1
|
Sun J, Zhang M, Qi X, Doyle C, Zheng H. Armadillo-repeat kinesin1 interacts with Arabidopsis atlastin RHD3 to move ER with plus-end of microtubules. Nat Commun 2020; 11:5510. [PMID: 33139737 PMCID: PMC7606470 DOI: 10.1038/s41467-020-19343-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
In living cells, dynamics of the endoplasmic reticulum (ER) are driven by the cytoskeleton motor machinery as well as the action of ER-shaping proteins such as atlastin GTPases including RHD3 in Arabidopsis. It is not known if the two systems interplay, and, if so, how they do. Here we report the identification of ARK1 (Armadillo-Repeat Kinesin1) via a genetic screen for enhancers of the rhd3 mutant phenotype. In addition to defects in microtubule dynamics, ER organization is also defective in mutants lacking a functional ARK1. In growing root hair cells, ARK1 comets predominantly localize on the growing-end of microtubules and partially overlap with RHD3 in the cortex of the subapical region. ARK1 co-moves with RHD3 during tip growth of root hair cells. We show that there is a functional interdependence between ARK1 and RHD3. ARK1 physically interacts with RHD3 via its armadillo domain (ARM). In leaf epidermal cells where a polygonal ER network can be resolved, ARK1, but not ARK1ΔARM, moves together with RHD3 to pull an ER tubule toward another and stays with the newly formed 3-way junction of the ER for a while. We conclude that ARK1 acts together with RHD3 to move the ER on microtubules to generate a fine ER network.
Collapse
Affiliation(s)
- Jiaqi Sun
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | - Mi Zhang
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
| | - Xingyun Qi
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
- Department of Biology, Rutgers University, Camden, NJ, 08103, USA
| | - Caitlin Doyle
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | - Huanquan Zheng
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada.
| |
Collapse
|
2
|
Soga K, Yano S, Matsumoto S, Hoson T. Hypergravity experiments to evaluate gravity resistance mechanisms in plants. Methods Mol Biol 2016; 1309:307-19. [PMID: 25981783 DOI: 10.1007/978-1-4939-2697-8_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Hypergravity generated by centrifugal acceleration is the only practical method to modify the magnitude of gravitational acceleration for a sufficient duration on Earth and has been used to analyze the nature and mechanism of graviresponse, particularly gravity resistance, in plants. Plant organs are generally resistant to gravitational acceleration. Hypergravity produced from centrifugation speeds in the range of 10-300 × g, which is easily produced by a benchtop centrifuge, is often used during plant experiments. After centrifugation, the plant material is fixed with suitable fixatives in appropriate sample storage containers such as the Chemical Fixation Bag. The material is then analyzed with a variety of methods, depending on the purpose of the experiment. Plant material fixed with the RNAlater(®) solution can be sequentially used for determining the mechanical properties of the cell wall, for RNA extraction (which is necessary for gene expression analysis), for estimating the enzyme activity of the cell wall proteins, and for determining the levels as well as the compositions of cell wall polysaccharides. The plant material can also be used directly for microscopic observation of cellular components such as cortical microtubules.
Collapse
Affiliation(s)
- Kouichi Soga
- Department of Biology, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | | | | | | |
Collapse
|
3
|
Philosoph-Hadas S, Friedman H, Meir S. Flowering shoots of ornamental crops as a model to study cellular and molecular aspects of plant gravitropism. Methods Mol Biol 2016; 1309:171-98. [PMID: 25981776 DOI: 10.1007/978-1-4939-2697-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Flowering shoots offer a very convenient and excellent model system for in-depth study of shoot gravitropism in regular stems rather than in special aboveground organs, showing how plants cope with the force of gravity on Earth and change in orientation. Regarding the emerging notion that roots and shoots execute their gravitropic bending by different mechanisms, the use of flowering shoots offers additional confirmation for the suggested shoot-sensing mechanisms initially found in Arabidopsis. As a part of confirming this mechanism, studying this unique model system also enabled elucidation of the sequence of events operating in gravity signalling in shoots. Hence, using the system of flowering shoots provided an additional dimension to our understanding of shoot gravitropism and its hormonal regulation, which has been less advanced than root gravitropism. This is particularly important since the term "shoots" includes various aboveground organs. Hence, unlike other aboveground organs such as pulvini, the asymmetric growth in response to change in shoot orientation is accompanied in cut ornamental spikes by a continuous growth process. This chapter provides an overview of the basic methods, specifically developed or adapted from other graviresponding systems, for determining the main components which play a key role in gravistimulation signalling in flowering shoots.
Collapse
Affiliation(s)
- Sonia Philosoph-Hadas
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, 6, Bet-Dagan, 5025001, Israel,
| | | | | |
Collapse
|
4
|
Dong B, Yang X, Zhu S, Bassham DC, Fang N. Stochastic Optical Reconstruction Microscopy Imaging of Microtubule Arrays in Intact Arabidopsis thaliana Seedling Roots. Sci Rep 2015; 5:15694. [PMID: 26503365 PMCID: PMC4621606 DOI: 10.1038/srep15694] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/30/2015] [Indexed: 12/19/2022] Open
Abstract
Super-resolution fluorescence microscopy has generated tremendous success in revealing detailed subcellular structures in animal cells. However, its application to plant cell biology remains extremely limited due to numerous technical challenges, including the generally high fluorescence background of plant cells and the presence of the cell wall. In the current study, stochastic optical reconstruction microscopy (STORM) imaging of intact Arabidopsis thaliana seedling roots with a spatial resolution of 20-40 nm was demonstrated. Using the super-resolution images, the spatial organization of cortical microtubules in different parts of a whole Arabidopsis root tip was analyzed quantitatively, and the results show the dramatic differences in the density and spatial organization of cortical microtubules in cells of different differentiation stages or types. The method developed can be applied to plant cell biological processes, including imaging of additional elements of the cytoskeleton, organelle substructure, and membrane domains.
Collapse
Affiliation(s)
- Bin Dong
- Ames Laboratory, US Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Xiaochen Yang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Shaobin Zhu
- Ames Laboratory, US Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
- Plant Sciences Institute, Iowa State University, Ames, Iowa 50011
| | - Ning Fang
- Department of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, Georgia 30302
| |
Collapse
|
5
|
Kwon T, Sparks JA, Nakashima J, Allen SN, Tang Y, Blancaflor EB. Transcriptional response of Arabidopsis seedlings during spaceflight reveals peroxidase and cell wall remodeling genes associated with root hair development. AMERICAN JOURNAL OF BOTANY 2015; 102:21-35. [PMID: 25587145 DOI: 10.3732/ajb.1400458] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY Plants will be an important component of advanced life support systems during space exploration missions. Therefore, understanding their biology in the spacecraft environment will be essential before they can be used for such systems.• METHODS Seedlings of Arabidopsis thaliana were grown for 2 wk in the Biological Research in Canisters (BRIC) hardware on board the second to the last mission of the space shuttle Discovery (STS-131). Transcript profiles between ground controls and space-grown seedlings were compared using stringent selection criteria.• KEY RESULTS Expression of transcripts associated with oxidative stress and cell wall remodeling was repressed in microgravity. These downregulated genes were previously shown to be enriched in root hairs consistent with seedling phenotypes observed in space. Mutations in genes that were downregulated in microgravity, including two uncharacterized root hair-expressed class III peroxidase genes (PRX44 and PRX57), led to defective polar root hair growth on Earth. PRX44 and PRX57 mutants had ruptured root hairs, which is a typical phenotype of tip-growing cells with defective cell walls and those subjected to stress.• CONCLUSIONS Long-term exposure to microgravity negatively impacts tip growth by repressing expression of genes essential for normal root hair development. Whereas changes in peroxidase gene expression leading to reduced root hair growth in space are actin-independent, root hair development modulated by phosphoinositides could be dependent on the actin cytoskeleton. These results have profound implications for plant adaptation to microgravity given the importance of tip growing cells such as root hairs for efficient nutrient capture.
Collapse
Affiliation(s)
- Taegun Kwon
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 USA
| | - J Alan Sparks
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 USA
| | - Jin Nakashima
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 USA
| | - Stacy N Allen
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 USA
| | - Yuhong Tang
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 USA
| | - Elison B Blancaflor
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 USA
| |
Collapse
|
6
|
Dyachok J, Sparks JA, Liao F, Wang YS, Blancaflor EB. Fluorescent protein-based reporters of the actin cytoskeleton in living plant cells: Fluorophore variant, actin binding domain, and promoter considerations. Cytoskeleton (Hoboken) 2014; 71:311-27. [DOI: 10.1002/cm.21174] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 02/27/2014] [Accepted: 03/19/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Julia Dyachok
- Plant Biology Division; The Samuel Roberts Noble Foundation; Ardmore Oklahoma
| | - J. Alan Sparks
- Plant Biology Division; The Samuel Roberts Noble Foundation; Ardmore Oklahoma
| | - Fuqi Liao
- Department of Computing Services; The Samuel Roberts Noble Foundation; Ardmore Oklahoma
| | - Yuh-Shuh Wang
- Plant Signal Research Group; Institute of Technology, University of Tartu; Nooruse 1 Tartu 50411 Estonia
| | | |
Collapse
|
7
|
Nakashima J, Liao F, Sparks JA, Tang Y, Blancaflor EB. The actin cytoskeleton is a suppressor of the endogenous skewing behaviour of Arabidopsis primary roots in microgravity. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:142-50. [PMID: 23952736 DOI: 10.1111/plb.12062] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/24/2013] [Indexed: 05/11/2023]
Abstract
Before plants can be effectively utilised as a component of enclosed life-support systems for space exploration, it is important to understand the molecular mechanisms by which they develop in microgravity. Using the Biological Research in Canisters (BRIC) hardware on board the second to the last flight of the Space Shuttle Discovery (STS-131 mission), we studied how microgravity impacts root growth in Arabidopsis thaliana. Ground-based studies showed that the actin cytoskeleton negatively regulates root gravity responses on Earth, leading us to hypothesise that actin might also be an important modulator of root growth behaviour in space. We investigated how microgravity impacted root growth of wild type (ecotype Columbia) and a mutant (act2-3) disrupted in a root-expressed vegetative actin isoform (ACTIN2). Roots of etiolated wild-type and act2-3 seedlings grown in space skewed vigorously toward the left, which was unexpected given the reduced directional cue provided by gravity. The left-handed directional root growth in space was more pronounced in act2-3 mutants than wild type. To quantify differences in root orientation of these two genotypes in space, we developed an algorithm where single root images were converted into binary images using computational edge detection methods. Binary images were processed with Fast Fourier Transformation (FFT), and histogram and entropy were used to determine spectral distribution, such that high entropy values corresponded to roots that deviated more strongly from linear orientation whereas low entropy values represented straight roots. We found that act2-3 roots had a statistically stronger skewing/coiling response than wild-type roots, but such differences were not apparent on Earth. Ultrastructural studies revealed that newly developed cell walls of space-grown act2-3 roots were more severely disrupted compared to space-grown wild type, and ground control wild-type and act2-3 roots. Collectively, our results provide evidence that, like root gravity responses on Earth, endogenous directional growth patterns of roots in microgravity are suppressed by the actin cytoskeleton. Modulation of root growth in space by actin could be facilitated in part through its impact on cell wall architecture.
Collapse
Affiliation(s)
- J Nakashima
- Division of Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, OK, USA
| | | | | | | | | |
Collapse
|
8
|
Yoo CM, Quan L, Cannon AE, Wen J, Blancaflor EB. AGD1, a class 1 ARF-GAP, acts in common signaling pathways with phosphoinositide metabolism and the actin cytoskeleton in controlling Arabidopsis root hair polarity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:1064-76. [PMID: 22098134 DOI: 10.1111/j.1365-313x.2011.04856.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Arabidopsis thaliana AGD1 gene encodes a class 1 adenosine diphosphate ribosylation factor-gtpase-activating protein (ARF-GAP). Previously, we found that agd1 mutants have root hairs that exhibit wavy growth and have two tips that originate from a single initiation point. To gain new insights into how AGD1 modulates root hair polarity we analyzed double mutants of agd1 and other loci involved in root hair development, and evaluated dynamics of various components of root hair tip growth in agd1 by live cell microscopy. Because AGD1 contains a phosphoinositide (PI) binding pleckstrin homology (PH) domain, we focused on genetic interactions between agd1 and root hair mutants altered in PI metabolism. Rhd4, which is knocked-out in a gene encoding a phosphatidylinositol-4-phosphate (PI-4P) phosphatase, was epistatic to agd1. In contrast, mutations to PIP5K3 and COW1, which encode a type B phosphatidylinositol-4-phosphate 5-kinase 3 and a phosphatidylinositol transfer protein, respectively, enhanced the root hair defects of agd1. Enhanced root hair defects were also observed in double mutants to AGD1 and ACT2, a root hair-expressed vegetative actin isoform. Consistent with our double-mutant studies, targeting of tip growth components involved in PI signaling (PI-4P), secretion (RABA4b) and actin regulation (ROP2), were altered in agd1 root hairs. Furthermore, tip cytosolic calcium ([Ca²⁺](cyt) ) oscillations were disrupted in root hairs of agd1. Taken together, our results indicate that AGD1 links PI signaling to cytoskeletal-, [Ca²⁺](cyt-) , ROP2-, and RABA4b-mediated root hair development.
Collapse
Affiliation(s)
- Cheol-Min Yoo
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc., 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | | | | | |
Collapse
|
9
|
Yoo CM, Quan L, Blancaflor EB. Divergence and Redundancy in CSLD2 and CSLD3 Function During Arabidopsis Thaliana Root Hair and Female Gametophyte Development. FRONTIERS IN PLANT SCIENCE 2012; 3:111. [PMID: 22661983 PMCID: PMC3361707 DOI: 10.3389/fpls.2012.00111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/08/2012] [Indexed: 05/21/2023]
Abstract
The Arabidopsis cellulose synthase-like D (CSLD) 2 and 3 genes are known to function in root hair development. Here, we show that these genes also play a role in female gametophyte development because csld2 csld3 double mutants were observed to have low seed set that could be traced to defects in female transmission efficiency. Cell biological studies of csld2 csld3 ovules showed synergid cell degeneration during megagametogenesis and reduced pollen tube penetration during fertilization. Although CSLD2 and CSLD3 function redundantly in female gametophyte development, detailed analyses of root hair phenotypes of progeny from genetic crosses between csld2 and csld3, suggest that CSLD3 might play a more prominent role than CSLD2 in root hair development. Phylogenetic and gene duplication studies of CSLD2 and CSLD3 homologs in Arabidopsis lyrata, Populus, Medicago, maize, and Physcomitrella were further performed to investigate the course of evolution for these genes. Our analyses indicate that the ancestor of land plants possibly contained two copies of CSLD genes, one of which developed into the CSLD5 lineage in flowering plants, and the other formed the CSLD1/2/3/4 clade. In addition, CSLD2 and CSLD3 likely originated from a recent genome-wide duplication event explaining their redundancy. Moreover, sliding-window dN/dS analysis showed that most of the coding regions of CSLD2 and CSLD3 have been under strong purifying selection pressure. However, the region that encodes the N-terminus of CSLD3 has been under relatively relaxed selection pressure as indicated by its high dN/dS value, suggesting that CSLD3 might have gained additional functions through more frequent non-synonymous sequence changes at the N-terminus, which could partly explain the more prominent role of CSLD3 during root hair development compared to CSLD2.
Collapse
Affiliation(s)
- Cheol-Min Yoo
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Li Quan
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Elison B. Blancaflor
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
- *Correspondence: Elison B. Blancaflor, Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, USA. e-mail:
| |
Collapse
|