1
|
Wu K, Li Y, Yi Y, Yu Y, Wang Y, Zhang L, Cao Q, Chen K. The detection, function, and therapeutic potential of RNA 2'-O-methylation. THE INNOVATION LIFE 2024; 3:100112. [PMID: 40206865 PMCID: PMC11981644 DOI: 10.59717/j.xinn-life.2024.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
RNA modifications play crucial roles in shaping RNA structure, function, and metabolism. Their dysregulation has been associated with many diseases, including cancer, developmental disorders, cardiovascular diseases, as well as neurological and immune-related conditions. A particular type of RNA modification, 2'-O-methylation (Nm) stands out due to its widespread occurrence on all four types of nucleotides (A, U, G, C) and in most RNA categories, e.g., mRNA, rRNA, tRNA, miRNA, snRNA, snoRNA, and viral RNA. Nm is the addition of a methyl group to the 2' hydroxyl of the ribose moiety of a nucleoside. Given its great biological significance and reported association with many diseases, we first reviewed the occurrences and functional implications of Nm in various RNA species. We then summarized the reported Nm detection methods, ranging from biochemical techniques in the 70's and 80's to recent methods based on Illumina RNA sequencing, artificial intelligence (AI) models for computational prediction, and the latest nanopore sequencing methods currently under active development. Moreover, we discussed the applications of Nm in the realm of RNA medicine, highlighting its therapeutic potential. At last, we present perspectives on potential research directions, aiming to offer insights for future investigations on Nm modification.
Collapse
Affiliation(s)
- Kaiyuan Wu
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston 02215, USA
- Department of Bioengineering, Rice University, Houston 77005, USA
- Department of Computational Biology and Bioinformatics, School of Medicine, Duke University, Durham 27708, USA
- These authors contributed equally to this work
| | - Yanqiang Li
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston 02215, USA
- These authors contributed equally to this work
| | - Yang Yi
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago 60611, USA
| | - Yang Yu
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston 02215, USA
| | - Yunxia Wang
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston 02215, USA
| | - Lili Zhang
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston 02215, USA
| | - Qi Cao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago 60611, USA
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston 02215, USA
- Broad Institute of MIT and Harvard, Boston 02215, USA
- Dana-Farber / Harvard Cancer Center, Boston 02215, USA
| |
Collapse
|
2
|
Fiordoro S, Rosano C, Pechkova E, Barocci S, Izzotti A. Epigenetic modulation of immune cells: Mechanisms and implications. Adv Biol Regul 2024; 94:101043. [PMID: 39305736 DOI: 10.1016/j.jbior.2024.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 12/12/2024]
Abstract
Epigenetic modulation of the immune response entails modifiable and inheritable modifications that do not modify the DNA sequence. While there have been many studies on epigenetic changes in tumor cells, there is now a growing focus on epigenetically mediated changes in immune cells of both the innate and adaptive systems. These changes have significant implications for both the body's response to tumors and the development of potential therapeutic vaccines. This study primarily discusses the key epigenetic alterations, with a specific emphasis on pseudouridination, as well as non-coding RNAs and their transportation, which can lead to the development of cancer and the acquisition of new phenotypic traits by immune cells. Furthermore, the advancement of therapeutic vaccinations targeting the tumor will be outlined.
Collapse
Affiliation(s)
- S Fiordoro
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genova, Italy
| | - C Rosano
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy.
| | - E Pechkova
- Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy
| | - S Barocci
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - A Izzotti
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy
| |
Collapse
|
3
|
Qu S, Nelson HM, Liu X, Wang Y, Semler EM, Michell DL, Massick C, Franklin JL, Karijolich J, Weaver AM, Coffey RJ, Liu Q, Vickers KC, Patton JG. 5-Fluorouracil treatment represses pseudouridine-containing miRNA export into extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70010. [PMID: 39281020 PMCID: PMC11393769 DOI: 10.1002/jex2.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
5-Fluorouracil (5-FU) has been used for chemotherapy for colorectal and other cancers for over 50 years. The prevailing view of its mechanism of action is inhibition of thymidine synthase leading to defects in DNA replication and repair. However, 5-FU is also incorporated into RNA causing defects in RNA metabolism, inhibition of pseudouridine modification, and altered ribosome function. We examined the impact of 5-FU on post-transcriptional small RNA modifications (PTxMs) and the expression and export of RNA into small extracellular vesicles (sEVs). EVs are secreted by all cells and contain a variety of proteins and RNAs that can function in cell-cell communication. We found that treatment of colorectal cancer (CRC) cells with 5-FU represses sEV export of miRNA and snRNA-derived RNAs, but promotes export of snoRNA-derived RNAs. Strikingly, 5-FU treatment significantly decreased the levels of pseudouridine on both cellular and sEV small RNA profiles. In contrast, 5-FU exposure led to increased levels of cellular small RNAs containing a variety of methyl-modified bases. These unexpected findings show that 5-FU exposure leads to altered RNA expression, base modification, and aberrant trafficking and localization of small RNAs.
Collapse
Affiliation(s)
- Shimian Qu
- Department of Biological SciencesVanderbilt UniversityNashvilleTennesseeUSA
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Hannah M. Nelson
- Department of Biological SciencesVanderbilt UniversityNashvilleTennesseeUSA
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Xiao Liu
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Departments of Biostatistics and BioinformaticsVUMCNashvilleTennesseeUSA
| | - Yu Wang
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Departments of Biostatistics and BioinformaticsVUMCNashvilleTennesseeUSA
| | - Elizabeth M. Semler
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Danielle L. Michell
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Clark Massick
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jeffrey L. Franklin
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - John Karijolich
- Department of Pathology, Microbiology and ImmunologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Alissa M. Weaver
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Robert J. Coffey
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Qi Liu
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Departments of Biostatistics and BioinformaticsVUMCNashvilleTennesseeUSA
| | - Kasey C. Vickers
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - James G. Patton
- Department of Biological SciencesVanderbilt UniversityNashvilleTennesseeUSA
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
4
|
Albihlal WS, Chan WY, van Werven FJ. Budding yeast as an ideal model for elucidating the role of N 6-methyladenosine in regulating gene expression. Yeast 2024; 41:148-157. [PMID: 38238962 DOI: 10.1002/yea.3925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 02/24/2024] Open
Abstract
N6-methyladenosine (m6A) is a highly abundant and evolutionarily conserved messenger RNA (mRNA) modification. This modification is installed on RRACH motifs on mRNAs by a hetero-multimeric holoenzyme known as m6A methyltransferase complex (MTC). The m6A mark is then recognised by a group of conserved proteins known as the YTH domain family proteins which guide the mRNA for subsequent downstream processes that determine its fate. In yeast, m6A is installed on thousands of mRNAs during early meiosis by a conserved MTC and the m6A-modified mRNAs are read by the YTH domain-containing protein Mrb1/Pho92. In this review, we aim to delve into the recent advances in our understanding of the regulation and roles of m6A in yeast meiosis. We will discuss the potential functions of m6A in mRNA translation and decay, unravelling their significance in regulating gene expression. We propose that yeast serves as an exceptional model organism for the study of fundamental molecular mechanisms related to the function and regulation of m6A-modified mRNAs. The insights gained from yeast research not only expand our knowledge of mRNA modifications and their molecular roles but also offer valuable insights into the broader landscape of eukaryotic posttranscriptional regulation of gene expression.
Collapse
Affiliation(s)
- Waleed S Albihlal
- The Francis Crick Institute, Cell Fate and Gene Regulation Laboratory, London, UK
| | - Wei Yee Chan
- The Francis Crick Institute, Cell Fate and Gene Regulation Laboratory, London, UK
| | - Folkert J van Werven
- The Francis Crick Institute, Cell Fate and Gene Regulation Laboratory, London, UK
| |
Collapse
|
5
|
Qu S, Nelson H, Liu X, Semler E, Michell DL, Massick C, Franklin JL, Karijolich J, Weaver AM, Coffey RJ, Liu Q, Vickers KC, Patton JG. 5-Fluorouracil Treatment Represses Pseudouridine-Containing Small RNA Export into Extracellular Vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575751. [PMID: 38293013 PMCID: PMC10827090 DOI: 10.1101/2024.01.15.575751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
5-fluorouracil (5-FU) has been used for chemotherapy for colorectal and other cancers for over 50 years. The prevailing view of its mechanism of action is inhibition of thymidine synthase leading to defects in DNA replication and repair. However, 5-FU is also incorporated into RNA causing toxicity due to defects in RNA metabolism, inhibition of pseudouridine modification, and altered ribosome function. Here, we examine the impact of 5-FU on the expression and export of small RNAs (sRNAs) into small extracellular vesicles (sEVs). Moreover, we assess the role of 5-FU in regulation of post-transcriptional sRNA modifications (PTxM) using mass spectrometry approaches. EVs are secreted by all cells and contain a variety of proteins and RNAs that can function in cell-cell communication. PTxMs on cellular and extracellular sRNAs provide yet another layer of gene regulation. We found that treatment of the colorectal cancer (CRC) cell line DLD-1 with 5-FU led to surprising differential export of miRNA snRNA, and snoRNA transcripts. Strikingly, 5-FU treatment significantly decreased the levels of pseudouridine on both cellular and secreted EV sRNAs. In contrast, 5-FU exposure led to increased levels of cellular sRNAs containing a variety of methyl-modified bases. Our results suggest that 5-FU exposure leads to altered expression, base modifications, and mislocalization of EV base-modified sRNAs.
Collapse
|
6
|
Araujo Tavares RDC, Mahadeshwar G, Wan H, Pyle AM. MRT-ModSeq - Rapid Detection of RNA Modifications with MarathonRT. J Mol Biol 2023; 435:168299. [PMID: 37802215 DOI: 10.1016/j.jmb.2023.168299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
Chemical modifications are essential regulatory elements that modulate the behavior and function of cellular RNAs. Despite recent advances in sequencing-based RNA modification mapping, methods combining accuracy and speed are still lacking. Here, we introduce MRT-ModSeq for rapid, simultaneous detection of multiple RNA modifications using MarathonRT. MRT-ModSeq employs distinct divalent cofactors to generate 2-D mutational profiles that are highly dependent on nucleotide identity and modification type. As a proof of concept, we use the MRT fingerprints of well-studied rRNAs to implement a general workflow for detecting RNA modifications. MRT-ModSeq rapidly detects positions of diverse modifications across a RNA transcript, enabling assignment of m1acp3Y, m1A, m3U, m7G and 2'-OMe locations through mutation-rate filtering and machine learning. m1A sites in sparsely modified targets, such as MALAT1 and PRUNE1 could also be detected. MRT-ModSeq can be trained on natural and synthetic transcripts to expedite detection of diverse RNA modification subtypes across targets of interest.
Collapse
Affiliation(s)
| | - Gandhar Mahadeshwar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA. https://twitter.com/gandzmakerdance
| | - Han Wan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA. https://twitter.com/HanWan19744358
| | - Anna Marie Pyle
- Department of Chemistry, Yale University, New Haven, CT 06511, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
7
|
Hao L, Wang S, Zhang Y, Xu C, Yu Y, Xiang L, Huang W, Tian B, Li T, Wang S. Long-distance transport of the pear HMGR1 mRNA via the phloem is associated with enhanced salt tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111705. [PMID: 37059127 DOI: 10.1016/j.plantsci.2023.111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 05/27/2023]
Abstract
Grafting is the main asexual propagation method for horticultural crops and can enhance their resistance to biotic or abiotic stress. Many mRNAs can be transported over long distances through the graft union, however, the function of mobile mRNAs remains poorly understood. Here, we exploited lists of candidate mobile mRNAs harboring potential 5-methylcytosine (m5C) modification in pear (Pyrus betulaefolia). dCAPS RT-PCR and RT-PCR were employed to demonstrate the mobility of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase1 (PbHMGR1) mRNA in grafted plants of both pear and tobacco (Nicotiana tabacum). Overexpressing PbHMGR1 in tobacco plants enhanced salt tolerance during seed germination. In addition, both histochemical staining and GUS expression analysis showed that PbHMGR1 could directly respond to salt stress. Furthermore, it was found that the relative abundance of PbHMGR1 increased in heterografted scion, which avoided serious damage under salt stress. Collectively, these findings established that PbHMGR1 mRNA could act as a salt-responsive signal and move through the graft union to enhance salt tolerance of scion, which might be used as a new plant breeding technique to improve resistance of scion through a stress-tolerant rootstock.
Collapse
Affiliation(s)
- Li Hao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yi Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chaoran Xu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yunfei Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Ling Xiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wenting Huang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Baihui Tian
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| | - Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Tavares RDCA, Mahadeshwar G, Wan H, Pyle AM. MRT-ModSeq - Rapid detection of RNA modifications with MarathonRT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542276. [PMID: 37292902 PMCID: PMC10245971 DOI: 10.1101/2023.05.25.542276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemical modifications are essential regulatory elements that modulate the behavior and function of cellular RNAs. Despite recent advances in sequencing-based RNA modification mapping, methods combining accuracy and speed are still lacking. Here, we introduce MRT- ModSeq for rapid, simultaneous detection of multiple RNA modifications using MarathonRT. MRT-ModSeq employs distinct divalent cofactors to generate 2-D mutational profiles that are highly dependent on nucleotide identity and modification type. As a proof of concept, we use the MRT fingerprints of well-studied rRNAs to implement a general workflow for detecting RNA modifications. MRT-ModSeq rapidly detects positions of diverse modifications across a RNA transcript, enabling assignment of m1acp3Y, m1A, m3U, m7G and 2'-OMe locations through mutation-rate filtering and machine learning. m1A sites in sparsely modified targets, such as MALAT1 and PRUNE1 could also be detected. MRT-ModSeq can be trained on natural and synthetic transcripts to expedite detection of diverse RNA modification subtypes across targets of interest.
Collapse
Affiliation(s)
| | - Gandhar Mahadeshwar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
| | - Han Wan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Anna Marie Pyle
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| |
Collapse
|
9
|
Wang J, Ju HJ, Zhang F, Tian H, Wang WG, Ma YL, Xu WS, Wang YH. A novel NSUN5/ENO3 pathway promotes the Warburg effect and cell growth in clear cell renal cell carcinoma by 5-methylcytosine-stabilized ENO3 mRNA. Am J Transl Res 2023; 15:878-895. [PMID: 36915728 PMCID: PMC10006748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/11/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVES Clear cell renal cell carcinoma (ccRCC) cells often reprogram their metabolisms. Enolase 3 (ENO3) is closely related to the Warburg effect observed in cells during tumor progression. However, the expression and function of ENO3 in ccRCC cells remain unclear. Therefore, this study investigated the expression and functional significance of ENO3 in the Warburg effect observed in ccRCC cells. METHODS In this study, B-mode and microflow imaging ultrasound examinations were performed to evaluate patients with ccRCC. The extracellular acidification rate test and glucose uptake and lactate production assays were used to examine the Warburg effect in ccRCC cells. Western blotting, quantitative reverse transcription polymerase chain reaction, and immunochemistry were used to detect the expression of ENO3 and NOP2/Sun RNA methyltransferase 5 (NSUN5). RESULTS ENO3 upregulation in ccRCC tumor tissues was accompanied by an increase in tumor size. Importantly, ENO3 participated in the Warburg effect observed in ccRCC cells, and high levels of ENO3 indicated a poor prognosis for patients. Loss of ENO3 reduced glucose uptake, lactate production, and extracellular acidification rate as well as inhibited ccRCC cell proliferation. Furthermore, NSUN5 was involved in the ENO3-regulated Warburg effect and ccRCC cell progression. Mechanically, NSUN5 was upregulated in ccRCC tissues, and NSUN5 upregulation mediated 5-methylcytosine modification of messenger RNA (mRNA) in ccRCC cells to promote mRNA stability and ENO3 expression. CONCLUSIONS Collectively, the destruction of the NSUN5/ENO3 axis prevents ccRCC growth in vivo and in vitro, and targeting this pathway may be an effective strategy against ccRCC progression.
Collapse
Affiliation(s)
- Juan Wang
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University 215 Heping West Road, Shijiazhuang 050000, Hebei, China
| | - Hong-Juan Ju
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University 215 Heping West Road, Shijiazhuang 050000, Hebei, China
| | - Fan Zhang
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University 215 Heping West Road, Shijiazhuang 050000, Hebei, China
| | - Hui Tian
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University 215 Heping West Road, Shijiazhuang 050000, Hebei, China
| | - Wen-Gang Wang
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University 215 Heping West Road, Shijiazhuang 050000, Hebei, China
| | - Yu-Lin Ma
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University 215 Heping West Road, Shijiazhuang 050000, Hebei, China
| | - Wen-Sheng Xu
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University 215 Heping West Road, Shijiazhuang 050000, Hebei, China
| | - Yue-Heng Wang
- Department of Cardiac Ultrasound, The Second Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| |
Collapse
|
10
|
Cavalcante LTDF, da Fonseca GC, Amado Leon LA, Salvio AL, Brustolini OJ, Gerber AL, Guimarães APDC, Marques CAB, Fernandes RA, Ramos Filho CHF, Kader RL, Pimentel Amaro M, da Costa Gonçalves JP, Vieira Alves-Leon S, Vasconcelos ATR. Buffy Coat Transcriptomic Analysis Reveals Alterations in Host Cell Protein Synthesis and Cell Cycle in Severe COVID-19 Patients. Int J Mol Sci 2022; 23:13588. [PMID: 36362378 PMCID: PMC9659271 DOI: 10.3390/ijms232113588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2023] Open
Abstract
Transcriptome studies have reported the dysregulation of cell cycle-related genes and the global inhibition of host mRNA translation in COVID-19 cases. However, the key genes and cellular mechanisms that are most affected by the severe outcome of this disease remain unclear. For this work, the RNA-seq approach was used to study the differential expression in buffy coat cells of two groups of people infected with SARS-CoV-2: (a) Mild, with mild symptoms; and (b) SARS (Severe Acute Respiratory Syndrome), who were admitted to the intensive care unit with the severe COVID-19 outcome. Transcriptomic analysis revealed 1009 up-regulated and 501 down-regulated genes in the SARS group, with 10% of both being composed of long non-coding RNA. Ribosome and cell cycle pathways were enriched among down-regulated genes. The most connected proteins among the differentially expressed genes involved transport dysregulation, proteasome degradation, interferon response, cytokinesis failure, and host translation inhibition. Furthermore, interactome analysis showed Fibrillarin to be one of the key genes affected by SARS-CoV-2. This protein interacts directly with the N protein and long non-coding RNAs affecting transcription, translation, and ribosomal processes. This work reveals a group of dysregulated processes, including translation and cell cycle, as key pathways altered in severe COVID-19 outcomes.
Collapse
Affiliation(s)
| | | | - Luciane Almeida Amado Leon
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Andreza Lemos Salvio
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
| | - Otávio José Brustolini
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil
| | - Ana Paula de Campos Guimarães
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil
| | - Carla Augusta Barreto Marques
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Renan Amphilophio Fernandes
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
| | | | - Rafael Lopes Kader
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Marisa Pimentel Amaro
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - João Paulo da Costa Gonçalves
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
- Yale New Haven Hospital, New Haven, CT 06510, USA
| | - Soniza Vieira Alves-Leon
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Ana Tereza Ribeiro Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil
| |
Collapse
|
11
|
Bailey AD, Talkish J, Ding H, Igel H, Duran A, Mantripragada S, Paten B, Ares M. Concerted modification of nucleotides at functional centers of the ribosome revealed by single-molecule RNA modification profiling. eLife 2022; 11:e76562. [PMID: 35384842 PMCID: PMC9045821 DOI: 10.7554/elife.76562] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/05/2022] [Indexed: 12/02/2022] Open
Abstract
Nucleotides in RNA and DNA are chemically modified by numerous enzymes that alter their function. Eukaryotic ribosomal RNA (rRNA) is modified at more than 100 locations, particularly at highly conserved and functionally important nucleotides. During ribosome biogenesis, modifications are added at various stages of assembly. The existence of differently modified classes of ribosomes in normal cells is unknown because no method exists to simultaneously evaluate the modification status at all sites within a single rRNA molecule. Using a combination of yeast genetics and nanopore direct RNA sequencing, we developed a reliable method to track the modification status of single rRNA molecules at 37 sites in 18 S rRNA and 73 sites in 25 S rRNA. We use our method to characterize patterns of modification heterogeneity and identify concerted modification of nucleotides found near functional centers of the ribosome. Distinct, undermodified subpopulations of rRNAs accumulate upon loss of Dbp3 or Prp43 RNA helicases, suggesting overlapping roles in ribosome biogenesis. Modification profiles are surprisingly resistant to change in response to many genetic and acute environmental conditions that affect translation, ribosome biogenesis, and pre-mRNA splicing. The ability to capture single-molecule RNA modification profiles provides new insights into the roles of nucleotide modifications in RNA function.
Collapse
Affiliation(s)
- Andrew D Bailey
- Department of Biomolecular Engineering and Santa Cruz Genomics Institute, University of California, Santa CruzSanta CruzUnited States
| | - Jason Talkish
- RNA Center and Department of Molecular, Cell & Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Hongxu Ding
- Department of Biomolecular Engineering and Santa Cruz Genomics Institute, University of California, Santa CruzSanta CruzUnited States
- Department of Pharmacy Practice & Science, College of Pharmacy, University of ArizonaTucsonUnited States
| | - Haller Igel
- RNA Center and Department of Molecular, Cell & Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | | | | | - Benedict Paten
- Department of Biomolecular Engineering and Santa Cruz Genomics Institute, University of California, Santa CruzSanta CruzUnited States
| | - Manuel Ares
- RNA Center and Department of Molecular, Cell & Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| |
Collapse
|
12
|
Gai X, Xin D, Wu D, Wang X, Chen L, Wang Y, Ma K, Li Q, Li P, Yu X. Pre-ribosomal RNA reorganizes DNA damage repair factors in nucleus during meiotic prophase and DNA damage response. Cell Res 2022; 32:254-268. [PMID: 34980897 PMCID: PMC8888703 DOI: 10.1038/s41422-021-00597-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/11/2021] [Indexed: 11/09/2022] Open
Abstract
In response to DNA double-strand breaks (DSBs), DNA damage repair factors are recruited to DNA lesions and form nuclear foci. However, the underlying molecular mechanism remains largely elusive. Here, by analyzing the localization of DSB repair factors in the XY body and DSB foci, we demonstrate that pre-ribosomal RNA (pre-rRNA) mediates the recruitment of DSB repair factors around DNA lesions. Pre-rRNA exists in the XY body, a DSB repair hub, during meiotic prophase, and colocalizes with DSB repair factors, such as MDC1, BRCA1 and TopBP1. Moreover, pre-rRNA-associated proteins and RNAs, such as ribosomal protein subunits, RNase MRP and snoRNAs, also localize in the XY body. Similar to those in the XY body, pre-rRNA and ribosomal proteins also localize at DSB foci and associate with DSB repair factors. RNA polymerase I inhibitor treatment that transiently suppresses transcription of rDNA but does not affect global protein translation abolishes foci formation of DSB repair factors as well as DSB repair. The FHA domain and PST repeats of MDC1 recognize pre-rRNA and mediate phase separation of DSB repair factors, which may be the molecular basis for the foci formation of DSB repair factors during DSB response.
Collapse
Affiliation(s)
- Xiaochen Gai
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Di Xin
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Duo Wu
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Xin Wang
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Linlin Chen
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Yiqing Wang
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Kai Ma
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Qilin Li
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Peng Li
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China. .,School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China. .,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Yang C, Jiang Y, Hao SH, Yan XY, Hong DF, Naranmandura H. Aptamers: an emerging navigation tool of therapeutic agents for targeted cancer therapy. J Mater Chem B 2021; 10:20-33. [PMID: 34881767 DOI: 10.1039/d1tb02098f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemotherapeutic agents have been used for the treatment of numerous cancers, but due to poor selectivity and severe systemic side effects, their clinical application is limited. Single-stranded DNA (ssDNA) or RNA aptamers could conjugate with highly toxic chemotherapy drugs, toxins, therapeutic RNAs or other molecules as novel aptamer-drug conjugates (ApDCs), which are capable of significantly improving the therapeutic efficacy and reducing the systemic toxicity of drugs and have great potential in clinics for targeted cancer therapy. In this review, we have comprehensively discussed and summarized the current advances in the screening approaches of aptamers for specific cancer biomarker targeting and development of the aptamer-drug conjugate strategy for targeted drug delivery. Moreover, considering the huge progress in artificial intelligence (AI) for protein and RNA structure predictions, automatic design of aptamers using deep/machine learning techniques could be a powerful approach for rapid and precise construction of biopharmaceutics (i.e., ApDCs) for application in cancer targeted therapy.
Collapse
Affiliation(s)
- Chang Yang
- Department of Hematology, the First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China. .,Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
| | - Yu Jiang
- Department of Hematology, the First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China. .,Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sai Heng Hao
- College of Pharmaceutical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Xing Yi Yan
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China.,Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - De Fei Hong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hua Naranmandura
- Department of Hematology, the First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China. .,Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China.,Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
14
|
Streit D, Schleiff E. The Arabidopsis 2'-O-Ribose-Methylation and Pseudouridylation Landscape of rRNA in Comparison to Human and Yeast. FRONTIERS IN PLANT SCIENCE 2021; 12:684626. [PMID: 34381476 PMCID: PMC8351944 DOI: 10.3389/fpls.2021.684626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/16/2021] [Indexed: 05/25/2023]
Abstract
Eukaryotic ribosome assembly starts in the nucleolus, where the ribosomal DNA (rDNA) is transcribed into the 35S pre-ribosomal RNA (pre-rRNA). More than two-hundred ribosome biogenesis factors (RBFs) and more than two-hundred small nucleolar RNAs (snoRNA) catalyze the processing, folding and modification of the rRNA in Arabidopsis thaliana. The initial pre-ribosomal 90S complex is formed already during transcription by association of ribosomal proteins (RPs) and RBFs. In addition, small nucleolar ribonucleoprotein particles (snoRNPs) composed of snoRNAs and RBFs catalyze the two major rRNA modification types, 2'-O-ribose-methylation and pseudouridylation. Besides these two modifications, rRNAs can also undergo base methylations and acetylation. However, the latter two modifications have not yet been systematically explored in plants. The snoRNAs of these snoRNPs serve as targeting factors to direct modifications to specific rRNA regions by antisense elements. Today, hundreds of different sites of modifications in the rRNA have been described for eukaryotic ribosomes in general. While our understanding of the general process of ribosome biogenesis has advanced rapidly, the diversities appearing during plant ribosome biogenesis is beginning to emerge. Today, more than two-hundred RBFs were identified by bioinformatics or biochemical approaches, including several plant specific factors. Similarly, more than two hundred snoRNA were predicted based on RNA sequencing experiments. Here, we discuss the predicted and verified rRNA modification sites and the corresponding identified snoRNAs on the example of the model plant Arabidopsis thaliana. Our summary uncovers the plant modification sites in comparison to the human and yeast modification sites.
Collapse
Affiliation(s)
- Deniz Streit
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt, Germany
| |
Collapse
|
15
|
Song D, Guo M, Xu S, Song X, Bai B, Li Z, Chen J, An Y, Nie Y, Wu K, Wang S, Zhao Q. HSP90-dependent PUS7 overexpression facilitates the metastasis of colorectal cancer cells by regulating LASP1 abundance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:170. [PMID: 33990203 PMCID: PMC8120699 DOI: 10.1186/s13046-021-01951-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/15/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Pseudouridine synthase (PUS) 7 is a member of the PUS family that catalyses pseudouridine formation. It has been shown to be involved in intellectual development and haematological malignancies. Nevertheless, the role and the underlying molecular mechanisms of PUS7 in solid tumours, such as colorectal cancer (CRC), remain unexplored. This study elucidated, for the first time, the role of PUS7 in CRC cell metastasis and the underlying mechanisms. METHODS We conducted immunohistochemistry, qPCR, and western blotting to quantify the expression of PUS7 in CRC tissues as well as cell lines. Besides, diverse in vivo and in vitro functional tests were employed to establish the function of PUS7 in CRC. RNA-seq and proteome profiling analysis were also applied to identify the targets of PUS7. PUS7-interacting proteins were further uncovered using immunoprecipitation and mass spectrometry. RESULTS Overexpression of PUS7 was observed in CRC tissues and was linked to advanced clinical stages and shorter overall survival. PUS7 silencing effectively repressed CRC cell metastasis, while its upregulation promoted metastasis, independently of the PUS7 catalytic activity. LASP1 was identified as a downstream effector of PUS7. Forced LASP1 expression abolished the metastasis suppression triggered by PUS7 silencing. Furthermore, HSP90 was identified as a client protein of PUS7, associated with the increased PUS7 abundance in CRC. NMS-E973, a specific HSP90 inhibitor, also showed higher anti-metastatic activity when combined with PUS7 repression. Importantly, in line with these results, in human CRC tissues, the expression of PUS7 was positively linked to the expression of HSP90 and LASP1, and patients co-expressing HSP90/PUS7/LASP1 showed a worse prognosis. CONCLUSIONS The HSP90-dependent PUS7 upregulation promotes CRC cell metastasis via the regulation of LASP1. Thus, targeting the HSP90/PUS7/LASP1 axis may be a novel approach for the treatment of CRC.
Collapse
Affiliation(s)
- Dan Song
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Ming Guo
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Shuai Xu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Xiaotian Song
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Bin Bai
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Zhengyan Li
- Department of General Surgery, Center for Minimally Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, No. 30 Gao Tan Yan Road, Chongqing, 400038, China
| | - Jie Chen
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Yanxin An
- Department of General Surgery, the First Affiliated Hospital of Xi 'an Medical University, No. 48 Fenghao West Road, Lianhu District, Xi'an, 710077, Shaanxi Province, China
| | - Yongzhan Nie
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Kaichun Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Shiqi Wang
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Qingchuan Zhao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China.
| |
Collapse
|
16
|
Fang F, Wang X, Li Z, Ni K, Xiong C. Epigenetic regulation of mRNA N6-methyladenosine modifications in mammalian gametogenesis. Mol Hum Reprod 2021; 27:6212059. [PMID: 33823008 DOI: 10.1093/molehr/gaab025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent epigenetic modification of mRNAs and broadly influences various biological processes by regulating post-transcriptional gene expression in eukaryotes. The reversible m6A modification is catalyzed by methyltransferases, METTL3 and METTL14 (writers), removed by the demethylases FTO and ALKBH5 (erasers) and recognized by m6A-binding proteins, namely the YTH domain-containing family of proteins (readers). Both m6A modification and the related enzymes are involved in the regulation of normal gametogenesis and embryonic development in many species. Recent studies showed that loss of m6A compromises gamete maturation, sex hormone synthesis, fertility and early embryonic development. In this review, we have summarized the most recent findings on the role of mRNA m6A modification in mammalian gametogenesis to emphasize the epigenetic regulation of mRNA in the reproductive system.
Collapse
Affiliation(s)
- Fang Fang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zili Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Ni
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chengliang Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan 430013, China
| |
Collapse
|
17
|
Wang T, Li X, Zhang X, Wang Q, Liu W, Lu X, Gao S, Liu Z, Liu M, Gao L, Zhang W. RNA Motifs and Modification Involve in RNA Long-Distance Transport in Plants. Front Cell Dev Biol 2021; 9:651278. [PMID: 33869208 PMCID: PMC8047152 DOI: 10.3389/fcell.2021.651278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
A large number of RNA molecules have been found in the phloem of higher plants, and they can be transported to distant organelles through the phloem. RNA signals are important cues to be evolving in fortification strategies by long-distance transportation when suffering from various physiological challenges. So far, the mechanism of RNA selectively transportation through phloem cells is still in progress. Up to now, evidence have shown that several RNA motifs including Polypyrimidine (poly-CU) sequence, transfer RNA (tRNA)-related sequence, Single Nucleotide Mutation bound with specific RNA binding proteins to form Ribonucleotide protein (RNP) complexes could facilitate RNA mobility in plants. Furthermore, some RNA secondary structure such as tRNA-like structure (TLS), untranslation region (UTR) of mRNA, stem-loop structure of pre-miRNA also contributed to the mobility of RNAs. Latest researchs found that RNA methylation such as methylated 5′ cytosine (m5C) played an important role in RNA transport and function. These studies lay a theoretical foundation to uncover the mechanism of RNA transport. We aim to provide ideas and clues to inspire future research on the function of RNA motifs in RNA long-distance transport, furthermore to explore the underlying mechanism of RNA systematic signaling.
Collapse
Affiliation(s)
- Tao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaojun Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaojing Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Qing Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Wenqian Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaohong Lu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Shunli Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Zixi Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Mengshuang Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Abstract
In recent years, the tree of life has expanded substantially. Despite this, many abundant yet uncultivated microbial groups remain to be explored. Sumerlaeota is a mysterious, putative phylum-level lineage distributed globally but rarely reported. As such, their physiology, ecology, and evolutionary history remain unknown. The 16S rRNA gene survey reveals that Sumerlaeota is frequently detected in diverse environments globally, especially cold arid desert soils and deep-sea basin surface sediments, where it is one dominant microbial group. Here, we retrieved four Sumerlaeota metagenome-assembled genomes (MAGs) from two hot springs and one saline lake. Including another 12 publicly available MAGs, they represent six of the nine putative Sumerlaeota subgroups/orders, as indicated by 16S rRNA gene-based phylogeny. These elusive organisms likely obtain carbon mainly through utilization of refractory organics (e.g., chitin and cellulose) and proteinaceous compounds, suggesting that Sumerlaeota act as scavengers in nature. The presence of key bidirectional enzymes involved in acetate and hydrogen metabolisms in these MAGs suggests that they are acetogenic bacteria capable of both the production and consumption of hydrogen. The capabilities of dissimilatory nitrate and sulfate reduction, nitrogen fixation, phosphate solubilization, and organic phosphorus mineralization may confer these heterotrophs great advantages to thrive under diverse harsh conditions. Ancestral state reconstruction indicated that Sumerlaeota originated from chemotrophic and facultatively anaerobic ancestors, and their smaller and variably sized genomes evolved along dynamic pathways from a sizeable common ancestor (2,342 genes), leading to their physiological divergence. Notably, large gene gain and larger loss events occurred at the branch to the last common ancestor of the order subgroup 1, likely due to niche expansion and population size effects.
Collapse
|
19
|
Zheng Z, Mao S, Guo Y, Zhang W, Liu J, Li C, Yao X. N6‑methyladenosine RNA methylation regulators participate in malignant progression and have prognostic value in clear cell renal cell carcinoma. Oncol Rep 2020; 43:1591-1605. [PMID: 32323803 PMCID: PMC7108075 DOI: 10.3892/or.2020.7524] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/30/2020] [Indexed: 02/05/2023] Open
Abstract
N6‑methyladenosine (m6A) RNA methylation is the most prevalent type of mRNA modification; however, little is known about its function in clear cell renal cell carcinoma (ccRCC). The present study aimed to establish and validate a m6A‑related risk signature as a prognostic factor for patients with ccRCC. Consensus clustering was used to divide patients with ccRCC from The Cancer Genome Atlas (TCGA) cohort (n=489) into three clusters (cluster 1/2/3) based on 19 m6A RNA methylation regulators. In addition, a m6A‑related risk signature was constructed using TCGA data, and its accuracy was validated using data from the International Cancer Genome Consortium (n=91). The prognostic performance of the risk signature was evaluated by Kaplan‑Meier analyses, least absolute shrinkage and selection operator Cox regression, multivariate Cox regression, receiver operating characteristic curves and nomograms. The results revealed that the majority of the 19 m6A RNA methylation regulators were differentially expressed among ccRCC stratified by different clinicopathological features. The cluster 1 group exhibited a higher frequency of metastasis and poorer overall survival compared with the cluster 2/cluster 3 group. The hallmarks of RNA metabolism, transcription misregulation in cancer and regulation of autophagy, were significantly enriched in the cluster 1 group. A m6A‑related risk signature was constructed and validated with high prognostic accuracy for the prediction of 5‑year survival and recurrence (area under the curve, 0.736 and 0.728, respectively). The present study also established robust nomograms for evaluating the risk of mortality and recurrence for patients with ccRCC (c‑index, 0.783 and 0.819, respectively). The dysregulation of hub m6A RNA methylation regulator expression levels and m6A RNA methylation levels were also validated in multiple RCC cells using in vitro experiments. Taken together, the m6A RNA methylation regulators promoted the malignant progression of ccRCC and exhibited good performance in prognostic predictions. These results provided insight into the development of m6A‑targeted treatments for ccRCC.
Collapse
Affiliation(s)
- Zongtai Zheng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yadong Guo
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Ji Liu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Cheng Li
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
20
|
Bratkovič T, Božič J, Rogelj B. Functional diversity of small nucleolar RNAs. Nucleic Acids Res 2020; 48:1627-1651. [PMID: 31828325 PMCID: PMC7038934 DOI: 10.1093/nar/gkz1140] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/17/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are short non-protein-coding RNAs with a long-recognized role in tuning ribosomal and spliceosomal function by guiding ribose methylation and pseudouridylation at targeted nucleotide residues of ribosomal and small nuclear RNAs, respectively. SnoRNAs are increasingly being implicated in regulation of new types of post-transcriptional processes, for example rRNA acetylation, modulation of splicing patterns, control of mRNA abundance and translational efficiency, or they themselves are processed to shorter stable RNA species that seem to be the principal or alternative bioactive isoform. Intriguingly, some display unusual cellular localization under exogenous stimuli, or tissue-specific distribution. Here, we discuss the new and unforeseen roles attributed to snoRNAs, focusing on the presumed mechanisms of action. Furthermore, we review the experimental approaches to study snoRNA function, including high resolution RNA:protein and RNA:RNA interaction mapping, techniques for analyzing modifications on targeted RNAs, and cellular and animal models used in snoRNA biology research.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI1000 Ljubljana, Slovenia
| | - Janja Božič
- Jozef Stefan Institute, Department of Biotechnology, Jamova cesta 39, SI1000 Ljubljana, Slovenia.,Biomedical Research Institute BRIS, Puhova ulica 10, SI1000 Ljubljana, Slovenia
| | - Boris Rogelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI1000 Ljubljana, Slovenia.,Jozef Stefan Institute, Department of Biotechnology, Jamova cesta 39, SI1000 Ljubljana, Slovenia.,Biomedical Research Institute BRIS, Puhova ulica 10, SI1000 Ljubljana, Slovenia.,University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI1000 Ljubljana, Slovenia
| |
Collapse
|
21
|
Yang L, Perrera V, Saplaoura E, Apelt F, Bahin M, Kramdi A, Olas J, Mueller-Roeber B, Sokolowska E, Zhang W, Li R, Pitzalis N, Heinlein M, Zhang S, Genovesio A, Colot V, Kragler F. m 5C Methylation Guides Systemic Transport of Messenger RNA over Graft Junctions in Plants. Curr Biol 2019; 29:2465-2476.e5. [PMID: 31327714 DOI: 10.1016/j.cub.2019.06.042] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/08/2019] [Accepted: 06/13/2019] [Indexed: 12/28/2022]
Abstract
In plants, transcripts move to distant body parts to potentially act as systemic signals regulating development and growth. Thousands of messenger RNAs (mRNAs) are transported across graft junctions via the phloem to distinct plant parts. Little is known regarding features, structural motifs, and potential base modifications of transported transcripts and how these may affect their mobility. We identified Arabidopsis thaliana mRNAs harboring the modified base 5-methylcytosine (m5C) and found that these are significantly enriched in mRNAs previously described as mobile, moving over graft junctions to distinct plant parts. We confirm this finding with graft-mobile methylated mRNAs TRANSLATIONALLY CONTROLLED TUMOR PROTEIN 1 (TCTP1) and HEAT SHOCK COGNATE PROTEIN 70.1 (HSC70.1), whose mRNA transport is diminished in mutants deficient in m5C mRNA methylation. Together, our results point toward an essential role of cytosine methylation in systemic mRNA mobility in plants and that TCTP1 mRNA mobility is required for its signaling function.
Collapse
Affiliation(s)
- Lei Yang
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany
| | - Valentina Perrera
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, 75230 Paris, France
| | - Eleftheria Saplaoura
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany
| | - Federico Apelt
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany
| | - Mathieu Bahin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, 75230 Paris, France
| | - Amira Kramdi
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, 75230 Paris, France
| | - Justyna Olas
- Institute of Biochemistry and Biology, University of Potsdam, Department of Molecular Biology, Karl-Liebknecht-Strasse 24-25, Haus 20, 14476 Potsdam, Germany
| | - Bernd Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Department of Molecular Biology, Karl-Liebknecht-Strasse 24-25, Haus 20, 14476 Potsdam, Germany
| | - Ewelina Sokolowska
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany
| | - Wenna Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany; China Agricultural University, 17 Qinghua East Road, 100080 Haidian, Beijing, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Nicolas Pitzalis
- Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS UPR2357, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS UPR2357, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | - Shoudong Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China; Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, China
| | - Auguste Genovesio
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, 75230 Paris, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, 75230 Paris, France
| | - Friedrich Kragler
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany.
| |
Collapse
|
22
|
Malla S, Melguizo-Sanchis D, Aguilo F. Steering pluripotency and differentiation with N 6-methyladenosine RNA modification. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:394-402. [PMID: 30412796 DOI: 10.1016/j.bbagrm.2018.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/21/2018] [Accepted: 10/27/2018] [Indexed: 11/15/2022]
Abstract
Chemical modifications of RNA provide a direct and rapid way to modulate the existing transcriptome, allowing the cells to adapt rapidly to the changing environment. Among these modifications, N6-methyladenosine (m6A) has recently emerged as a widely prevalent mark of messenger RNA in eukaryotes, linking external stimuli to an intricate network of transcriptional, post-transcriptional and translational processes. m6A modification modulates a broad spectrum of biochemical processes, including mRNA decay, translation and splicing. Both m6A modification and the enzymes that control m6A metabolism are essential for normal development. In this review, we summarized the most recent findings on the role of m6A modification in maintenance of the pluripotency of embryonic stem cells (ESCs), cell fate specification, the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs), and differentiation of stem and progenitor cells. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert.
Collapse
Affiliation(s)
- Sandhya Malla
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, SE-90185 Umeå, Sweden; Department of Medical Biosciences, Umeå University, SE-901 85 Umeå, Sweden
| | - Dario Melguizo-Sanchis
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, SE-90185 Umeå, Sweden; Department of Medical Biosciences, Umeå University, SE-901 85 Umeå, Sweden
| | - Francesca Aguilo
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, SE-90185 Umeå, Sweden; Department of Medical Biosciences, Umeå University, SE-901 85 Umeå, Sweden.
| |
Collapse
|
23
|
Zhao Y, Dunker W, Yu YT, Karijolich J. The Role of Noncoding RNA Pseudouridylation in Nuclear Gene Expression Events. Front Bioeng Biotechnol 2018; 6:8. [PMID: 29473035 PMCID: PMC5809436 DOI: 10.3389/fbioe.2018.00008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/22/2018] [Indexed: 12/23/2022] Open
Abstract
Pseudouridine is the most abundant internal RNA modification in stable noncoding RNAs (ncRNAs). It can be catalyzed by both RNA-dependent and RNA-independent mechanisms. Pseudouridylation impacts both the biochemical and biophysical properties of RNAs and thus influences RNA-mediated cellular processes. The investigation of nuclear-ncRNA pseudouridylation has demonstrated that it is critical for the proper control of multiple stages of gene expression regulation. Here, we review how nuclear-ncRNA pseudouridylation contributes to transcriptional regulation and pre-mRNA splicing.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - William Dunker
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, United States.,Vanderbilt-Ingram Cancer Center, Nashville, TN, United States
| |
Collapse
|
24
|
Abstract
RNA contains over 150 types of chemical modifications. Although many of these chemical modifications were discovered several decades ago, their functions were not immediately apparent. Discoveries of RNA demethylases, along with advances in mass spectrometry and high-throughput sequencing techniques, have caused research into RNA modifications to progress at an accelerated rate. Post-transcriptional RNA modifications make up an epitranscriptome that extensively regulates gene expression and biological processes. Here, we present an overview of recent advances in the field that are shaping our understanding of chemical modifications, their impact on development and disease, and the dynamic mechanisms through which they regulate gene expression.
Collapse
Affiliation(s)
- Phillip J Hsu
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA.,Medical Scientist Training Program and Committee on Immunology, The University of Chicago, Chicago, IL, 60637, USA
| | - Hailing Shi
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA. .,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
25
|
Fry NJ, Law BA, Ilkayeva OR, Holley CL, Mansfield KD. N6-methyladenosine is required for the hypoxic stabilization of specific mRNAs. RNA (NEW YORK, N.Y.) 2017; 23:1444-1455. [PMID: 28611253 PMCID: PMC5558913 DOI: 10.1261/rna.061044.117] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/02/2017] [Indexed: 05/19/2023]
Abstract
Post-transcriptional regulation of mRNA during oxygen deprivation, or hypoxia, can affect the survivability of cells. Hypoxia has been shown to increase stability of a subset of ischemia-related mRNAs, including VEGF. RNA binding proteins and miRNAs have been identified as important for post-transcriptional regulation of individual mRNAs, but corresponding mechanisms that regulate global stability are not well understood. Recently, mRNA modification by N6-methyladenosine (m6A) has been shown to be involved in post-transcriptional regulation processes including mRNA stability and promotion of translation, but the role of m6A in the hypoxia response is unknown. In this study, we investigate the effect of hypoxia on RNA modifications including m6A. Our results show hypoxia increases m6A content of poly(A)+ messenger RNA (mRNA), but not in total or ribosomal RNA in HEK293T cells. Using m6A mRNA immunoprecipitation, we identify specific hypoxia-modified mRNAs, including glucose transporter 1 (Glut1) and c-Myc, which show increased m6A levels under hypoxic conditions. Many of these mRNAs also exhibit increased stability, which was blocked by knockdown of m6A-specific methyltransferases METTL3/14. However, the increase in mRNA stability did not correlate with a change in translational efficiency or the steady-state amount of their proteins. Knockdown of METTL3/14 did reveal that m6A is involved in recovery of translational efficiency after hypoxic stress. Therefore, our results suggest that an increase in m6A mRNA during hypoxic exposure leads to post-transcriptional stabilization of specific mRNAs and contributes to the recovery of translational efficiency after hypoxic stress.
Collapse
Affiliation(s)
- Nate J Fry
- Biochemistry and Molecular Biology Department, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| | - Brittany A Law
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina 27701, USA
| | - Christopher L Holley
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Kyle D Mansfield
- Biochemistry and Molecular Biology Department, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| |
Collapse
|
26
|
Gumienny R, Jedlinski DJ, Schmidt A, Gypas F, Martin G, Vina-Vilaseca A, Zavolan M. High-throughput identification of C/D box snoRNA targets with CLIP and RiboMeth-seq. Nucleic Acids Res 2017; 45:2341-2353. [PMID: 28031372 PMCID: PMC5389715 DOI: 10.1093/nar/gkw1321] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/08/2016] [Accepted: 12/19/2016] [Indexed: 01/02/2023] Open
Abstract
High-throughput sequencing has greatly facilitated the discovery of long and short non-coding RNAs (ncRNAs), which frequently guide ribonucleoprotein complexes to RNA targets, to modulate their metabolism and expression. However, for many ncRNAs, the targets remain to be discovered. In this study, we developed computational methods to map C/D box snoRNA target sites using data from core small nucleolar ribonucleoprotein crosslinking and immunoprecipitation and from transcriptome-wide mapping of 2΄-O-ribose methylation sites. We thereby assigned the snoRNA guide to a known methylation site in the 18S rRNA, we uncovered a novel partially methylated site in the 28S ribosomal RNA, and we captured a site in the 28S rRNA in interaction with multiple snoRNAs. Although we also captured mRNAs in interaction with snoRNAs, we did not detect 2΄-O-methylation of these targets. Our study provides an integrated approach to the comprehensive characterization of 2΄-O-methylation targets of snoRNAs in species beyond those in which these interactions have been traditionally studied and contributes to the rapidly developing field of 'epitranscriptomics'.
Collapse
MESH Headings
- Algorithms
- Base Sequence
- Cross-Linking Reagents/chemistry
- Databases, Genetic
- High-Throughput Nucleotide Sequencing/methods
- Immunoprecipitation
- Methylation
- Protein Binding
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 28S/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Ribonucleoproteins, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/metabolism
- Ribose/metabolism
- Software
- Transcriptome
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Rafal Gumienny
- Computational and Systems Biology, Biozentrum, University of Basel, Switzerland
- Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Switzerland
| | | | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Switzerland
| | - Foivos Gypas
- Computational and Systems Biology, Biozentrum, University of Basel, Switzerland
- Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Switzerland
| | - Georges Martin
- Computational and Systems Biology, Biozentrum, University of Basel, Switzerland
| | - Arnau Vina-Vilaseca
- Computational and Systems Biology, Biozentrum, University of Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, Switzerland
- Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Switzerland
| |
Collapse
|
27
|
Lewis CJT, Pan T, Kalsotra A. RNA modifications and structures cooperate to guide RNA-protein interactions. Nat Rev Mol Cell Biol 2017; 18:202-210. [PMID: 28144031 PMCID: PMC5542016 DOI: 10.1038/nrm.2016.163] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An emerging body of evidence indicates that post-transcriptional gene regulation relies not only on the sequence of mRNAs but also on their folding into intricate secondary structures and on the chemical modifications of the RNA bases. These features, which are highly dynamic and interdependent, exert direct control over the transcriptome and thereby influence many aspects of cell function. Here, we consider how the coupling of RNA modifications and structures shapes RNA-protein interactions at different steps of the gene expression process.
Collapse
Affiliation(s)
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| |
Collapse
|
28
|
Intersections of post-transcriptional gene regulatory mechanisms with intermediary metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:349-362. [PMID: 28088440 DOI: 10.1016/j.bbagrm.2017.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 12/16/2022]
Abstract
Intermediary metabolism studies have typically concentrated on four major regulatory mechanisms-substrate availability, allosteric enzyme regulation, post-translational enzyme modification, and regulated enzyme synthesis. Although transcriptional control has been a big focus, it is becoming increasingly evident that many post-transcriptional events are deeply embedded within the core regulatory circuits of enzyme synthesis/breakdown that maintain metabolic homeostasis. The prominent post-transcriptional mechanisms affecting intermediary metabolism include alternative pre-mRNA processing, mRNA stability and translation control, and the more recently discovered regulation by noncoding RNAs. In this review, we discuss the latest advances in our understanding of these diverse mechanisms at the cell-, tissue- and organismal-level. We also highlight the dynamics, complexity and non-linear nature of their regulatory roles in metabolic decision making, and deliberate some of the outstanding questions and challenges in this rapidly expanding field.
Collapse
|
29
|
Mueth NA, Ramachandran SR, Hulbert SH. Small RNAs from the wheat stripe rust fungus (Puccinia striiformis f.sp. tritici). BMC Genomics 2015; 16:718. [PMID: 26391470 PMCID: PMC4578785 DOI: 10.1186/s12864-015-1895-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/06/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, is a costly global disease that burdens farmers with yield loss and high fungicide expenses. This sophisticated biotrophic parasite infiltrates wheat leaves and develops infection structures inside host cells, appropriating nutrients while suppressing the plant defense response. Development in most eukaryotes is regulated by small RNA molecules, and the success of host-induced gene silencing technology in Puccinia spp. implies the existence of a functional RNAi system. However, some fungi lack this capability, and small RNAs have not yet been reported in rust fungi. The objective of this study was to determine whether P. striiformis carries an endogenous small RNA repertoire. RESULTS We extracted small RNA from rust-infected wheat flag leaves and performed high-throughput sequencing. Two wheat cultivars were analyzed: one is susceptible; the other displays partial high-temperature adult plant resistance. Fungal-specific reads were identified by mapping to the P. striiformis draft genome and removing reads present in uninfected control libraries. Sequencing and bioinformatics results were verified by RT-PCR. Like other RNAi-equipped fungi, P. striiformis produces large numbers of 20-22 nt sequences with a preference for uracil at the 5' position. Precise post-transcriptional processing and high accumulation of specific sRNA sequences were observed. Some predicted sRNA precursors possess a microRNA-like stem-loop secondary structure; others originate from much longer inverted repeats containing gene sequences. Finally, sRNA-target prediction algorithms were used to obtain a list of putative gene targets in both organisms. Predicted fungal target genes were enriched for kinases and small secreted proteins, while the list of wheat targets included homologs of known plant resistance genes. CONCLUSIONS This work provides an inventory of small RNAs endogenous to an important plant pathogen, enabling further exploration of gene regulation on both sides of the host/parasite interaction. We conclude that small RNAs are likely to play a role in regulating the complex developmental processes involved in stripe rust pathogenicity.
Collapse
Affiliation(s)
- Nicholas A Mueth
- Molecular Plant Sciences, Washington State University, Pullman, WA, USA.
| | | | - Scot H Hulbert
- Molecular Plant Sciences, Washington State University, Pullman, WA, USA.
- Plant Pathology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
30
|
Karijolich J, Yi C, Yu YT. Transcriptome-wide dynamics of RNA pseudouridylation. Nat Rev Mol Cell Biol 2015; 16:581-5. [PMID: 26285676 DOI: 10.1038/nrm4040] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pseudouridylation is the most abundant internal post-transcriptional modification of stable RNAs, with fundamental roles in the biogenesis and function of spliceosomal small nuclear RNAs (snRNAs) and ribosomal RNAs (rRNAs). Recently, the first transcriptome-wide maps of RNA pseudouridylation were published, greatly expanding the catalogue of known pseudouridylated RNAs. These data have further implicated RNA pseudouridylation in the cellular stress response and, moreover, have established that mRNAs are also targets of pseudouridine synthases, potentially representing a novel mechanism for expanding the complexity of the cellular proteome.
Collapse
Affiliation(s)
- John Karijolich
- Department of Plant and Microbial Biology, University of California, 565 Li Ka Shing Center #3370, Berkeley, California 94720-337, USA
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, 5 Summer Palace Road, Haidian District, Beijing 100871, China
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712 Rochester, New York 14642, USA
| |
Collapse
|
31
|
Chawla M, Oliva R, Bujnicki JM, Cavallo L. An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies. Nucleic Acids Res 2015; 43:6714-29. [PMID: 26117545 PMCID: PMC4538814 DOI: 10.1093/nar/gkv606] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/28/2015] [Indexed: 01/08/2023] Open
Abstract
Posttranscriptional modifications greatly enhance the chemical information of RNA molecules, contributing to explain the diversity of their structures and functions. A significant fraction of RNA experimental structures available to date present modified nucleobases, with half of them being involved in H-bonding interactions with other bases, i.e. ‘modified base pairs’. Herein we present a systematic investigation of modified base pairs, in the context of experimental RNA structures. To this end, we first compiled an atlas of experimentally observed modified base pairs, for which we recorded occurrences and structural context. Then, for each base pair, we selected a representative for subsequent quantum mechanics calculations, to find out its optimal geometry and interaction energy. Our structural analyses show that most of the modified base pairs are non Watson–Crick like and are involved in RNA tertiary structure motifs. In addition, quantum mechanics calculations quantify and provide a rationale for the impact of the different modifications on the geometry and stability of the base pairs they participate in.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143, Naples, Italy
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
32
|
Batkai S, Thum T. Analytical approaches in microRNA therapeutics. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 964:146-52. [DOI: 10.1016/j.jchromb.2014.03.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 02/06/2023]
|
33
|
Karijolich J, Yu YT. Therapeutic suppression of premature termination codons: mechanisms and clinical considerations (review). Int J Mol Med 2014; 34:355-62. [PMID: 24939317 PMCID: PMC4094583 DOI: 10.3892/ijmm.2014.1809] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/06/2014] [Indexed: 12/22/2022] Open
Abstract
An estimated one-third of genetic disorders are the result of mutations that generate premature termination codons (PTCs) within protein coding genes. These disorders are phenotypically diverse and consist of diseases that affect both young and old individuals. Various small molecules have been identified that are capable of modulating the efficiency of translation termination, including select antibiotics of the aminoglycoside family and multiple novel synthetic molecules, including PTC124. Several of these agents have proved their effectiveness at promoting nonsense suppression in preclinical animal models, as well as in clinical trials. In addition, it has recently been shown that box H/ACA RNA-guided peudouridylation, when directed to modify PTCs, can also promote nonsense suppression. In this review, we summarize our current understanding of eukaryotic translation termination and discuss various methods for promoting the read-through of disease-causing PTCs, as well as the current obstacles that stand in the way of using the discussed agents broadly in clinical practice.
Collapse
Affiliation(s)
- John Karijolich
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
34
|
Yan M, Wang Y, Hu Y, Feng Y, Dai C, Wu J, Wu D, Zhang F, Zhai Q. A High-Throughput Quantitative Approach Reveals More Small RNA Modifications in Mouse Liver and Their Correlation with Diabetes. Anal Chem 2013; 85:12173-81. [DOI: 10.1021/ac4036026] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Menghong Yan
- Key Laboratory
of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai
Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuangao Wang
- Key Laboratory
of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai
Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanan Hu
- Key Laboratory
of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai
Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Feng
- Key Laboratory
of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai
Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Changgui Dai
- Key Laboratory
of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai
Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jingxia Wu
- Key Laboratory
of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai
Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dongmei Wu
- Key Laboratory
of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai
Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang Zhang
- Key Laboratory
of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai
Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qiwei Zhai
- Key Laboratory
of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai
Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
35
|
Muratore CR, Hodgson NW, Trivedi MS, Abdolmaleky HM, Persico AM, Lintas C, De La Monte S, Deth RC. Age-dependent decrease and alternative splicing of methionine synthase mRNA in human cerebral cortex and an accelerated decrease in autism. PLoS One 2013; 8:e56927. [PMID: 23437274 PMCID: PMC3577685 DOI: 10.1371/journal.pone.0056927] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/16/2013] [Indexed: 12/22/2022] Open
Abstract
The folate and vitamin B12-dependent enzyme methionine synthase (MS) is highly sensitive to cellular oxidative status, and lower MS activity increases production of the antioxidant glutathione, while simultaneously decreasing more than 200 methylation reactions, broadly affecting metabolic activity. MS mRNA levels in postmortem human cortex from subjects across the lifespan were measured and a dramatic progressive biphasic decrease of more than 400-fold from 28 weeks of gestation to 84 years was observed. Further analysis revealed alternative splicing of MS mRNA, including deletion of folate-binding domain exons and age-dependent deletion of exons from the cap domain, which protects vitamin B12 (cobalamin) from oxidation. Although three species of MS were evident at the protein level, corresponding to full-length and alternatively spliced mRNA transcripts, decreasing mRNA levels across the lifespan were not associated with significant changes in MS protein or methionine levels. MS mRNA levels were significantly lower in autistic subjects, especially at younger ages, and this decrease was replicated in cultured human neuronal cells by treatment with TNF-α, whose CSF levels are elevated in autism. These novel findings suggest that rather than serving as a housekeeping enzyme, MS has a broad and dynamic role in coordinating metabolism in the brain during development and aging. Factors adversely affecting MS activity, such as oxidative stress, can be a source of risk for neurological disorders across the lifespan via their impact on methylation reactions, including epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Christina R. Muratore
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, United States of America
| | - Nathaniel W. Hodgson
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, United States of America
| | - Malav S. Trivedi
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, United States of America
| | - Hamid M. Abdolmaleky
- Genetics Program, School of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Antonio M. Persico
- Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | - Carla Lintas
- Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | - Suzanne De La Monte
- Department of Medicine and Pathology, Rhode Island Hospital and Warren Alpert School of Medicine at Brown University, Providence, Rhode Island, United States of America
| | - Richard C. Deth
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
36
|
Dong H, Chang DC, Hua MHC, Lim SP, Chionh YH, Hia F, Lee YH, Kukkaro P, Lok SM, Dedon PC, Shi PY. 2'-O methylation of internal adenosine by flavivirus NS5 methyltransferase. PLoS Pathog 2012; 8:e1002642. [PMID: 22496660 PMCID: PMC3320599 DOI: 10.1371/journal.ppat.1002642] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 02/27/2012] [Indexed: 01/20/2023] Open
Abstract
RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2′-O methyltransferase activities that are required for the formation of 5′ type I cap (m7GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2′-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2′-O-methyladenosine. The 2′-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2′-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of viral RNA in vivo and host ribosomal RNAs in vitro. We report that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant proteins of NS5 and its N-terminal methyltransferase domain of West Nile virus and Dengue virus (DENV) specifically methylates polyA, but not polyG, polyC, or polyU. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis confirmed that the internal methylation product is 2′-O-methyladenosine. Furthermore, the 2′-O-methyladenosine could also be detected in DENV genomic RNA. The 2′-O methylation of internal adenosine does not require specific RNA sequence context because the DENV methyltransferase can methylate RNAs spanning different regions of viral genome and host ribosomal RNAs at equal efficiencies. Mutagenesis analysis showed that K61-D146-K181-E217 motif of the DENV methyltransferase forms the active site of internal methylation activity; in addition, distinct residues on the surface of the enzyme are critical for the internal methylation activity. Functional analysis showed that internal methylation attenuated viral RNA translation and replication. Overall, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of viral RNA in vivo and host ribosomal RNA in vitro. Such 2′-O-methyladenosine modification may modulate virus-host interaction.
Collapse
Affiliation(s)
- Hongping Dong
- Novartis Institute for Tropical Diseases, Singapore
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | | | - Maggie Ho Chia Hua
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore
| | | | - Yok Hian Chionh
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore
| | - Fabian Hia
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore
| | - Yie Hou Lee
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore
| | | | | | - Peter C. Dedon
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Pei-Yong Shi
- Novartis Institute for Tropical Diseases, Singapore
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
37
|
Klink TA, Staeben M, Twesten K, Kopp AL, Kumar M, Dunn RS, Pinchard CA, Kleman-Leyer KM, Klumpp M, Lowery RG. Development and validation of a generic fluorescent methyltransferase activity assay based on the transcreener AMP/GMP assay. ACTA ACUST UNITED AC 2011; 17:59-70. [PMID: 21956169 DOI: 10.1177/1087057111421624] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methylation is a ubiquitous covalent modification used to control the function of diverse biomolecules including hormones, neurotransmitters, xenobiotics, proteins, nucleic acids, and lipids. Histone methyltransferases (HMTs) are currently of high interest as drug targets because of their role in epigenetic regulation; however, most HMT assay methods are either not amenable to a high-throughput screening (HTS) environment or are applicable to a limited number of enzymes. The authors developed a generic methyltransferase assay method using fluorescent immunodetection of adenosine monophosphate (AMP), which is formed from the MT reaction product S-adenosylhomocysteine in a dual-enzyme coupling step. The detection range of the assay; its suitability for HTS, including stability of reagents following dispensing and after addition to reactions; and the potential for interference from drug-like molecules was investigated. In addition, the use of the assay for measuring inhibitor potencies with peptide or intact protein substrates was examined through pilot screening with selected reference enzymes including HMT G9a. By combining a novel enzymatic coupling step with the well-characterized Transcreener AMP/GMP assay, the authors have developed a robust HTS assay for HMTs that should be broadly applicable to other types of methyltransferases as well.
Collapse
|