (INM) along the apicobasal axis. Despite recent advances in understanding its underlying molecular mechanisms, the processes to which INM contributes mechanically and the regulation of INM by the apicobasally elongated morphology of progenitors remain unclear. We found that knockdown of the cell-surface molecule TAG-1 resulted in retraction of neocortical progenitors' basal processes. Highly shortened stem-like progenitors failed to undergo basalward INM and became overcrowded in the periventricular (subapical) space. Surprisingly, the overcrowded progenitors left the apical surface and migrated into basal neuronal territories. These observations, together with the results of in toto imaging and physical tests, suggest that progenitors may sense and respond to excessive mechanical stress. Although, unexpectedly, the heterotopic progenitors remained stem-like and continued to sequentially produce neurons until the late embryonic period, histogenesis was severely disrupted. Thus, INM is essential for preventing overcrowding of nuclei and their somata, thereby ensuring normal brain histogenesis.
Collapse
Affiliation(s)
- Mayumi Okamoto
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Okamoto M, Namba T, Shinoda T, Kondo T, Watanabe T, Inoue Y, Takeuchi K, Enomoto Y, Ota K, Oda K, Wada Y, Sagou K, Saito K, Sakakibara A, Kawaguchi A, Nakajima K, Adachi T, Fujimori T, Ueda M, Hayashi S, Kaibuchi K, Miyata T. TAG-1-assisted progenitor elongation streamlines nuclear migration to optimize subapical crowding. Nat Neurosci 2013; 16:1556-66. [PMID: 24056697 DOI: 10.1038/nn.3525] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/22/2013] [Indexed: 12/15/2022]
Abstract
Neural progenitors exhibit cell cycle-dependent interkinetic nuclear migration (INM) along the apicobasal axis. Despite recent advances in understanding its underlying molecular mechanisms, the processes to which INM contributes mechanically and the regulation of INM by the apicobasally elongated morphology of progenitors remain unclear. We found that knockdown of the cell-surface molecule TAG-1 resulted in retraction of neocortical progenitors' basal processes. Highly shortened stem-like progenitors failed to undergo basalward INM and became overcrowded in the periventricular (subapical) space. Surprisingly, the overcrowded progenitors left the apical surface and migrated into basal neuronal territories. These observations, together with the results of in toto imaging and physical tests, suggest that progenitors may sense and respond to excessive mechanical stress. Although, unexpectedly, the heterotopic progenitors remained stem-like and continued to sequentially produce neurons until the late embryonic period, histogenesis was severely disrupted. Thus, INM is essential for preventing overcrowding of nuclei and their somata, thereby ensuring normal brain histogenesis.
Collapse
Affiliation(s)
- Mayumi Okamoto
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Matsuoka S, Shibata T, Ueda M. Asymmetric PTEN distribution regulated by spatial heterogeneity in membrane-binding state transitions. PLoS Comput Biol 2013; 9:e1002862. [PMID: 23326224 PMCID: PMC3542079 DOI: 10.1371/journal.pcbi.1002862] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 11/10/2012] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms that underlie asymmetric PTEN distribution at the posterior of polarized motile cells and regulate anterior pseudopod formation were addressed by novel single-molecule tracking analysis. Heterogeneity in the lateral mobility of PTEN on a membrane indicated the existence of three membrane-binding states with different diffusion coefficients and membrane-binding lifetimes. The stochastic state transition kinetics of PTEN among these three states were suggested to be regulated spatially along the cell polarity such that only the stable binding state is selectively suppressed at the anterior membrane to cause local PTEN depletion. By incorporating experimentally observed kinetic parameters into a simple mathematical model, the asymmetric PTEN distribution can be explained quantitatively to illustrate the regulatory mechanisms for cellular asymmetry based on an essential causal link between individual stochastic reactions and stable localizations of the ensemble.
Collapse
Affiliation(s)
- Satomi Matsuoka
- Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center, Suita, Japan
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- CREST, Japan Science and Technology Agency (JST), Suita, Japan
| | - Tatsuo Shibata
- CREST, Japan Science and Technology Agency (JST), Suita, Japan
- Laboratories for Physical Biology, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center, Suita, Japan
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- CREST, Japan Science and Technology Agency (JST), Suita, Japan
- Laboratory of Single Molecule Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
20
|
Lee J, Miyanaga Y, Ueda M, Hohng S. Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging. Biophys J 2012; 103:1691-7. [PMID: 23083712 DOI: 10.1016/j.bpj.2012.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/24/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022] Open
Abstract
There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (<33 fps), and superior fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0-85 μm from the surface of a coverglass.
Collapse
Affiliation(s)
- Jinwoo Lee
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
21
|
Yamashita H, Taoka A, Uchihashi T, Asano T, Ando T, Fukumori Y. Single-Molecule Imaging on Living Bacterial Cell Surface by High-Speed AFM. J Mol Biol 2012; 422:300-9. [DOI: 10.1016/j.jmb.2012.05.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/14/2012] [Indexed: 11/27/2022]
|
22
|
Huber T, Sakmar TP. Escaping the flatlands: new approaches for studying the dynamic assembly and activation of GPCR signaling complexes. Trends Pharmacol Sci 2011; 32:410-9. [PMID: 21497404 PMCID: PMC3128647 DOI: 10.1016/j.tips.2011.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/01/2011] [Accepted: 03/10/2011] [Indexed: 01/17/2023]
Abstract
Despite significant recent advances in molecular and structural studies of G protein-coupled receptors (GPCRs), an understanding of transmembrane signal transduction with chemical precision requires new approaches. Simple binary receptor-ligand or receptor-G protein complex models cannot adequately describe the relevant macromolecular signaling machineries. GPCR signalosomes undergo complex dynamic assembly-disassembly reactions to create allosteric signaling conduits whose properties cannot necessarily be predicted from individual elements alone. The combinatorial possibilities inherent in a system with hundreds of potential components suggest that high-content miniaturized experimental platforms and computational approaches will be required. To study allosteric effects involved in signalosome reaction pathways, a bottom-up approach using multicolor single-molecule detection fluorescence experiments in biochemically defined systems and complemented by molecular dynamics models of macromolecular complexes is proposed. In bridging the gap between molecular and systems biology, this synthetic approach suggests a way forward from the flatlands to multi-dimensional data collection.
Collapse
Affiliation(s)
- Thomas Huber
- Laboratory of Molecular Biology & Biochemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
23
|
Xu X, Meckel T, Brzostowski JA, Yan J, Meier-Schellersheim M, Jin T. Coupling mechanism of a GPCR and a heterotrimeric G protein during chemoattractant gradient sensing in Dictyostelium. Sci Signal 2010; 3:ra71. [PMID: 20876874 DOI: 10.1126/scisignal.2000980] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The coupling of heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) with G proteins is fundamental for GPCR signaling; however, the mechanism of coupling is still debated. Moreover, how the proposed mechanisms affect the dynamics of downstream signaling remains unclear. Here, through experiments involving fluorescence recovery after photobleaching and single-molecule imaging, we directly measured the mobilities of cyclic adenosine monophosphate (cAMP) receptor 1 (cAR1), a chemoattractant receptor, and a G protein βγ subunit in live cells. We found that cAR1 diffused more slowly in the plasma membrane than did Gβγ. Upon binding of ligand to the receptor, the mobility of cAR1 was unchanged, whereas the speed of a fraction of the faster-moving Gβγ subunits decreased. Our measurements showed that cAR1 was relatively immobile and Gβγ diffused freely, suggesting that chemoattractant-bound cAR1 transiently interacted with G proteins. Using models of possible coupling mechanisms, we computed the temporal kinetics of G protein activation. Our fluorescence resonance energy transfer imaging data showed that fully activated cAR1 induced the sustained dissociation of G protein α and βγ subunits, which indicated that ligand-bound cAR1 activated G proteins continuously. Finally, simulations indicated that a high-affinity coupling of ligand-bound receptors and G proteins was essential for cAR1 to translate extracellular gradient signals into directional cellular responses. We suggest that chemoattractant receptors use a ligand-induced coupling rather than a precoupled mechanism to control the activation of G proteins during chemotaxis.
Collapse
Affiliation(s)
- Xuehua Xu
- Chemotaxis Signal Section, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | | | |
Collapse
|