1
|
Weigert N, Schweiger AL, Gross J, Matthes M, Corbacioglu S, Sommer G, Heise T. Detection of a 7SL RNA-derived small non-coding RNA using Molecular Beacons in vitro and in cells. Biol Chem 2023; 404:1123-1136. [PMID: 37632732 DOI: 10.1515/hsz-2023-0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023]
Abstract
Small non-coding RNAs (sncRNA) are involved in many steps of the gene expression cascade and regulate processing and expression of mRNAs by the formation of ribonucleoprotein complexes (RNP) such as the RNA-induced silencing complex (RISC). By analyzing small RNA Seq data sets, we identified a sncRNA annotated as piR-hsa-1254, which is likely derived from the 3'-end of 7SL RNA2 (RN7SL2), herein referred to as snc7SL RNA. The 7SL RNA is an abundant long non-coding RNA polymerase III transcript and serves as structural component of the cytoplasmic signal recognition particle (SRP). To evaluate a potential functional role of snc7SL RNA, we aimed to define its cellular localization by live cell imaging. Therefore, a Molecular Beacon (MB)-based method was established to compare the subcellular localization of snc7SL RNA with its precursor 7SL RNA. We designed and characterized several MBs in vitro and tested those by live cell fluorescence microscopy. Using a multiplex approach, we show that 7SL RNA localizes mainly to the endoplasmic reticulum (ER), as expected for the SRP, whereas snc7SL RNA predominately localizes to the nucleus. This finding suggests a fundamentally different function of 7SL RNA and its derivate snc7SL RNA.
Collapse
Affiliation(s)
- Nina Weigert
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Anna-Lena Schweiger
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Jonas Gross
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Marie Matthes
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Selim Corbacioglu
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Gunhild Sommer
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Tilman Heise
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| |
Collapse
|
2
|
Tingey M, Schnell SJ, Yu W, Saredy J, Junod S, Patel D, Alkurdi AA, Yang W. Technologies Enabling Single-Molecule Super-Resolution Imaging of mRNA. Cells 2022; 11:3079. [PMID: 36231040 PMCID: PMC9564294 DOI: 10.3390/cells11193079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The transient nature of RNA has rendered it one of the more difficult biological targets for imaging. This difficulty stems both from the physical properties of RNA as well as the temporal constraints associated therewith. These concerns are further complicated by the difficulty in imaging endogenous RNA within a cell that has been transfected with a target sequence. These concerns, combined with traditional concerns associated with super-resolution light microscopy has made the imaging of this critical target difficult. Recent advances have provided researchers the tools to image endogenous RNA in live cells at both the cellular and single-molecule level. Here, we review techniques used for labeling and imaging RNA with special emphases on various labeling methods and a virtual 3D super-resolution imaging technique.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
3
|
Chiang CL, Hu EY, Chang L, Labanowska J, Zapolnik K, Mo X, Shi J, Doong TJ, Lozanski A, Yan PS, Bundschuh R, Walker LA, Gallego-Perez D, Lu W, Long M, Kim S, Heerema NA, Lozanski G, Woyach JA, Byrd JC, Lee LJ, Muthusamy N. Leukemia-initiating HSCs in chronic lymphocytic leukemia reveal clonal leukemogenesis and differential drug sensitivity. Cell Rep 2022; 40:111115. [PMID: 35858552 DOI: 10.1016/j.celrep.2022.111115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 02/15/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022] Open
Abstract
The existence of "leukemia-initiating cells" (LICs) in chronic lymphocytic leukemia (CLL) remains controversial due to the difficulty in isolating and identifying the tumor-initiating cells. Here, we demonstrate a microchannel electroporation (MEP) microarray that injects RNA-detecting probes into single live cells, allowing the imaging and characterization of heterogeneous LICs by intracellular RNA expression. Using limited-cell FACS sequencing (LC-FACSeq), we can detect and monitor rare live LICs during leukemogenesis and characterize their differential drug sensitivity. Disease-associated mutation accumulation in developing B lymphoid but not myeloid lineage in CLL patient hematopoietic stem cells (CLL-HSCs), and development of independent clonal CLL-like cells in murine patient-derived xenograft models, suggests the existence of CLL LICs. Furthermore, we identify differential protein ubiquitination and unfolding response signatures in GATA2high CLL-HSCs that exhibit increased sensitivity to lenalidomide and resistance to fludarabine compared to GATA2lowCLL-HSCs. These results highlight the existence of therapeutically targetable disease precursors in CLL.
Collapse
Affiliation(s)
- Chi-Ling Chiang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Eileen Y Hu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lingqian Chang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jadwiga Labanowska
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Kevan Zapolnik
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA
| | - Junfeng Shi
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Tzyy-Jye Doong
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Arletta Lozanski
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Pearlly S Yan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ralf Bundschuh
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Physics, The Ohio State University, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Logan A Walker
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Wu Lu
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Meixiao Long
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Sanggu Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Nyla A Heerema
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Gerard Lozanski
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ly James Lee
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
4
|
Vujovic F, Rezaei-Lotfi S, Hunter N, Farahani RM. The fate of notch-1 transcript is linked to cell cycle dynamics by activity of a natural antisense transcript. Nucleic Acids Res 2021; 49:10419-10430. [PMID: 34520549 PMCID: PMC8501981 DOI: 10.1093/nar/gkab800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/08/2021] [Accepted: 09/02/2021] [Indexed: 11/25/2022] Open
Abstract
A core imprint of metazoan life is that perturbations of cell cycle are offset by compensatory changes in successive cellular generations. This trait enhances robustness of multicellular growth and requires transmission of signaling cues within a cell lineage. Notably, the identity and mode of activity of transgenerational signals remain largely unknown. Here we report the discovery of a natural antisense transcript encoded in exon 25 of notch-1 locus (nAS25) by which mother cells control the fate of notch-1 transcript in daughter cells to buffer against perturbations of cell cycle. The antisense transcript is transcribed at G1 phase of cell cycle from a bi-directional E2F1-dependent promoter in the mother cell where the titer of nAS25 is calibrated to the length of G1. Transmission of the antisense transcript from mother to daughter cells stabilizes notch-1 sense transcript in G0 phase of daughter cells by masking it from RNA editing and resultant nonsense-mediated degradation. In consequence, nAS25-mediated amplification of notch-1 signaling reprograms G1 phase in daughter cells to compensate for the altered dynamics of the mother cell. The function of nAS25/notch-1 in integrating G1 phase history of the mother cell into that of daughter cells is compatible with the predicted activity of a molecular oscillator, slower than cyclins, that coordinates cell cycle within cell lineage.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/Westmead Institute for Medical Research, NSW 2145, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | | | - Neil Hunter
- IDR/Westmead Institute for Medical Research, NSW 2145, Australia
| | - Ramin M Farahani
- IDR/Westmead Institute for Medical Research, NSW 2145, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Bayer LV, Omar OS, Bratu DP, Catrina IE. PinMol: Python application for designing molecular beacons for live cell imaging of endogenous mRNAs. RNA (NEW YORK, N.Y.) 2019; 25:305-318. [PMID: 30573696 PMCID: PMC6380279 DOI: 10.1261/rna.069542.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Molecular beacons are nucleic acid oligomers labeled with a fluorophore and a quencher that fold in a hairpin-shaped structure, which fluoresce only when bound to their target RNA. They are used for the visualization of endogenous mRNAs in live cells. Here, we report a Python program (PinMol) that designs molecular beacons best suited for live cell imaging by using structural information from secondary structures of the target RNA, predicted via energy minimization approaches. PinMol takes into account the accessibility of the targeted regions, as well as the inter- and intramolecular interactions of each selected probe. To demonstrate its applicability, we synthesized an oskar mRNA-specific molecular beacon (osk1236), which is selected by PinMol to target a more accessible region than a manually designed oskar-specific molecular beacon (osk2216). We previously demonstrated osk2216 to be efficient in detecting oskar mRNA in in vivo experiments. Here, we show that osk1236 outperformed osk2216 in live cell imaging experiments.
Collapse
Affiliation(s)
- Livia V Bayer
- Biological Sciences Department, Hunter College, City University of New York, New York, New York 10065, USA
- Program in Molecular, Cellular, and Developmental Biology, The Graduate Center, City University of New York, New York, New York 10016, USA
| | - Omar S Omar
- Biological Sciences Department, Hunter College, City University of New York, New York, New York 10065, USA
- Program in Molecular, Cellular, and Developmental Biology, The Graduate Center, City University of New York, New York, New York 10016, USA
| | - Diana P Bratu
- Biological Sciences Department, Hunter College, City University of New York, New York, New York 10065, USA
- Program in Molecular, Cellular, and Developmental Biology, The Graduate Center, City University of New York, New York, New York 10016, USA
| | - Irina E Catrina
- Biological Sciences Department, Hunter College, City University of New York, New York, New York 10065, USA
| |
Collapse
|
6
|
George L, Indig FE, Abdelmohsen K, Gorospe M. Intracellular RNA-tracking methods. Open Biol 2018; 8:rsob.180104. [PMID: 30282659 PMCID: PMC6223214 DOI: 10.1098/rsob.180104] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/03/2018] [Indexed: 12/26/2022] Open
Abstract
RNA tracking allows researchers to visualize RNA molecules in cells and tissues, providing important spatio-temporal information regarding RNA dynamics and function. Methods such as fluorescent in situ hybridization (FISH) and molecular beacons rely on complementary oligonucleotides to label and view endogenous transcripts. Other methods create artificial chimeric transcripts coupled with bacteriophage-derived coat proteins (e.g. MS2, λN) to tag molecules in live cells. In other approaches, endogenous RNAs are recognized by complementary RNAs complexed with noncatalytic Cas proteins. Each technique has its own set of strengths and limitations that must be considered when planning an experiment. Here, we discuss the mechanisms, advantages, and weaknesses of in situ hybridization, molecular beacons, MS2 tagging and Cas-derived systems, as well as how RNA tracking can be employed to study various aspects of molecular biology.
Collapse
Affiliation(s)
- Logan George
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.,Confocal Core Facility, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Fred E Indig
- Confocal Core Facility, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
7
|
Donlin-Asp PG, Rossoll W, Bassell GJ. Spatially and temporally regulating translation via mRNA-binding proteins in cellular and neuronal function. FEBS Lett 2017; 591:1508-1525. [PMID: 28295262 DOI: 10.1002/1873-3468.12621] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/20/2022]
Abstract
Coordinated regulation of mRNA localization and local translation are essential steps in cellular asymmetry and function. It is increasingly evident that mRNA-binding proteins play critical functions in controlling the fate of mRNA, including when and where translation occurs. In this review, we discuss the robust and complex roles that mRNA-binding proteins play in the regulation of local translation that impact cellular function in vertebrates. First, we discuss the role of local translation in cellular polarity and possible links to vertebrate development and patterning. Next, we discuss the expanding role for local protein synthesis in neuronal development and function, with special focus on how a number of neurological diseases have given us insight into the importance of translational regulation. Finally, we discuss the ever-increasing set of tools to study regulated translation and how these tools will be vital in pushing forward and addressing the outstanding questions in the field.
Collapse
Affiliation(s)
- Paul G Donlin-Asp
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Wilfried Rossoll
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
8
|
Tay AK, Dhar M, Pushkarsky I, Di Carlo D. Research highlights: manipulating cells inside and out. LAB ON A CHIP 2015; 15:2533-2537. [PMID: 25996249 DOI: 10.1039/c5lc90060c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We highlight recent work manipulating cells: from whole cells, to intracellular content, and even subcellular gradients in proteins. In the first manuscript, using interdigitated electrode arrays at a controlled tilt angle to a microchannel allows for an array of acoustic nodes that apply force and isolate larger circulating tumor cells from remaining cells in RBC-lysed blood. Moving to the subcellular scale, recent work shows the ability to use rapid bubble generation induced by a pulsed laser to transfect hundreds of thousands of cells in parallel, especially with larger cargo, such as live bacteria. Manipulating at an even finer level, our third highlighted paper applies magnetic nanoparticle-based techniques to the localization of proteins within the cytoplasm in gradient configurations. A recurring theme in the literature is how interfacing at the cellular scale is a key feature enabled by micro & nanotechnology. This feature can be exploited to achieve new capabilities for cell biologists which opens up new fundamental cell biology questions. This matching of scales and the unique advantages are well demonstrated in the articles highlighted.
Collapse
Affiliation(s)
- Andy K Tay
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, USA.
| | | | | | | |
Collapse
|
9
|
Giraldo-Vela JP, Kang W, McNaughton RL, Zhang X, Wile BM, Tsourkas A, Bao G, Espinosa HD. Single-cell detection of mRNA expression using nanofountain-probe electroporated molecular beacons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2386-91. [PMID: 25641752 PMCID: PMC6016387 DOI: 10.1002/smll.201401137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 05/18/2023]
Abstract
New techniques for single-cell analysis enable new discoveries in gene expression and systems biology. Time-dependent measurements on individual cells are necessary, yet the common single-cell analysis techniques used today require lysing the cell, suspending the cell, or long incubation times for transfection, thereby interfering with the ability to track an individual cell over time. Here a method for detecting mRNA expression in live single cells using molecular beacons that are transfected into single cells by means of nanofountain probe electroporation (NFP-E) is presented. Molecular beacons are oligonucleotides that emit fluorescence upon binding to an mRNA target, rendering them useful for spatial and temporal studies of live cells. The NFP-E is used to transfect a DNA-based beacon that detects glyceraldehyde 3-phosphate dehydrogenase and an RNA-based beacon that detects a sequence cloned in the green fluorescence protein mRNA. It is shown that imaging analysis of transfection and mRNA detection can be performed within seconds after electroporation and without disturbing adhered cells. In addition, it is shown that time-dependent detection of mRNA expression is feasible by transfecting the same single cell at different time points. This technique will be particularly useful for studies of cell differentiation, where several measurements of mRNA expression are required over time.
Collapse
Affiliation(s)
- Juan P Giraldo-Vela
- iNfinitesimal LLC, Skokie, IL, 60077, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Wonmo Kang
- iNfinitesimal LLC, Skokie, IL, 60077, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Rebecca L McNaughton
- iNfinitesimal LLC, Skokie, IL, 60077, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Xuemei Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Brian M Wile
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Horacio D Espinosa
- iNfinitesimal LLC, Skokie, IL, 60077, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
10
|
Wile BM, Ban K, Yoon YS, Bao G. Molecular beacon-enabled purification of living cells by targeting cell type-specific mRNAs. Nat Protoc 2014; 9:2411-24. [PMID: 25232937 PMCID: PMC4326061 DOI: 10.1038/nprot.2014.154] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Molecular beacons (MBs) are dual-labeled oligonucleotides that fluoresce only in the presence of complementary mRNA. The use of MBs to target specific mRNAs allows sorting of specific cells from a mixed cell population. In contrast to existing approaches that are limited by available surface markers or selectable metabolic characteristics, the MB-based method enables the isolation of a wide variety of cells. For example, the ability to purify specific cell types derived from pluripotent stem cells (PSCs) is important for basic research and therapeutics. In addition to providing a general protocol for MB design, validation and nucleofection into cells, we describe how to isolate a specific cell population from differentiating PSCs. By using this protocol, we have successfully isolated cardiomyocytes differentiated from mouse or human PSCs (hPSCs) with ∼ 97% purity, as confirmed by electrophysiology and immunocytochemistry. After designing MBs, their ordering and validation requires 2 weeks, and the isolation process requires 3 h.
Collapse
Affiliation(s)
- Brian M. Wile
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Kiwon Ban
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Young-Sup Yoon
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
11
|
Ilieva M, Della Vedova P, Hansen O, Dufva M. Tracking neuronal marker expression inside living differentiating cells using molecular beacons. Front Cell Neurosci 2013; 7:266. [PMID: 24431988 PMCID: PMC3883158 DOI: 10.3389/fncel.2013.00266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/03/2013] [Indexed: 01/14/2023] Open
Abstract
Monitoring gene expression is an important tool for elucidating mechanisms of cellular function. In order to monitor gene expression during nerve cell development, molecular beacon (MB) probes targeting markers representing different stages of neuronal differentiation were designed and synthesized as 2'-O-methyl RNA backbone oligonucleotides. MBs were transfected into human mesencephalic cells (LUHMES) using streptolysin-O-based membrane permeabilization. Mathematical modeling, simulations and experiments indicated that MB concentration was equal to the MB in the transfection medium after 10 min transfection. The cells will then each contain about 60,000 MBs. Gene expression was detected at different time points using fluorescence microscopy. Nestin and NeuN mRNA were expressed in approximately 35% of the LUHMES cells grown in growth medium, and in 80–90% of cells after differentiation. MAP2 and tyrosine hydroxylase mRNAs were expressed 2 and 3 days post induction of differentiation, respectively. Oct 4 was not detected with MB in these cells and signal was not increased over time suggesting that MB are generally stable inside the cells. The gene expression changes measured using MBs were confirmed using qRT-PCR. These results suggest that MBs are simple to use sensors inside living cell, and particularly useful for studying dynamic gene expression in heterogeneous cell populations.
Collapse
Affiliation(s)
- Mirolyuba Ilieva
- Department of Micro- and Nanotechnology, Technical University of Denmark Kgs. Lyngby, Denmark
| | - Paolo Della Vedova
- Department of Micro- and Nanotechnology, Technical University of Denmark Kgs. Lyngby, Denmark
| | - Ole Hansen
- Department of Micro- and Nanotechnology, Technical University of Denmark Kgs. Lyngby, Denmark ; Center for Individual Nanoparticle Functionality, Technical University of Denmark Kgs. Lyngby, Denmark
| | - Martin Dufva
- Department of Micro- and Nanotechnology, Technical University of Denmark Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
Ilieva M, Dufva M. SOX2 and OCT4 mRNA-expressing cells, detected by molecular beacons, localize to the center of neurospheres during differentiation. PLoS One 2013; 8:e73669. [PMID: 24013403 PMCID: PMC3754928 DOI: 10.1371/journal.pone.0073669] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/19/2013] [Indexed: 12/26/2022] Open
Abstract
Neurospheres are used as in vitro assay to measure the properties of neural stem cells. To investigate the molecular and phenotypic heterogeneity of neurospheres, molecular beacons (MBs) targeted against the stem cell markers OCT4 and SOX2 were designed, and synthesized with a 2'-O-methyl RNA backbone. OCT4 and SOX2 MBs were transfected into human embryonic mesencephalon derived cells, which spontaneously form neurospheres when grown on poly-L-ornitine/fibronectin matrix and medium complemented with bFGF. OCT4 and SOX2 gene expression were tracked in individual cell using the MBs. Quantitative image analysis every day for seven days showed that the OCT4 and SOX2 mRNA-expressing cells clustered in the centre of the neurospheres cultured in differentiation medium. By contrast, cells at the periphery of the differentiating spheres developed neurite outgrowths and expressed the tyrosine hydroxylase protein, indicating terminal differentiation. Neurospheres cultured in growth medium contained OCT4 and SOX2-positive cells distributed throughout the entire sphere, and no differentiating neurones. Gene expression of SOX2 and OCT4 mRNA detected by MBs correlated well with gene and protein expression measured by qRT-PCR and immunostaining, respectively. These experimental data support the theoretical model that stem cells cluster in the centre of neurospheres, and demonstrate the use of MBs for the spatial localization of specific gene-expressing cells within heterogeneous cell populations.
Collapse
Affiliation(s)
- Mirolyuba Ilieva
- Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Martin Dufva
- Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
- * E-mail:
| |
Collapse
|
13
|
Engineering imaging probes and molecular machines for nanomedicine. SCIENCE CHINA-LIFE SCIENCES 2012; 55:843-61. [DOI: 10.1007/s11427-012-4380-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/10/2012] [Indexed: 12/21/2022]
|
14
|
Abstract
In the post-genomic era, epigenetic factors-literally those that are "over" or "above" genetic ones and responsible for controlling the expression and function of genes-have emerged as important mediators of development and aging; gene-gene and gene-environmental interactions; and the pathophysiology of complex disease states. Here, we provide a brief overview of the major epigenetic mechanisms (ie, DNA methylation, histone modifications and chromatin remodeling, and non-coding RNA regulation). We highlight the nearly ubiquitous profiles of epigenetic dysregulation that have been found in Alzheimer's and other neurodegenerative diseases. We also review innovative methods and technologies that enable the characterization of individual epigenetic modifications and more widespread epigenomic states at high resolution. We conclude that, together with complementary genetic, genomic, and related approaches, interrogating epigenetic and epigenomic profiles in neurodegenerative diseases represent important and increasingly practical strategies for advancing our understanding of and the diagnosis and treatment of these disorders.
Collapse
|
15
|
Lingen MW. Brush-based cytology screening in the tonsils and cervix: there is a difference! Cancer Prev Res (Phila) 2012; 4:1350-2. [PMID: 21893496 DOI: 10.1158/1940-6207.capr-11-0373] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This perspective on the report by Fakhry and colleagues in this issue of the journal (beginning on page 1378) examines the diagnostic accuracy of a "Pap-test equivalent" for screening for human papillomavirus (HPV)-associated cancers in the tonsils. HPV infection is strongly associated with cancer development in the oropharynx (tonsils and base of tongue) and cervix; the data discussed here underscore the differences in screening for cervical versus oropharyngeal malignancies and discuss some of the challenges and limitations associated with screening for tonsillar premalignancy and early cancers.
Collapse
Affiliation(s)
- Mark W Lingen
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|