1
|
Li X, Lai Y, Lane Z, Strollo H, Tanimura K, Sembrat JC, Zou C, Myerburg MM, Rojas M, Shapiro S, Jiang Y, Nyunoya T. Cigarette smoking is a secondary cause of folliculin loss. Thorax 2023; 78:402-408. [PMID: 35301243 PMCID: PMC9612398 DOI: 10.1136/thoraxjnl-2021-217197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 02/12/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Birt-Hogg-Dubé syndrome (BHD) is a clinical syndrome manifesting with cystic lung disease and pneumothorax. Features of BHD result from the loss-of-function mutations of the folliculin (FLCN) gene. Chronic obstructive pulmonary disease (COPD), characterised by an irreversible airflow limitation, is primarily caused by cigarette smoking. OBJECTIVE Given that COPD often shares structural features with BHD, we investigated the link between COPD, cigarette smoke (CS) exposure and FLCN expression. METHODS We measured the expression of FLCN in human COPD lungs and CS-exposed mouse lungs, as well as in CS extract (CSE)-exposed immortalised human airway epithelial cells by immunoblotting. RESULTS We found that the lung FLCN protein levels in smokers with COPD and CS exposure mice exhibit a marked decrease compared with smokers without COPD and room air exposure mice, respectively. We confirmed CS induced degradation of FLCN in immortalised human bronchial epithelial Beas-2B cells via ubiquitin proteasome system. Further, siRNA targeting FLCN enhanced CSE-induced cytotoxicity. By contrast, FLCN overexpression protected cells from CSE-induced cytotoxicity. We found that FBXO23, the ubiquitin E3 ligase subunit, specifically binds to and targets FLCN for degradation. Inhibition of ATM (ataxia-telangiectasia mutated) attenuated CSE induced FLCN degradation, suggesting a role of ATM in FLCN proteolysis. We further confirmed that the mutant of major FLCN phosphorylation site serine 62A is resistant to CSE-induced degradation and cytotoxicity. CONCLUSIONS Our study demonstrates that CS exposure is a secondary cause of FLCN deficiency due to the enhanced proteolysis, which promoted airway epithelial cell death.
Collapse
Affiliation(s)
- Xiuying Li
- Medicine, VA Pittsburgh Healthcare System University Drive Division, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yandong Lai
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zachary Lane
- Medicine, VA Pittsburgh Healthcare System University Drive Division, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hilary Strollo
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kazuya Tanimura
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John C Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chunbin Zou
- Medicine, VA Pittsburgh Healthcare System University Drive Division, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael M Myerburg
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mauricio Rojas
- The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Steven Shapiro
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yu Jiang
- Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Toru Nyunoya
- Medicine, VA Pittsburgh Healthcare System University Drive Division, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Research Progress of ATGs Involved in Plant Immunity and NPR1 Metabolism. Int J Mol Sci 2021; 22:ijms222212093. [PMID: 34829975 PMCID: PMC8623690 DOI: 10.3390/ijms222212093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an important pathway of degrading excess and abnormal proteins and organelles through their engulfment into autophagosomes that subsequently fuse with the vacuole. Autophagy-related genes (ATGs) are essential for the formation of autophagosomes. To date, about 35 ATGs have been identified in Arabidopsis, which are involved in the occurrence and regulation of autophagy. Among these, 17 proteins are related to resistance against plant pathogens. The transcription coactivator non-expressor of pathogenesis-related genes 1 (NPR1) is involved in innate immunity and acquired resistance in plants, which regulates most salicylic acid (SA)-responsive genes. This paper mainly summarizes the role of ATGs and NPR1 in plant immunity and the advancement of research on ATGs in NPR1 metabolism, providing a new idea for exploring the relationship between ATGs and NPR1.
Collapse
|
3
|
Schukur L, Zimmermann T, Niewoehner O, Kerr G, Gleim S, Bauer-Probst B, Knapp B, Galli GG, Liang X, Mendiola A, Reece-Hoyes J, Rapti M, Barbosa I, Reschke M, Radimerski T, Thoma CR. Identification of the HECT E3 ligase UBR5 as a regulator of MYC degradation using a CRISPR/Cas9 screen. Sci Rep 2020; 10:20044. [PMID: 33208877 PMCID: PMC7676242 DOI: 10.1038/s41598-020-76960-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
MYC oncoprotein is a multifunctional transcription factor that regulates the expression of a large number of genes involved in cellular growth, proliferation and metabolism. Altered MYC protein level lead to cellular transformation and tumorigenesis. MYC is deregulated in > 50% of human cancers, rendering it an attractive drug target. However, direct inhibition of this class of proteins using conventional small molecules is challenging due to their intrinsically disordered state. To discover novel posttranslational regulators of MYC protein stability and turnover, we established a genetic screen in mammalian cells by combining a fluorescent protein-based MYC abundance sensor, CRISPR/Cas9-based gene knockouts and next-generation sequencing. Our screen identifies UBR5, an E3 ligase of the HECT-type family, as a novel regulator of MYC degradation. Even in the presence of the well-described and functional MYC ligase, FBXW7, UBR5 depletion leads to accumulation of MYC in cells. We demonstrate interaction of UBR5 with MYC and reduced K48-linked ubiquitination of MYC upon loss of UBR5 in cells. Interestingly, in cancer cell lines with amplified MYC expression, depletion of UBR5 resulted in reduced cell survival, as a consequence of MYC stabilization. Finally, we show that MYC and UBR5 are co-amplified in more than 40% of cancer cells and that MYC copy number amplification correlates with enhanced transcriptional output of UBR5. This suggests that UBR5 acts as a buffer in MYC amplified settings and protects these cells from apoptosis.
Collapse
Affiliation(s)
- Lina Schukur
- Novartis Institutes for Biomedical Research (NIBR) Oncology, Novartis, Basel, Switzerland. .,Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Tamara Zimmermann
- Novartis Institutes for Biomedical Research (NIBR) Oncology, Novartis, Basel, Switzerland
| | - Ole Niewoehner
- NIBR Chemical Biology and Therapeutics, Novartis, Cambridge, USA
| | - Grainne Kerr
- Novartis Institutes for Biomedical Research (NIBR) Oncology, Novartis, Basel, Switzerland
| | - Scott Gleim
- NIBR Chemical Biology and Therapeutics, Novartis, Cambridge, USA
| | - Beatrice Bauer-Probst
- Novartis Institutes for Biomedical Research (NIBR) Oncology, Novartis, Basel, Switzerland
| | - Britta Knapp
- NIBR Chemical Biology and Therapeutics, Novartis, Cambridge, USA
| | - Giorgio G Galli
- Novartis Institutes for Biomedical Research (NIBR) Oncology, Novartis, Basel, Switzerland
| | - Xiaoyou Liang
- NIBR Chemical Biology and Therapeutics, Novartis, Cambridge, USA
| | - Angelica Mendiola
- Genomics Institute of the Novartis Research Foundation, LaJolla, USA
| | - John Reece-Hoyes
- NIBR Chemical Biology and Therapeutics, Novartis, Cambridge, USA
| | - Melivoia Rapti
- Novartis Institutes for Biomedical Research (NIBR) Oncology, Novartis, Basel, Switzerland
| | - Ines Barbosa
- Novartis Institutes for Biomedical Research (NIBR) Oncology, Novartis, Basel, Switzerland
| | - Markus Reschke
- Novartis Institutes for Biomedical Research (NIBR) Oncology, Novartis, Basel, Switzerland
| | - Thomas Radimerski
- Novartis Institutes for Biomedical Research (NIBR) Oncology, Novartis, Basel, Switzerland.,Basilea Pharmaceutica, Basel, Switzerland
| | - Claudio R Thoma
- NIBR Chemical Biology and Therapeutics, Novartis, Cambridge, USA.
| |
Collapse
|
4
|
Wang H, Fu C, Du J, Wang H, He R, Yin X, Li H, Li X, Wang H, Li K, Zheng L, Liu Z, Qiu Y. Enhanced histone H3 acetylation of the PD-L1 promoter via the COP1/c-Jun/HDAC3 axis is required for PD-L1 expression in drug-resistant cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:29. [PMID: 32024543 PMCID: PMC7003365 DOI: 10.1186/s13046-020-1536-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/27/2020] [Indexed: 12/24/2022]
Abstract
Background Drug resistance is a major obstacle to treating cancers because it desensitizes cancer cells to chemotherapy. Recently, attention has been focused on changes in the tumor immune landscape after the acquisition of drug resistance. Programmed death-ligand-1 (PD-L1) is an immune suppressor that inhibits T cell-based immunity. Evidence has shown that acquired chemoresistance is associated with increased PD-L1 expression in cancer cells. However, the underlying mechanism is still largely unknown. Methods PD-L1 expression in three drug-resistant A549/CDDP, MCF7/ADR and HepG2/ADR cell lines was detected by qRT-PCR, western blotting and flow cytometry, and a T cell proliferation assay was performed to test its functional significance. Then, the potential roles of JNK/c-Jun, histone H3 acetylation, histone deacetylase 3 (HDAC3) and the E3 ligase COP1 in the PD-L1 increase were explored through ChIP assays and gain- and loss-of-function gene studies. Furthermore, murine xenograft tumor models were used to verify the role of JNK/c-Jun and HDAC3 in PD-L1 expression in A549/CDDP cells in vivo. Finally, the correlations of PD-L1, c-Jun and HDAC3 expression in clinical cisplatin-sensitive and cisplatin-resistant non-small cell lung cancer (NSCLC) tissues were analyzed by immunohistochemistry and Pearson’s correlation coefficient. Results PD-L1 expression was significantly increased in A549/CDDP, MCF7/ADR and HepG2/ADR cells and was attributed mainly to enhanced JNK/c-Jun signaling activation. Mechanistically, decreased COP1 increased c-Jun accumulation, which subsequently inhibited HDAC3 expression and thereby enhanced histone H3 acetylation of the PD-L1 promoter. Furthermore, PD-L1 expression could be inhibited by JNK/c-Jun inhibition or HDAC3 overexpression in vivo, which could largely reverse inhibited CD3+ T cell proliferation in vitro. PD-L1 expression was significantly increased in the cisplatin-resistant clinical NSCLC samples and positively correlated with c-Jun expression but negatively correlated with HDAC3 expression. Conclusions Enhanced histone H3 acetylation of the PD-L1 promoter via the COP1/c-Jun/HDAC3 axis was crucial for the PD-L1 increase in drug-resistant cancer cells. Our study reveals a novel regulatory network for the PD-L1 increase in drug-resistant cancer cells and that combined PD-L1-targeting strategies could improve T cell-based immunity in drug-resistant cancers.
Collapse
Affiliation(s)
- Haifang Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chen Fu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hongsheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Rui He
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaofeng Yin
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haixia Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xin Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hongxia Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kui Li
- Guangzhou Huayin Medical Laboratory Center Co., Ltd., Guangzhou, 510515, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Zongcai Liu
- The Laboratory of Endocrinology and Metabolism, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Yurong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Guangzhou Huayin Medical Laboratory Center Co., Ltd., Guangzhou, 510515, China.
| |
Collapse
|
5
|
Abstract
An incomplete view of the mechanisms that drive metastasis, the primary cause of cancer-related death, has been a major barrier to development of effective therapeutics and prognostic diagnostics. Increasing evidence indicates that the interplay between microenvironment, genetic lesions, and cellular plasticity drives the metastatic cascade and resistance to therapies. Here, using melanoma as a model, we outline the diversity and trajectories of cell states during metastatic dissemination and therapy exposure, and highlight how understanding the magnitude and dynamics of nongenetic reprogramming in space and time at single-cell resolution can be exploited to develop therapeutic strategies that capitalize on nongenetic tumor evolution.
Collapse
Affiliation(s)
- Florian Rambow
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Herestraat 49, 3000 Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Herestraat 49, 3000 Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
6
|
Chang J, Chan PL, Xie Y, Ma KL, Cheung MK, Kwan HS. Modified recipe to inhibit fruiting body formation for living fungal biomaterial manufacture. PLoS One 2019; 14:e0209812. [PMID: 31083677 PMCID: PMC6513072 DOI: 10.1371/journal.pone.0209812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/29/2019] [Indexed: 11/30/2022] Open
Abstract
Living fungal mycelium with abolished ability to form fruiting bodies is a self-healing substance, which is particularly valuable for further engineering and development as materials sensing environmental changes and secreting signals. Suppression of fruiting body formation is also a useful tool for maintaining the stability of a mycelium-based material with ease and lower cost. The objective of this study was to provide a biochemical solution to regulate the fruiting body formation, which may replace heat killing of mycelium in practice. The concentrations of glycogen synthase kinase-3 (GSK-3) inhibitors, such as lithium chloride or CHIR99021 trihydrochloride, were found to directly correlate with the development of fruiting bodies in the mushroom forming fungi such as Coprinopsis cinerea and Pleurotus djamor. Sensitive windows to these inhibitors throughout the fungal life cycle were also identified. We suggest the inclusion of GSK-3 inhibitors in the cultivation recipes for inhibiting fruiting body formation and regulating mycelium growth. This is the first report of using a GSK-3 inhibitor to suppress fruiting body formation in living fungal mycelium-based materials. It provides an innovative strategy for easy, reliable, and low cost maintenance of materials containing living fungal mycelium.
Collapse
Affiliation(s)
- Jinhui Chang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Po Lam Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Yichun Xie
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ka Lee Ma
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Man Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
7
|
ASB3 knockdown promotes mitochondrial apoptosis via activating the interdependent cleavage of Beclin1 and caspase-8 in hepatocellular carcinoma. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1692-1702. [DOI: 10.1007/s11427-018-9505-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022]
|
8
|
Lin TP, Li J, Li Q, Li X, Liu C, Zeng N, Huang JM, Chu GCY, Lin CH, Zhau HE, Chung LWK, Wu BJ, Shih JC. R1 Regulates Prostate Tumor Growth and Progression By Transcriptional Suppression of the E3 Ligase HUWE1 to Stabilize c-Myc. Mol Cancer Res 2018; 16:1940-1951. [PMID: 30042175 DOI: 10.1158/1541-7786.mcr-16-0346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/22/2018] [Accepted: 07/05/2018] [Indexed: 11/16/2022]
Abstract
Prostate cancer is a prevalent public health problem, especially because noncutaneous advanced malignant forms significantly affect the lifespan and quality of life of men worldwide. New therapeutic targets and approaches are urgently needed. The current study reports elevated expression of R1 (CDCA7L/RAM2/JPO2), a c-Myc-interacting protein and transcription factor, in human prostate cancer tissue specimens. In a clinical cohort, high R1 expression is associated with disease recurrence and decreased patient survival. Overexpression and knockdown of R1 in human prostate cancer cells indicate that R1 induces cell proliferation and colony formation. Moreover, silencing R1 dramatically reduces the growth of prostate tumor xenografts in mice. Mechanistically, R1 increases c-Myc protein stability by inhibiting ubiquitination and proteolysis through transcriptional suppression of HUWE1, a c-Myc-targeting E3 ligase, via direct interaction with a binding element in the promoter. Moreover, transcriptional repression is supported by a negative coexpression correlation between R1 and HUWE1 in a prostate cancer clinical dataset. Collectively, these findings, for the first time, characterize the contribution of R1 to prostate cancer pathogenesis. IMPLICATIONS: These findings provide evidence that R1 is a novel regulator of prostate tumor growth by stabilizing c-Myc protein, meriting further investigation of its therapeutic and prognostic potential.
Collapse
Affiliation(s)
- Tzu-Ping Lin
- Depatment of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
- USC-Taiwan Center for Translational Research, University of Southern California, Los Angeles, California
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Urology, School of Medicine and Shu-Tien Urological Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Jingjing Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Qinlong Li
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiangyan Li
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Chunyan Liu
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ni Zeng
- Depatment of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Jen-Ming Huang
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Gina Chia-Yi Chu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Chi-Hung Lin
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Haiyen E Zhau
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Leland W K Chung
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington.
| | - Jean C Shih
- Depatment of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California.
- USC-Taiwan Center for Translational Research, University of Southern California, Los Angeles, California
- Depatment of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
9
|
Ubiquitin-Specific Protease USP6 Regulates the Stability of the c-Jun Protein. Mol Cell Biol 2017; 38:MCB.00320-17. [PMID: 29061731 DOI: 10.1128/mcb.00320-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/12/2017] [Indexed: 01/22/2023] Open
Abstract
The c-Jun gene encodes a transcription factor that has been implicated in many physiological and pathological processes. c-Jun is a highly unstable protein that is degraded through a ubiquitination/proteasome-dependent mechanism. However, the deubiquitinating enzyme (DUB) that regulates the stability of the c-Jun protein requires further investigation. Here, by screening a DUB expression library, we identified ubiquitin-specific protease 6 (USP6) and showed that it regulates the stability of the c-Jun protein in a manner depending on its enzyme activity. USP6 interacts with c-Jun and antagonizes its ubiquitination. USP6 overexpression upregulates the activity of the downstream signaling pathway mediated by c-Jun/AP-1 and promotes cell invasion. Moreover, many aberrant genes that are upregulated in USP6 translocated nodular fasciitis are great potential targets regulated by c-Jun. Based on our data, USP6 is an enzyme that deubiquitinates c-Jun and regulates its downstream cellular functions.
Collapse
|
10
|
Dimitrova Y, Gruber AJ, Mittal N, Ghosh S, Dimitriades B, Mathow D, Grandy WA, Christofori G, Zavolan M. TFAP2A is a component of the ZEB1/2 network that regulates TGFB1-induced epithelial to mesenchymal transition. Biol Direct 2017; 12:8. [PMID: 28412966 PMCID: PMC5392957 DOI: 10.1186/s13062-017-0180-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/22/2017] [Indexed: 01/28/2023] Open
Abstract
Background The transition between epithelial and mesenchymal phenotypes (EMT) occurs in a variety of contexts. It is critical for mammalian development and it is also involved in tumor initiation and progression. Master transcription factor (TF) regulators of this process are conserved between mouse and human. Methods From a computational analysis of a variety of high-throughput sequencing data sets we initially inferred that TFAP2A is connected to the core EMT network in both species. We then analysed publicly available human breast cancer data for TFAP2A expression and also studied the expression (by mRNA sequencing), activity (by monitoring the expression of its predicted targets), and binding (by electrophoretic mobility shift assay and chromatin immunoprecipitation) of this factor in a mouse mammary gland EMT model system (NMuMG) cell line. Results We found that upon induction of EMT, the activity of TFAP2A, reflected in the expression level of its predicted targets, is up-regulated in a variety of systems, both murine and human, while TFAP2A’s expression is increased in more “stem-like” cancers. We provide strong evidence for the direct interaction between the TFAP2A TF and the ZEB2 promoter and we demonstrate that this interaction affects ZEB2 expression. Overexpression of TFAP2A from an exogenous construct perturbs EMT, however, in a manner similar to the downregulation of endogenous TFAP2A that takes place during EMT. Conclusions Our study reveals that TFAP2A is a conserved component of the core network that regulates EMT, acting as a repressor of many genes, including ZEB2. Reviewers This article has been reviewed by Dr. Martijn Huynen and Dr. Nicola Aceto. Electronic supplementary material The online version of this article (doi:10.1186/s13062-017-0180-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoana Dimitrova
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Andreas J Gruber
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Nitish Mittal
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Souvik Ghosh
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Beatrice Dimitriades
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Daniel Mathow
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - William Aaron Grandy
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Gerhard Christofori
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland
| | - Mihaela Zavolan
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland.
| |
Collapse
|
11
|
Seifert L, Miller G. Molecular Pathways: The Necrosome-A Target for Cancer Therapy. Clin Cancer Res 2016; 23:1132-1136. [PMID: 27932417 DOI: 10.1158/1078-0432.ccr-16-0968] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/03/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022]
Abstract
Necroptosis is a caspase-8-independent cell death that requires coactivation of receptor-interacting protein 1 (RIP1) and receptor-interacting protein 3 (RIP3) kinases. The necrosome is a complex consisting of RIP1, RIP3, and Fas-associated protein with death domain leading to activation of the pseudokinase mixed lineage kinase like followed by a rapid plasma membrane rupture and inflammatory response through the release of damage-associated molecular patterns and cytokines. The necrosome has been shown to be relevant in multiple tumor types, including pancreatic adenocarcinoma, melanoma, and several hematologic malignancies. Preclinical data suggest that targeting this complex can have differential impact on tumor progression and that the effect of necroptosis on oncogenesis is cell-type and context dependent. The emerging data suggest that targeting the necrosome may lead to immunogenic reprogramming in the tumor microenvironment in multiple tumors and that combining therapies targeting the necrosome with either conventional chemotherapy or immunotherapy may have beneficial effects. Thus, understanding the interplay of necroptotic cell death, transformed cells, and the immune system may enable the development of novel therapeutic approaches. Clin Cancer Res; 23(5); 1132-6. ©2016 AACR.
Collapse
Affiliation(s)
- Lena Seifert
- Department of General, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, University of Dresden, Dresden, Germany
| | - George Miller
- Department of Surgery, S. Arthur Localio Laboratory, New York University School of Medicine, New York, New York. .,Department of Cell Biology, S. Arthur Localio Laboratory, New York University School of Medicine, New York, New York
| |
Collapse
|
12
|
Dai L, Tsay JCJ, Li J, Yie TA, Munger JS, Pass H, Rom WN, Zhang Y, Tan EM, Zhang JY. Autoantibodies against tumor-associated antigens in the early detection of lung cancer. Lung Cancer 2016; 99:172-179. [PMID: 27565936 DOI: 10.1016/j.lungcan.2016.07.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/13/2016] [Accepted: 07/17/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Autoantibodies against tumor-associated antigens (TAAs) identified in patients with advanced lung cancer may be detected in subjects with early lung cancer or even predate the diagnosis. The purpose of this study is to address the temporal relationship between lung cancer development and serum autoantibody response. MATERIALS AND METHODS Two cohorts of patients with newly diagnosed lung cancer were included. The first cohort included 90 sera from patients with lung cancer (Stages I-III) and 89 normal control sera. In the second cohort, 93 serial serum samples from 25 patients with CT-scan screen-detected stage I lung cancer were collected before the diagnosis of lung cancer (average 32 months) and 56 controls were matched on age, gender, and smoking. Autoantibody levels were measured by immunoassay. RESULTS Measurement of autoantibodies against seven TAAs (14-3-3ζ, c-Myc, MDM2, NPM1, p16, p53 and cyclin B1) individually could discriminate lung cancer patients from normal individuals in the first cohort and the area under curve (AUC) was 0.863 based on a panel of seven autoantibodies, with sensitivity of 68.9% and specificity of 79.5%. Autoantibodies in serial pre-diagnostic serum samples against the same panel of seven TAAs were detected prior to lung cancer diagnosis with sensitivity of 76.0% and specificity of 73.2% (AUC) (95%CI): 0.885 (0.797-0.973)). Elevated autoantibody levels could be detected greater than four years prior to lung cancer diagnosis. CONCLUSION A panel of seven TAAs may enhance the early detection of lung cancer, consistent with a humoral immune response to TAAs that can be detected months to years prior to the diagnosis.
Collapse
Affiliation(s)
- Liping Dai
- Center for Tumor Biotherapy, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA; Henan Academy of Medical and Pharmaceutical Sciences & Henan Key Laboratory for Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jun-Chieh J Tsay
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Jitian Li
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Ting-An Yie
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - John S Munger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Harvey Pass
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - William N Rom
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Yi Zhang
- Center for Tumor Biotherapy, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Eng M Tan
- The Scripps Research Institute, San Diego, CA 92037, USA
| | - Jian-Ying Zhang
- Center for Tumor Biotherapy, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA; Henan Academy of Medical and Pharmaceutical Sciences & Henan Key Laboratory for Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
13
|
Ding Y, Dommel M, Mou Z. Abscisic acid promotes proteasome-mediated degradation of the transcription coactivator NPR1 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:20-34. [PMID: 26865090 DOI: 10.1111/tpj.13141] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 01/12/2016] [Accepted: 02/04/2016] [Indexed: 05/20/2023]
Abstract
Proteasome-mediated turnover of the transcription coactivator NPR1 is pivotal for efficient activation of the broad-spectrum plant immune responses known as localized acquired resistance (LAR) and systemic acquired resistance (SAR) in adjacent and systemic tissues, respectively, and requires the CUL3-based E3 ligase and its adaptor proteins, NPR3 and NPR4, which are receptors for the signaling molecule salicylic acid (SA). It has been shown that SA prevents NPR1 turnover under non-inducing and LAR/SAR-inducing conditions, but how cellular NPR1 homeostasis is maintained remains unclear. Here, we show that the phytohormone abscisic acid (ABA) and SA antagonistically influence cellular NPR1 protein levels. ABA promotes NPR1 degradation via the CUL3(NPR) (3/) (NPR) (4) complex-mediated proteasome pathway, whereas SA may protect NPR1 from ABA-promoted degradation through phosphorylation. Furthermore, we demonstrate that the timing and strength of SA and ABA signaling are critical in modulating NPR1 accumulation and target gene expression. Perturbing ABA or SA signaling in adjacent tissues alters the temporal dynamic pattern of NPR1 accumulation and target gene transcription. Finally, we show that sequential SA and ABA treatment leads to dynamic changes in NPR1 protein levels and target gene expression. Our results revealed a tight correlation between sequential SA and ABA signaling and dynamic changes in NPR1 protein levels and NPR1-dependent transcription in plant immune responses.
Collapse
Affiliation(s)
- Yezhang Ding
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Matthew Dommel
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| |
Collapse
|
14
|
Pokharel YR, Saarela J, Szwajda A, Rupp C, Rokka A, Lal Kumar Karna S, Teittinen K, Corthals G, Kallioniemi O, Wennerberg K, Aittokallio T, Westermarck J. Relevance Rank Platform (RRP) for Functional Filtering of High Content Protein-Protein Interaction Data. Mol Cell Proteomics 2015; 14:3274-83. [PMID: 26499835 DOI: 10.1074/mcp.m115.050773] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 11/06/2022] Open
Abstract
High content protein interaction screens have revolutionized our understanding of protein complex assembly. However, one of the major challenges in translation of high content protein interaction data is identification of those interactions that are functionally relevant for a particular biological question. To address this challenge, we developed a relevance ranking platform (RRP), which consist of modular functional and bioinformatic filters to provide relevance rank among the interactome proteins. We demonstrate the versatility of RRP to enable a systematic prioritization of the most relevant interaction partners from high content data, highlighted by the analysis of cancer relevant protein interactions for oncoproteins Pin1 and PME-1. We validated the importance of selected interactions by demonstration of PTOV1 and CSKN2B as novel regulators of Pin1 target c-Jun phosphorylation and reveal previously unknown interacting proteins that may mediate PME-1 effects via PP2A-inhibition. The RRP framework is modular and can be modified to answer versatile research problems depending on the nature of the biological question under study. Based on comparison of RRP to other existing filtering tools, the presented data indicate that RRP offers added value especially for the analysis of interacting proteins for which there is no sufficient prior knowledge available. Finally, we encourage the use of RRP in combination with either SAINT or CRAPome computational tools for selecting the candidate interactors that fulfill the both important requirements, functional relevance, and high confidence interaction detection.
Collapse
Affiliation(s)
- Yuba Raj Pokharel
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland; §Centre for Biotechnology, ‖Faculty of Life Science and Biotechnology, South Asian University, New Delhi 110021, India
| | - Jani Saarela
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland
| | - Agnieszka Szwajda
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland
| | | | | | | | - Kaisa Teittinen
- **Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere and Tampere University Hospital, FIN-33014, Tampere, Finland
| | | | - Olli Kallioniemi
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland
| | - Krister Wennerberg
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland
| | - Tero Aittokallio
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland
| | - Jukka Westermarck
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland; §Centre for Biotechnology, ¶Department of Pathology,University of Turku and Åbo Akademi, Turku, Finland, PO Box 123, FIN-20521 Turku, Finland.;
| |
Collapse
|
15
|
Barbosa S, Carreira S, Bailey D, Abaitua F, O'Hare P. Phosphorylation and SCF-mediated degradation regulate CREB-H transcription of metabolic targets. Mol Biol Cell 2015; 26:2939-54. [PMID: 26108621 PMCID: PMC4571331 DOI: 10.1091/mbc.e15-04-0247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022] Open
Abstract
CREB‑H, an endoplasmic reticulum-anchored transcription factor, plays a key role in regulating secretion and in metabolic and inflammatory pathways, but how its activity is modulated remains unclear. We examined processing of the nuclear active form and identified a motif around S87-S90 with homology to DSG-type phosphodegrons. We show that this region is subject to multiple phosphorylations, which regulate CREB-H stability by targeting it to the SCF(Fbw1a) E3 ubiquitin ligase. Data from phosphatase treatment, use of phosophospecific antibody, and substitution of serine residues demonstrate phosphorylation of candidate serines in the region, with the core S87/S90 motif representing a critical determinant promoting proteasome-mediated degradation. Candidate kinases CKII and GSK-3b phosphorylate CREB-H in vitro with specificities for different serines. Prior phosphorylation with GSK-3 at one or more of the adjacent serines substantially increases S87/S90-dependent phosphorylation by CKII. In vivo expression of a dominant-negative Cul1 enhances steady-state levels of CREB‑H, an effect augmented by Fbw1a. CREB-H directly interacts with Fbw1a in a phosphorylation-dependent manner. Finally, mutations within the phosphodegron, when incorporated into the full-length protein, result in increased levels of constitutively cleaved nuclear protein and increased transcription and secretion of a key endogenous target gene, apolipoprotein A IV.
Collapse
Affiliation(s)
- Sónia Barbosa
- Department of Medicine, Imperial College, London W2 1PG, United Kingdom
| | - Suzanne Carreira
- Department of Medicine, Imperial College, London W2 1PG, United Kingdom
| | - Daniel Bailey
- Health Protection Agency, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Fernando Abaitua
- Department of Medicine, Imperial College, London W2 1PG, United Kingdom
| | - Peter O'Hare
- Department of Medicine, Imperial College, London W2 1PG, United Kingdom
| |
Collapse
|
16
|
Qiao N, Xu C, Zhu YX, Cao Y, Liu DC, Han X. Ets-1 as an early response gene against hypoxia-induced apoptosis in pancreatic β-cells. Cell Death Dis 2015; 6:e1650. [PMID: 25695603 PMCID: PMC4669796 DOI: 10.1038/cddis.2015.8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/21/2014] [Accepted: 01/02/2015] [Indexed: 12/17/2022]
Abstract
Hypoxia complicates islet isolation for transplantation and may contribute to pancreatic β-cell failure in type 2 diabetes. Pancreatic β-cells are susceptible to hypoxia-induced apoptosis. Severe hypoxic conditions during the immediate post-transplantation period are a main non-immune factor leading to β-cell death and islet graft failure. In this study, we identified the transcription factor Ets-1 (v-ets erythroblastosis virus E26 oncogene homolog 1) as an early response gene against hypoxia-induced apoptosis in pancreatic β-cells. Hypoxia regulates Ets-1 at multiple levels according to the degree of β-cell oxygen deprivation. Moderate hypoxia promotes Ets-1 gene transcription, whereas severe hypoxia promotes its transactivation activity, as well as its ubiquitin-proteasome mediated degradation. This degradation causes a relative insufficiency of Ets-1 activity, and limits the transactivation effect of Ets-1 on downstream hypoxic-inducible genes and its anti-apoptotic function. Overexpression of ectopic Ets-1 in MIN6 and INS-1 cells protects them from severe hypoxia-induced apoptosis in a mitochondria-dependent manner, confirming that a sufficient amount of Ets-1 activity is critical for protection of pancreatic β-cells against hypoxic injury. Targeting Ets-1 expression may be a useful strategy for islet graft protection during the immediate post-transplantation period.
Collapse
Affiliation(s)
- N Qiao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - C Xu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Y-X Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Y Cao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - D-C Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - X Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Preferential autoimmune response in prostate cancer to cyclin B1 in a panel of tumor-associated antigens. J Immunol Res 2014; 2014:827827. [PMID: 24860838 PMCID: PMC4016862 DOI: 10.1155/2014/827827] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/28/2014] [Indexed: 12/22/2022] Open
Abstract
Previous studies have demonstrated that sera from patients with prostate cancer (PCa) contain autoantibodies that react with tumor-associated antigens (TAAs). Autoantibodies to cyclin B1 and fourteen other TAAs were detected by enzyme-linked immunosorbent assay (ELISA) and Western blotting in 464 sera from patients with PCa, benign prostatic hyperplasia (BPH), and other controls. Autoantibodies to cyclin B1 were detected in 31.0% of sera from randomly selected patients with PCa versus 4.8% in sera with BPH. In the further analysis, 31.4% of sera from PCa patients at the early stage contained anti-cyclin B1 autoantibody, and even 29.4% of patients who had normal prostate-specific antigen (PSA) levels in their serum samples were observed anti-cyclin B1 positive. The cumulative positive rate of autoantibodies against seven selected TAAs (cyclin B1, survivin, p53, DFS70/LEDGFp75, RalA, MDM2, and NPM1) in PCa reached 80.5%, significantly higher than that in normal control sera. In summary, autoantibody to cyclin B1 might be a potential biomarker for the immunodiagnosis of early stage PCa, especially useful in patients with normal PSA level. This study further supports the hypothesis that a customized TAA array can be used for enhancing anti-TAA autoantibody detection, and it may constitute a promising and powerful tool for immunodiagnosis of PCa.
Collapse
|
18
|
COP1 and GSK3β cooperate to promote c-Jun degradation and inhibit breast cancer cell tumorigenesis. Neoplasia 2014; 15:1075-85. [PMID: 24027432 DOI: 10.1593/neo.13966] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 12/24/2022] Open
Abstract
High abundance of c-Jun is detected in invasive breast cancer cells and aggressive breast tumor malignancies. Here, we demonstrate that a major cause of high c-Jun abundance in invasive breast cancer cells is prolonged c-Jun protein stability owing to poor poly-ubiquitination of c-Jun. Among the known c-Jun-targeting E3 ligases, we identified constitutive photomorphogenesis protein 1 (COP1) as an E3 ligase responsible for c-Jun degradation in less invasive breast cancer cells because depletion of COP1 reduced c-Jun poly-ubiquitination leading to the stabilization of c-Jun protein. In a panel of breast cancer cell lines, we observed an inverse association between the levels of COP1 and c-Jun. However, overexpressing COP1 alone was unable to decrease c-Jun level in invasive breast cancer cells, indicating that efficient c-Jun protein degradation necessitates an additional event. Indeed, we found that glycogen synthase kinase 3 (GSK3) inhibitors elevated c-Jun abundance in less invasive breast cancer cells and that GSK3β nonphosphorylable c-Jun-T239A mutant displayed greater protein stability and poorer poly-ubiquitination compared to the wild-type c-Jun. The ability of simultaneously enforced expression of COP1 and constitutively active GSK3β to decrease c-Jun abundance in invasive breast cancer cells allowed us to conclude that c-Jun is negatively regulated through the coordinated action of COP1 and GSK3β. Importantly, co-expressing COP1 and active GSK3β blocked in vitro cell growth/migration and in vivo metastasis of invasive breast cancer cells. Gene expression profiling of breast tumor specimens further revealed that higher COP1 expression correlated with better recurrence-free survival. Our study supports the notion that COP1 is a suppressor of breast cancer progression.
Collapse
|
19
|
Dai L, Ren P, Liu M, Imai H, Tan EM, Zhang JY. Using immunomic approach to enhance tumor-associated autoantibody detection in diagnosis of hepatocellular carcinoma. Clin Immunol 2014; 152:127-39. [PMID: 24667685 DOI: 10.1016/j.clim.2014.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 02/19/2014] [Accepted: 03/17/2014] [Indexed: 02/09/2023]
Abstract
To explore the possibility of using a mini-array of multiple tumor-associated antigens (TAAs) as an approach to the diagnosis of hepatocellular carcinoma (HCC), 14 TAAs were selected to examine autoantibodies in sera from patients with chronic hepatitis, liver cirrhosis and HCC by immunoassays. Antibody frequency to any individual TAA in HCC varied from 6.6% to 21.1%. With the successive addition of TAAs to the panel of TAAs, there was a stepwise increase of positive antibody reactions. The sensitivity and specificity of 14 TAAs for immunodiagnosis of HCC was 69.7% and 83.0%, respectively. This TAA mini-array also identified 43.8% of HCC patients who had normal alpha-fetoprotein (AFP) levels in serum. In summary, this study further supports the hypothesis that a customized TAA array used for detecting anti-TAA autoantibodies can constitute a promising and powerful tool for immunodiagnosis of HCC and may be especially useful in patients with normal AFP levels.
Collapse
Affiliation(s)
- Liping Dai
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Pengfei Ren
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Mei Liu
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Haruhiko Imai
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eng M Tan
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jian-Ying Zhang
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
20
|
O'Neill JS, Maywood ES, Hastings MH. Cellular mechanisms of circadian pacemaking: beyond transcriptional loops. Handb Exp Pharmacol 2013:67-103. [PMID: 23604476 DOI: 10.1007/978-3-642-25950-0_4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Circadian clocks drive the daily rhythms in our physiology and behaviour that adapt us to the 24-h solar and social worlds. Because they impinge upon every facet of metabolism, their acute or chronic disruption compromises performance (both physical and mental) and systemic health, respectively. Equally, the presence of such rhythms has significant implications for pharmacological dynamics and efficacy, because the fate of a drug and the state of its therapeutic target will vary as a function of time of day. Improved understanding of the cellular and molecular biology of circadian clocks therefore offers novel approaches for therapeutic development, for both clock-related and other conditions. At the cellular level, circadian clocks are pivoted around a transcriptional/post-translational delayed feedback loop (TTFL) in which the activation of Period and Cryptochrome genes is negatively regulated by their cognate protein products. Synchrony between these, literally countless, cellular clocks across the organism is maintained by the principal circadian pacemaker, the suprachiasmatic nucleus (SCN) of the hypothalamus. Notwithstanding the success of the TTFL model, a diverse range of experimental studies has shown that it is insufficient to account for all properties of cellular pacemaking. Most strikingly, circadian cycles of metabolic status can continue in human red blood cells, devoid of nuclei and thus incompetent to sustain a TTFL. Recent interest has therefore focused on the role of oscillatory cytosolic mechanisms as partners to the TTFL. In particular, cAMP- and Ca²⁺-dependent signalling are important components of the clock, whilst timekeeping activity is also sensitive to a series of highly conserved kinases and phosphatases. This has led to the view that the 'proto-clock' may have been a cytosolic, metabolic oscillation onto which evolution has bolted TTFLs to provide robustness and amplify circadian outputs in the form of rhythmic gene expression. This evolutionary ascent of the clock has culminated in the SCN, a true pacemaker to the innumerable clock cells distributed across the body. On the basis of findings from our own and other laboratories, we propose a model of the SCN pacemaker that synthesises the themes of TTFLs, intracellular signalling, metabolic flux and interneuronal coupling that can account for its unique circadian properties and pre-eminence.
Collapse
Affiliation(s)
- John S O'Neill
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, UK.
| | | | | |
Collapse
|
21
|
Tomasi ML, Tomasi I, Ramani K, Pascale RM, Xu J, Giordano P, Mato JM, Lu SC. S-adenosyl methionine regulates ubiquitin-conjugating enzyme 9 protein expression and sumoylation in murine liver and human cancers. Hepatology 2012; 56:982-93. [PMID: 22407595 PMCID: PMC3378793 DOI: 10.1002/hep.25701] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/28/2012] [Indexed: 12/15/2022]
Abstract
UNLABELLED Ubiquitin-conjugating enzyme 9 (Ubc9) is required for sumoylation and is overexpressed in several malignancies, but its expression in hepatocellular carcinoma (HCC) is unknown. Hepatic S-adenosyl methionine (SAMe) levels decrease in methionine adenosyltransferase 1A (Mat1a) knockout (KO) mice, which develop HCC, and in ethanol-fed mice. We examined the regulation of Ubc9 by SAMe in murine liver and human HCC, breast, and colon carcinoma cell lines and specimens. Real-time polymerase chain reaction and western blotting measured gene and protein expression, respectively. Immunoprecipitation followed by western blotting examined protein-protein interactions. Ubc9 expression increased in HCC and when hepatic SAMe levels decreased. SAMe treatment in Mat1a KO mice reduced Ubc9 protein, but not messenger RNA (mRNA) levels, and lowered sumoylation. Similarly, treatment of liver cancer cell lines HepG2 and Huh7, colon cancer cell line RKO, and breast cancer cell line MCF-7 with SAMe or its metabolite 5'-methylthioadenosine (MTA) reduced only Ubc9 protein level. Ubc9 posttranslational regulation is unknown. Ubc9 sequence predicted a possible phosphorylation site by cell division cycle 2 (Cdc2), which directly phosphorylated recombinant Ubc9. Mat1a KO mice had higher phosphorylated (phospho)-Ubc9 levels, which normalized after SAMe treatment. SAMe and MTA treatment lowered Cdc2 mRNA and protein levels, as well as phospho-Ubc9 and protein sumoylation in liver, colon, and breast cancer cells. Serine 71 of Ubc9 was required for phosphorylation, interaction with Cdc2, and protein stability. Cdc2, Ubc9, and phospho-Ubc9 levels increased in human liver, breast, and colon cancers. CONCLUSION Cdc2 expression is increased and Ubc9 is hyperphosphorylated in several cancers, and this represents a novel mechanism to maintain high Ubc9 protein expression that can be inhibited by SAMe and MTA.
Collapse
Affiliation(s)
- Maria Lauda Tomasi
- Division of Gastroenterology and Liver Diseases, Keck School of Medicine of University of Southern California, 90033 Los Angeles, California, USA,USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, 90033 Los Angeles, California, USA,The Southern California Research Center for Alcoholic and Pancreatic Diseases & Cirrhosis, Keck School of Medicine of University of Southern California, 90033 Los Angeles, California, USA
| | - Ivan Tomasi
- Department of Colorectal Surgery, Whipps Cross University Hospital, London E11 1NR, UK
| | - Komal Ramani
- Division of Gastroenterology and Liver Diseases, Keck School of Medicine of University of Southern California, 90033 Los Angeles, California, USA,USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, 90033 Los Angeles, California, USA,The Southern California Research Center for Alcoholic and Pancreatic Diseases & Cirrhosis, Keck School of Medicine of University of Southern California, 90033 Los Angeles, California, USA
| | - Rosa Maria Pascale
- Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy
| | - Jun Xu
- The Southern California Research Center for Alcoholic and Pancreatic Diseases & Cirrhosis, Keck School of Medicine of University of Southern California, 90033 Los Angeles, California, USA
| | - Pasquale Giordano
- Department of Colorectal Surgery, Whipps Cross University Hospital, London E11 1NR, UK
| | - José M. Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Shelly C. Lu
- Division of Gastroenterology and Liver Diseases, Keck School of Medicine of University of Southern California, 90033 Los Angeles, California, USA,USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, 90033 Los Angeles, California, USA,The Southern California Research Center for Alcoholic and Pancreatic Diseases & Cirrhosis, Keck School of Medicine of University of Southern California, 90033 Los Angeles, California, USA
| |
Collapse
|
22
|
Issaenko OA, Amerik AY. Chalcone-based small-molecule inhibitors attenuate malignant phenotype via targeting deubiquitinating enzymes. Cell Cycle 2012; 11:1804-17. [PMID: 22510564 DOI: 10.4161/cc.20174] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is usurped by many if not all cancers to regulate their survival, proliferation, invasion, angiogenesis and metastasis. Bioflavonoids curcumin and chalcones exhibit anti-neoplastic selectivity through inhibition of the 26S proteasome-activity within the UPS. Here, we provide evidence for a novel mechanism of action of chalcone-based derivatives AM146, RA-9 and RA-14, which exert anticancer activity by targeting deubiquitinating enzymes (DUB) without affecting 20S proteasome catalytic-core activity. The presence of the α,β-unsaturated carbonyl group susceptible to nucleophilic attack from the sulfhydryl of cysteines in the active sites of DUB determines the capacity of novel small-molecules to act as cell-permeable, partly selective DUB inhibitors and induce rapid accumulation of polyubiquitinated proteins and deplete the pool of free ubiquitin. These chalcone-derivatives directly suppress activity of DUB UCH-L1, UCH-L3, USP2, USP5 and USP8, which are known to regulate the turnover and stability of key regulators of cell survival and proliferation. Inhibition of DUB-activity mediated by these compounds downregulates cell-cycle promoters, e.g., cyclin D1 and upregulates tumor suppressors p53, p27(Kip1) and p16(Ink4A). These changes are associated with arrest in S-G 2/M, abrogated anchorage-dependent growth and onset of apoptosis in breast, ovarian and cervical cancer cells without noticeable alterations in primary human cells. Altogether, this work provides evidence of antitumor activity of novel chalcone-based derivatives mediated by their DUB-targeting capacity; supports the development of pharmaceuticals to directly target DUB as a most efficient strategy compared with proteasome inhibition and also provides a clear rationale for the clinical evaluation of these novel small-molecule DUB inhibitors.
Collapse
Affiliation(s)
- Olga A Issaenko
- Russian Academy of Science, St. Petersburg, Russia; University of Minnesota, Minneapolis, MN USA.
| | | |
Collapse
|
23
|
Menescal LA, Schmidt C, Liedtke D, Schartl M. Liver hyperplasia after tamoxifen induction of Myc in a transgenic medaka model. Dis Model Mech 2012; 5:492-502. [PMID: 22422827 PMCID: PMC3380712 DOI: 10.1242/dmm.008730] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Myc is a global transcriptional regulator and one of the most frequently overexpressed oncoproteins in human tumors. It is well established that activation of Myc leads to enhanced cell proliferation but can also lead to increased apoptosis. The use of animal models expressing deregulated levels of Myc has helped to both elucidate its function in normal cells and give insight into how Myc initiates and maintains tumorigenesis. Analyses of the medaka (Oryzias latipes) genome uncovered the unexpected presence of two Myc gene copies in this teleost species. Comparison of these Myc versions to other vertebrate species revealed that one gene, myc17, differs by the loss of some conserved regulatory protein motifs present in all other known Myc genes. To investigate how such differences might affect the basic biological functions of Myc, we generated a tamoxifen-inducible in vivo model utilizing a natural, fish-specific Myc gene. Using this model we show that, when activated, Myc17 leads to increased proliferation and to apoptosis in a dose-dependent manner, similar to human Myc. We have also shown that long-term Myc17 activation triggers liver hyperplasia in adult fish, allowing this newly established transgenic medaka model to be used to study the transition from hyperplasia to liver cancer and to identify Myc-induced tumorigenesis modifiers.
Collapse
Affiliation(s)
- Luciana A Menescal
- Physiological Chemistry I, University of Würzburg, Biozentrum, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
24
|
Abstract
The evolutionarily conserved protein COP1 has been shown to operate as an E3 ubiquitin ligase complex, and a number of putative substrates have been identified, including the c-JUN oncoprotein and p53 tumor suppressor protein. New work by Migliorini and colleagues described in the current issue of JCI demonstrates that COP1 acts as a tumor suppressor in vivo and does so, at least in part, by promoting the destruction of c-JUN. These findings challenge the view that COP1 regulates p53 stability and call into question the wisdom of developing COP1 inhibitors as potential anticancer agents.
Collapse
Affiliation(s)
- Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
25
|
Rubenstein EM, Hochstrasser M. Redundancy and variation in the ubiquitin-mediated proteolytic targeting of a transcription factor. Cell Cycle 2010; 9:4282-5. [PMID: 20980825 DOI: 10.4161/cc.9.21.13741] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
As central components of the intricate networks of eukaryotic gene regulation, transcription factors are frequent targets of ubiquitin-dependent proteolysis. A well-known example is the budding yeast MATα2 (α2) transcriptional repressor, which functions as a master regulator of cell-type determination. Degradation of α2 by the ubiquitin-proteasome system is necessary for a phenotypic switch from one cell type to another. A surprisingly complex set of ubiquitin-protein conjugation mechanisms are involved. One pathway utilizes an integral-membrane ubiquitin ligase (E3) that also functions in endoplasmic reticulum-associated degradation (ERAD). Recently, we showed that a second α2 ubiquitylation pathway uses a heterodimeric E3 that, while able to bind the ubiquitin-like protein SUMO, directly recognizes non-sumoylated α2. Other transcription factors are now also known to be ubiquitylated by multiple mechanisms; as many as a dozen E3s have been implicated in degradation of the human p53 tumor suppressor, for example. We discuss general issues of redundancy and mechanistic variation in protein modification by ubiquitin.
Collapse
Affiliation(s)
- Eric M Rubenstein
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | | |
Collapse
|